2015年卫星发射

2015年卫星发射
2015年卫星发射

19、2015年12月29日0时04分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射高分四号卫星。至此,2015年19次航天发射全部成功,我国航天发射“十二五”任务圆满收官。高分专项由国防科工局牵头组织实施。高分四号卫星由中国航天科技集团空间技术研究院研制。长征三号乙运载火箭由中国航天科技集团运载火箭技术研究院研制。这是长征系列运载火箭第222次发射。国防科工局重大专项工程中心主任、高分专项工程总设计师童旭东表示,高分四号将为综合防灾减灾、地质灾害调查、林业灾害监测和气象预警预报等提供高时间分辨率遥感数据。主用户是民政部、国家地震局、国家林业局和国家气象局。

高分四号定点于地球同步轨道上,位于赤道上空,观测范围覆盖我国及周边地区、约三分之一的地球表面。利用与地球同步、相对于地球静止的优势,高分四号能够对目标区域长期“凝视”,获取动态变化过程数据,执行诸如森林火情监视等近实时应急任务。“高分四号‘体重’5吨,设计寿命8年。它的‘大眼睛’——大口径面阵凝视相机兼具可见光和红外线全天候成像能力。可见光谱段分辨率50米,中波红外谱段分辨率400米,相当于从3.6万公里外看见大油轮,代表目前我国地球同步轨道遥感卫星最高分辨率水平。”中国航天科技集团高分四号卫星总设计师李果说。

18、2015年12月17日8时12分04秒,我国在酒泉卫星发射中心,使用长征二号丁运载火箭(Y31)成功发射“悟空”暗物质粒子探测卫星,发射13分10秒后,“悟空”成功进入距地球500公里高的太阳同步轨道。此次发射任务圆满成功,标志着中国空间科学研究迈出重要一步。用于发射的长征二号丁运载火箭由上海航天技术研究院抓总研制,火箭已圆满完成26次发射,成功率100%,先后将38颗卫星准确送入预定轨道,并成功跻身国际发射运载火箭市场。这是今年我国进行的第18次航天发射,同时长征系列运载火箭的第221次飞行。

17、2015年12月10日0时46分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将“中星1C”卫星送入太空预定转移轨道。“中星1C”卫星是中国卫星通信集团有限公司所属的一颗通信广播卫星,由中国航天科技集团公司所属中国空间技术研究院研制。“中星1C”卫星可提供高质量的话音、数据、广播电视传输业务,将为我国通信广播事业提供更好的服务。用于此次发射的长征三号乙运载火箭由中国航天科技集团公司所属中国运载火箭技术研究院研制。这是长征系列运载火箭的第220次飞行。

16、2015年11月27日5时24分,我国在太原卫星发射中心用长征四号丙运载火箭成功将遥感二十九号卫星发射升空。遥感二十九号卫星将主要用于科学试验、国土资源普查、农作物估产及防灾减灾等领域。这次发射的卫星和运载火箭均由中国航天科技集团公司所属上海航天技术研究院研制。这是长征系列运载火箭的第219次飞行。

15、2015年11月21日0时07分,我国在西昌卫星发射中心用长征三号乙运载火箭成功将“老挝一号”通信卫星发射升空,卫星顺利进入预定转移轨道。“老挝一号”通信卫星由中国航天科技集团公司所属中国空间技术研究院研制,用于执行发射任务的运载火箭由中国航天科技集团公司所属中国运载火箭技术研究院研制,这是长征系列运载火箭的第218次飞行。

14、2015年11月8日15时06分,长征四号乙运载火箭在太原卫星发射中心成功将遥感卫星二十八号发射升空。卫星准确进入预定太阳同步轨道。这也是继11月4日中星2C卫星成功发射后,五天内的第二次成功发射,彰显了今年中国长征系列运载火箭的高密度发射强劲势头。遥感卫星二十八号由中国航天科技集团公司五院抓总研制,卫星主要用于科学试验、国土资源普查、农作物估产和防灾减灾等领域。长征四号乙运载火箭由中国航天科技集团公司八院抓总研制,它是一种常温液体三级运载火箭,太阳同步轨道运载能力为2.4吨,轨道高度700公里。本次发射是长征系列运载火箭第217次发射。

13、2015年11月4日0时25 分,我国在西昌卫星发射中心用长征三号乙运载火箭成功将“中星2C”卫星发射升空,卫星顺利进入预定转移轨道,这是长征系列运载火箭的第216次飞行。

