一个沿x轴作简谐振动的弹簧振子

一个沿x轴作简谐振动的弹簧振子
一个沿x轴作简谐振动的弹簧振子

大学物理六七章作业

第六章机械振动 一. 选择题 1. 一弹簧振子,水平放置时做简谐振动,若把它竖直放置或放在一光滑斜面上,下列说法正确的是 (A) 竖直时做简谐振动,在斜面上不做简谐振动 (B) 竖直时不做简谐振动,在斜面上做简谐振动 (C) 两种情况下都做简谐振动 (D) 两种情况下都不做简谐振动 2. 质点沿x轴做简谐振动,振动方程用余弦函数表示,若时,质点过平衡位置且向x轴负方向运动,则它的振动初相位为 (A) 0 (B) (C) (D) 3. 两个质点各自做简谐振动,它们的振幅、周期相同,第一个质点的振动方程为 ,当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为: (A) (B) (C) (D) 4. 质点沿x轴做简谐振动,振动方程为,从t = 0时刻起,到质点位置在x = -2cm处,且向x轴正方向运动的最短时间间隔为 (A) (B) (C) (D) 5. 质点做简谐振动,振幅为A,初始时刻质点的位移为,且向x轴正向运动,代表此简谐振动的旋转矢量图为

(A) (B) (D) (C) 6. 图示为质点做简谐振动的曲线,该质点的振动方程为 (A) ) cm (B) ) cm (C) ) cm (D) ) cm 7. 一弹簧振子做简谐振动,总能量为E0,如果振幅增加为原来的两倍,则它的总能量为 (A) (B) (C) (D) 8. 一弹簧振子做简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) (B) (C) (D) (E) 9. 两个简谐振动,,,且,合振动的振幅为 (A) (B) (C) (D) 二. 填空题 10. 一弹簧振子,弹簧的弹性系数为k,物体的质量为m,则该系统固有圆频率为_________,故有振动周期为_____________.

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量0m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω=

且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

振动、波动部分答案(新)

大学物理学——振动和波 振 动 班级 学号 姓名 成绩 内容提要 1、简谐振动的三个判据 (1);(2);(3) 2、描述简谐振动的特征量: A 、T 、γ;T 1= γ,πγπω22== T 3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法 4、简谐振动的速度和加速度:)2 cos()sin(v 00π ?ω?ωω+ +=+-== t v t A dt dx m ; a= )()(π?ω?ωω±+=+=0m 02 2 2 t a t cos -dt x d A 5、振动的相位随时间变化的关系: 6、简谐振动实例 弹簧振子:, 单摆小角度振动:, 复摆: 0mgh dt d 2 2 =+ θθJ ,T=2mgh J π 7、简谐振动的能量:2 22 m 21k 2 1A A E ω== 系统的动能为:)(?ωω+==t sin m 21mv 212 2 2 2 A E K ; 系统的势能为:)?ω+==t (cos k 2 1kx 2 122 2 A E P 8、两个简谐振动的合成 (1)两个同方向同频率的简谐振动的合成

合振动方程为:)(?ω+=t cos x A 其中,其中;。 *(2) 两个同方向不同频率简谐振动的合成 拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ= *(3)两个相互垂直简谐振动的合成 合振动方程: )(122 122 122 22 1 2-sin )(cos xy 2y x ????=-- + A A A A ,为椭圆方程。 练习一 一、 填空题 1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。 2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动 的三个特征量为:A = ; =ω ;=? 。 3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。已 知细棒绕过其一端的轴的转动惯量J =3/2 ml ,此摆作微小振动的周期 为 。 4.试在下图中画出谐振子的动能、振动势能和机械能随时间而变化的三条曲线(设t =0时物体经过平衡位置)。 5.图中所示为两个简谐振动曲线。若以余弦函数表示这两个振动的合成结果,则合振动的方程为 。

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

大学物理题库-振动与波动

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3 cos 12.0π π-=t x (B ) )(3 cos 12.0π π+=t x (C ) )(3 2cos 12.0π π-=t x (D ) ) (32cos 12.0π π+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π2 1cos(2- +=αωt A x (C) ) π23cos(2- +=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律 用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(10 42 π+ π?=-t x (SI)。 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 8 1 (B) s 6 1 (C) s 4 1 (D) s 3 1 (E) s 2 1 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21 /cos(π-=t m k A x (C) )π21/(cos + =t k m A x (D) )21/cos(π- =t k m A x (E) t m /k A x cos = [ ] 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 v v 2 1