12、2015年10月26日15时10分,我国在酒泉卫星发射中心用长征二号丁运载火箭,成功发射天绘一号03星,卫星顺利进入预定轨道。这次发射的天绘一号03星由中国航天科技集团公司所属航天东方红卫星有限公司研制,主要用于科学试验、国土资源普查、地图测绘、农作物估产及防灾减灾等领域,将对我国科学研究和国民经济建设发挥积极作用。长征二号丁运载火箭由中国航天科技集团公司所属上海航天技术研究院研制。这次发射是长征系列运载火箭的第215次飞行。

11、2015年10月17日0时16分,在西昌卫星发射中心,长征三号乙运载火箭成功将亚太九号通信卫星送入太空。这是我国首次向国际成熟卫星运营商提供通信卫星在轨交付服务,也是我国第七个卫星在轨交付项目。执行此次发射任务的长征三号乙运载火箭由我院抓总研制,是我国现役火箭中推力最大的一型,也是我国用于商业卫星发射服务的主力火箭之一。本次发射是长征三号乙火箭的第30次发射,距该型火箭的前一次发射仅17天。这是我院运载火箭的第145次发射,也是我国长征系列运载火箭的第214次发射。据了解,“亚太九号”是一颗商业通信卫星,用户为香港亚太通信卫星有限公司。卫星入轨后,将与亚太公司在轨运行的其它卫星共同为亚洲、欧洲、非洲、澳大利亚等全球约75%人口的地区,提供优质的一站式卫星转发器服务以及广播、卫星通信、电信港和数据中心服务。

10、2015年10月7日12时13分,我国在酒泉卫星发射中心用长征二号丁运载火箭成功将1组“吉林一号”商业卫星发射升空,包括1颗光学遥感卫星、2颗视频卫星和1颗技术验证卫星,标志着我国航天遥感应用领域商业化、产业化发展迈出重要一步。这次发射是长征系列运载火箭的第213次飞行。

9、2015年9月30日7时13分,我国在西昌卫星发射中心用长征三号乙运载火箭将1颗新一代北斗导航卫星发射升空,这是我国第4颗新一代北斗导航卫星。星上首次搭载氢原子钟,卫星入轨后将开展星载氢原子钟、星间链路、新型导航信号体制等试验验证工作,并适时入网提供服务。

8、2015年9月25日上午,我国自主研制的首枚固体运载火箭长征十一号在酒泉卫星发射中心成功首飞。火箭采用固体发动机和固体燃料,搭载了4颗卫星,首次实现固体运载火箭一箭多星发射,意味着未来我国能在24小时内实现卫星快速发射。长征11号运载火箭由固体运载火箭、发射支持系统组成,一级采用中国最大规模和推力的固体火箭发动机。具有可整体贮存、操作简单、发射成本低、发射周期以小时计算,最大的优势是“快速、便捷、灵活”,可实现卫星快速组网和补网,能很好地满足自然灾害、突发事件等应急发射需求。

7、2015年9月20日7时01分,我国新一代运载火箭长征六号在太原发射,将20颗卫星送入距离地球524公里的轨道,创亚洲之最。长征六号长29.3米,起飞重量103吨。我国研制的液氧煤油发动机也随长征六号一道完成首次飞行试验,该发动机无毒无污染,技术上是一个质的飞跃。发射载荷包括:浙江大学皮星二号A/B(ZDPS-2A/2B)、清华大学3颗卫星(包括西电空间实验一号皮卫星)、国防科技大学天拓三号(TT-3)手机卫星(CAS-3I)和XX星4颗、哈尔滨工业大学紫丁香二号、深圳东方红海特开拓一号卫星和DCBB(CAS-3G)、航天东方红希望二号2A-2F(CAS3A-3F)。同时,长征六号的首飞,也是我国研制的液氧煤油发动机首次太空出征。

6、2015年9月14日12时42分,我国在酒泉卫星发射中心用长征二号丁运载火箭,成功将高分九号卫星送入太空。高分九号卫星主要应用于国土普查、城市规划、土地确权、路网设计、农作物估产和防灾减灾等领域,可为国家重大战略实施和国防现代化建设提供信息保障。

5、2015年9月12日23时42分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将通信技术试验卫星一号送入太空。此次发射的卫星是我国通信技术试验系列卫星的首颗星,主要用于开展Ka频段宽带通信技术试验。这是长征系列运载火箭的第208次飞行。

4、2015年8月27日10时31分,我国在太原卫星发射中心用长征四号丙运载火箭,成功将遥感二十七号卫星送入太空。这次发射的遥感卫星,主要用于科学试验、国土资源普查、农作物估产及防灾减灾等领域。这是长征系列运载火箭的第207次飞行。

3、2015年7月25日20时29分,中国在西昌卫星发射中心用“长征三号乙/远征一号”运载火箭成功将2颗新一代北斗导航卫星发射升空,经过约3.5小时飞行后,“远征一号”上面级将2颗卫星准确送入预定轨道。此次发射圆满成功,标志着北斗卫星导航系统向全球覆盖的建设目标迈出坚实一步。此次发射的2

颗卫星,均为地球中圆轨道卫星,也是中国发射的第18、19颗北斗导航卫星。卫星入轨后,将与先期发射的第17颗北斗导航卫星共同开展新型导航信号、星间链路等试验验证工作,并适时入网提供服务。“远征一号”上面级被称为“太空摆渡车”,它是在运载火箭上增加的一级独立飞行器,进入太空后可将1个或多个航天器送入不同轨道。采用这种运载方式,可以大量节省航天器自身燃料消耗,特别是在执行中高轨航天器发射任务时,经济效益十分显著。今年3月30

日,“远征一号”首次投入使用,成功将中国首颗新一代北斗导航卫星送入预定轨道。今天的任务是“远征一号”第2次飞行,也是它首次执行运送双星入轨任务。此次发射的卫星和运载火箭,分别由中国航天科技集团公司所属中国空间技术研究院和中国运载火箭技术研究院研制。这是长征系列运载火箭的第206次飞行。

2、2015年6月26日14时22分,高分八号卫星在中国太原卫星发射中心成功发射升空,卫星顺利进入预定轨道。高分八号卫星是高分辨率对地观测系统国家科技重大专项安排的光学遥感卫星,主要应用于国土普查、城市规划、土地确权、路网设计、农作物估产和防灾减灾等领域,可为“一带一路”建设等提供信息保障。高分八号卫星和执行此次发射任务的长征四号乙运载火箭由中国航天科技集团公司负责研制。这是长征系列运载火箭的第205次飞行。

1、2015年3月30日21时52分,中国在西昌卫星发射中心用长征三号丙运载火箭,成功将首颗新一代北斗导航卫星发射升空,卫星顺利进入预定轨道。该星的成功发射标志着中国北斗卫星导航系统由区域运行向全球拓展的启动实施。此次发射的新一代北斗导航卫星是中国发射的第17颗北斗导航卫星,将开展新型导航信号体制、星间链路等试验验证工作,为北斗卫星导航系统全球组网建设提供依据。此次发射,还首次在运载火箭上增加了一级独立飞行器,即远征一号上面级。远征一号上面级被形象地称为“太空摆渡车”,可在太空将一个或多个航天器直接送入不同的轨道。这是中国首次采用该项技术执行中高轨航天器发射任务。据了解,中国北斗卫星导航系统于2000年底开始向中国及周边地区提供服务,2012年底正式向亚太大部分地区提供运行服务,在交通运输、海洋渔业、水文监测、气象预报、大地测量、智能驾考、救灾减灾、手机导航、车载导航等诸多领域,已产生广泛的经济和社会效益。此次发射的新一代卫星北斗导航卫星,由中国科学院和上海市政府合作共建的上海微小卫星工程中心研制。用于发射任务的长征三号丙运载火箭由中国航天科技集团公司研制,这是长征系列运载火箭的第204次飞行。

功率增益常识及计算方法

dBm dBm是一个考征功率绝对值的值,计算公式为:10lgP (功率值/1mw)。 [例1]如果发射功率P为1mw,折算为dBm后为OdBm。 [例2]对于40W的功率,按dBm单位进行折算后的值应为: 10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。 dBi 和dBd dBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi 表示出来比用dBd 表示出来要大 2. 15。 [例3]对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为18.15dBi (一般忽略小数位,为18dBi)。 [例4] 0dBd=2.15dBi。 [例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为15dBd (17dBi)。 3、dB dB 是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB 时,按下面计算公式:10lg (甲功率/乙功率) [例6]甲功率比乙功率大一倍,那么10lg (甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大 3 dB。 [例7] 7/8英寸GSM900馈线的100米传输损耗约为3.9dB o [例8]如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB o [例9]如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB o 4、dBc 有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一 样。一般来说,dBc是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。在采用dBc的地方,原则上也可以使用dB 替代。 5、dBuV 根据功率与电平之间的基本公式W2=P*R,可知dBuV=90+dBm+10*log(R),R为电阻值。 载PHS系统中正确应该是dBm=dBuv-107,因为其天馈阻抗为50欧。 6、dBuVemf 和dBuV emf:electromotive force (电动势) 对于一个信号源来讲,dBuVemf是指开路时的端口电压,dBuV是接匹配负载时的端口电压