简谐振动模型

第二讲 简谐振动模型 【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型→单摆的周期 【知识点一】弹簧振子 1、定义:物体和弹簧所组成的系统. 条件(理想化) : ①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O ,在AB 两点间做简谐振动, 振幅为OA=0B 右图:弹簧弹力和重力的合力提供回复力 3、周期:2m T K π= , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。 ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是( ) A A→O 位移为负值,速度为正值 B O→B 时,位移为正值,加速度为负值 C B→O 时,位移为负值,速度为负值 D O→A 时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图2所示,在t1至t2这段时间内( ) A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和2cm,松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____,振动周期之比T1:T2=______. ★回复力 【例】如图所示,物体A 放在物体B 上,B 与弹簧相连,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时(t = 0),取向右为正方向,A 所受静摩擦力f 随时间t 变化的图象正确的是( )

大学物理习题解答8第八章振动与波动 (1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d () d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E m v = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 2 2 211()+()22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A =

第4章 振动学基础作业

第4章 振动学基础 思 考 题 4.1 什么是简谐振动?试分析以下几种运动是否是简谐振动? (1) 拍皮球时球的运动; (2) 一小球在半径很大的光滑凹球面底部的小幅度摆动; (3)一质点分别作匀速圆周运动和匀加速圆周运动,它在直径上的投影点的运动。 答:物体运动时,如果离开平衡位置的位移(或者角位移)按余弦函数(或正弦函数)的规律随时间变化,这种运动就叫简谐运动。 也可从动力学角度来说明:凡是物体所受合外力(或合外力矩)与位移(或角位移)成正比而方向相反,则物体作简谐振动。 (1)不是简谐振动。从受力角度看,它受到地面的作用力,虽然是弹性力,但这外力只是作用一瞬间,而后就只在重力作用下运动。从运动规律来看,虽然是作往复运动,但位移时间关系并不是余弦(正弦)函数,而是作匀变速运动。 (2)是简谐振动。当小球在半径很大的光滑凹球面底部的小幅度摆动,若其角位移0 5θ<, sin θθ ,则其运动方程满足微分方程22d 0d g t R θθ?? += ??? ,所以是简谐振动。 (3)作匀速圆周运动的质点在某一直径(取作x 轴)上投影点对圆心o 的位移随时间t 变化规律遵从余弦函数,若设圆周半径为A ,角速度为ω,以圆心为坐标原点,质点的矢径经过与x 轴夹角为φ的位置开始计时,则在任意时刻t ,此矢径与x 轴的夹角为()t ωφ+,而质点在x 轴上的投影的坐标为()cos x A t ωφ=+,这正与简谐振动的运动方程相同。可见,作匀速圆周运动的质点在直径上的投影点的运动是简谐振动。 质点作匀加速圆周运动,在直径上的投影x 不是等周期性变化的,而是随着时间变化的越来越快,所以其投影点的运动不是谐振的。 4.2 分析下列表述是否正确,为什么? (1)若物体受到一个总是指向平衡位置的合力,则物体必然作振动,但不一定是简谐振动; (2)简谐振动过程是能量守恒的过程,凡是能量守恒的过程就是简谐振动。 答:(1)的表述是正确的。若物体受到一个总是指向平衡位置的合力,则物体必然在自己的平衡位置附近作往复运动即作振动;若系统在运动中系统只受到内部的线性回复力的作用.或者说, 若一个系统的运动微分方程能用22dt d ξ+ω2 ξ=0描述时,其所作的运动才是谐振动. (2)的表述不正确,比如自由落体运动中能量守恒,但不是简谐振动。 4.3 如果把一弹簧振子和一个单摆拿到月球上去,振动的周期如何改变?

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

大学物理A第九章 简谐振动

第九章 简谐振动 一、填空题(每空3分) 9-1 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=6.0×10-2 cos( T π2t+4 π ) (SI) , X 2=4.0×10-2cos(T π2t -4 3π ) (SI) ,则其合振动的表达式为______(SI).( X=2.0× 10-2cos( T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、 )25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 9-8 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3,1:3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最

简谐振动模型

第二讲简谐振动模型【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型单摆的周期【知 识点一】弹簧振子 1 、定义:物体和弹簧所组成的系统. 条件 (理想化 ) :①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O,在 AB 两点间做简谐振动, 振幅为 OA=0B 右图:弹簧弹力和重力的合力提供回复力 3 、周期:T m , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。2 K ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是() A A→O位移为负值,速度为正值 B O→B时,位移为正值,加速度为负值 C B→O时,位移为负值,速度为负值 D O→A时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图 2 所示,在 t1 至 t2这段时间内() A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和 2cm, 松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____, 振动周期之比 T1:T2=______. ★回复力 【例】如图所示 ,物体 A 放在物体 B 上 ,B 与弹簧相连 ,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时 (t = 0), 取向右为正方向 ,A 所受静摩擦力 f 随时间 t 变化的图象正确的是 ()

弹簧振子的简谐振动

弹簧振子的简谐振动 实验目的: (1) 测量弹簧振子的振动周期T 。 (2) 求弹簧的倔强系数k 和有效质量0m 实验原理: 设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ②

在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和 0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 2 21 104()T m m k π=+ 2 22 204()T m m k π=+

相关文档
最新文档