关于调整2.4GHz频段发射功率限值及有关问题的通知

关于调整2.4GHz频段发射功率限值及有关问题的通知 信部无[2002]353号 各省、自治区、直辖市无线电管理机构,各相关单位: 为适应无线通信技术的发展,为科研、生产单位研发新技术、新产品提供研究频段及便利条件,满足无线电通信业务的需求,根据我国无线电频率划分规定及频谱使用情况,并参照国际上通用的技术标准。决定调整2.4GHz频段无线电发射设备的部分技术参数,现将有关事项通知如下: 一、自发文之日起,调整2.4 - 2.4835 GHz 频段无线电发射设备的主要技术指标如下: (一)等效全向辐射功率(EIRP): 天线增益<10dBi时:≤100 mW 或≤20 dBm; 天线增益≥10dBi时:≤500 mW 或≤27 dBm。 (二)最大功率谱密度: 1.直接序列扩频或其它工作方式:

天线增益<10dBi时:≤10 dBm / MHz(EIRP); 天线增益≥10dBi时:≤17 dBm / MHz(EIRP); 2.跳频工作方式: 天线增益<10dBi时:≤20 dBm / MHz(EIRP); 天线增益≥10dBi时:≤27 dBm / MHz(EIRP)。 (三)载频容限:20 ppm (四)带外发射功率(在2.4-2.4835GHz频段以外): ≤-80 dBm / Hz (EIRP)。 (五)杂散发射(辐射)功率(对应载波±2.5倍信道带宽以外): ≤-36 dBm / 100 kHz (30 - 1000 MHz); ≤-33 dBm / 100 kHz (2.4 - 2.4835 GHz); ≤-40 dBm / 1 MHz (3.4 - 3.53 GHz); ≤-40 dBm / 1 MHz (5.725 - 5.85 GHz);

CSR8670开发板使用说明书

CSR8670开发板 使 用 说 明 书

一、开发板资源介绍 开发板是针对蓝牙免提,蓝牙音响应用设计的一款多媒体蓝牙开发套件。开发板采用英国CSR 公司CSR8670 蓝牙芯片,可以用来开发单声道蓝牙耳机,立体声蓝牙耳机,蓝牙车载免提,蓝牙音频适配器,蓝牙虚拟串口(SPP), 蓝牙人机交互接口(HID),蓝牙文件传输(FTP)等。开发板带有USB,UART,I2C,PCM,音频输入、输出等接口,并引出PIO 和AIO 接口,方便用户扩展,进行二次开发。I开发板支持程序在线调试以及参数修改。 1、硬件资源: ◆标配CSR8670 蓝牙芯片,内置kalimba DSP ,支持蓝牙协议V4.0+EDR ◆集成16Mb FLASH ◆7个按键(1个复位键,1个开机键,5个用户按键) ◆16个PIO 接口(其中PIO6、PIO7作为I2C) ◆2个AIO 接口 ◆3个LED 指示灯

◆ 1个USB 接口 ◆ 音频输出接口 ◆ 音频输入接口 ◆ 板载麦克风 ◆ RS232 接口 ◆ SPI 调试接口 ◆ IIC 接口(PIO 复用) ◆ 64Kbit E2PROM 【注意】:板载的部分资源会因为芯片所采用的芯片的不同而未被使用到,具体请参考原理图。

二、硬件连接和使用 1、请参照上图,将下载线通过10PIN的排线和开发板连接,将MINI-USB线连接下载线并接到电脑,此时板子左上方的红色LED灯会亮,说明开发板已经正常上电。 【注意】: 1. 本开发板将VREN 开机信号单独连接到一个按键作为开机用,所以在使用bluelab或pstool连接开发板时,请务必按下改开机键不放,否则将会导致软件无法读取芯片的现象,bluelab 会提示"Unable to query BlueCore over SPI" 错误。 2. 使用bluelab下载调试程序时,请务先设置【Debug】菜单下的【Tansport】是否设置为USB,否则bluelab 将会提示"Unable to query BlueCore over SPI" 错误

无线发射功率与收灵敏度

无线发射功率与收灵敏度 发射功率与增益 无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。 Tx是发射( Transmits )的简称。无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准: 功率(W )-相对 1 瓦(Watts )的线性水准。例如,WiFi 无线网卡的发射功率通常为0.036W ,或者说36mW 。 增益(dBm )-相对 1 毫瓦(milliwatt )的比例水准。例如WiFi 无线网卡的发射增益为15.56dBm 。 两种表达方式可以互相转换: dBm = 10 x log[ 功率mW] mW = 10 [ 增益dBm / 10 dBm] 在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。天线增益的度量单位为“ dBi ”。 由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB ),例如,发射设备的功率为100mW ,或20dBm ;天线的增益为10dBi ,则: 发射总能量=发射功率(dBm )+天线增益(dBi ) =20dBm +10dBi =30dBm 或者:=1000mW =1W 在“小功率”系统中(例如无线局域网络设备)每个dB 都非常重要,特别要记住“ 3 dB 法则”。 每增加或降低3 dB ,意味着增加一倍或降低一半的功率: -3 dB = 1/2 功率 -6 dB = 1/4 功率 +3 dB = 2x 功率 +6 dB = 4x 功率 例如,100mW 的无线发射功率为20dBm ,而50mW 的无线发射功率为17dBm ,而200mW 的发射功率为23dBm 。 接收灵敏度 Rx是接收(Receive)的简称。无线电波的传输是“有去无回”的,当接收端的信号能量小于标称的接收灵敏度时,接收端将不会接收任何数据,也就是说接收灵敏度是接收端能够接收信号的最小门限。 接收灵敏度仍然用dBm 表示,通常ZIGBEE 无线网络设备所标识的接收灵敏度(如-94dBm) ,是指误码率(Bit Error Rate )为10 -5 (99.999%) 的灵敏度水平。 无线网络的接收灵敏度非常重要,例如,发射端的发射能量为100mW 或20dBm 时,如果250K 速率下接收灵敏度为-83dBm ,理论上传输的无遮挡视距为15Km ,而接收灵敏度为-77dBm 时,理论上传输的无遮挡视距仅为15Km 的一半(7.5Km ),或者相当于发射端能量减少了1/4 ,既相当

发射功率的测量方法

1 发射功率是无线电发射设备的主要技术指标,也是无线电管理部门需要检测的技术指标之一。本文主要介绍几种发射功率的测量方法。 功率测量的基本知识1.1 功率测量的理论分析 在直流和低频时,电压的测量是简单和直接的。功率可以直接通过计算获得,P=V*I,由欧姆定律可知V=I*R,通过代换V或I,可得P=V*I =I2R= V2/R,只要知道V、I、R中任两个变量的值就可计算出功率值。 但在高频时,根据传输线原理可知,电压和电流可能随传输线的位置改变,如图1所示。 但功率是不变的,因此在射频和微波频率,大多数应用都采用直接功率测量,因为电压和电流测量已变得不现实。 1.2 功率单位 功率的国际标准单位是瓦特(W),但在无线电通信领域,我图 1 高频电压随传输线位置改变 浙江省衢州无线电监测站 郑顺洪 发射功率的 测量方法 52 中国无线电2005/9 检测实验室

2 们常用的单位是分贝毫瓦dBm 。定义如下: PdBm=10Lg(P/P0) 式中,P是以毫瓦为单位的功率值;P0为1 mW的参考功率。 由上式可知:0 dBm是1 mW。根据对数基本性质,可得到一个简单导则是每3 dBm功率加倍,每-3 dBm功率减半。每10 dBm为10倍,每-10 dBm为1/10。例如+29 dBm是多少?29 dBm=(10+10+3+3+3)dBm=(10*10*2*2*2)mW=800mW,因此结果是800 mW。 1.3 功率的几种常用基本形式 平均功率是指在正常工作情况下,发信机在调制中以与所遇到的最低频率周期相比的足够长的时间间隔内,供给天线馈线的平均功率。对于脉冲调制信号,则要在若干脉动重复上平均信号。在所有功率测量中,平均功率是最常进行的测量。峰功率是指最大瞬时功率。平均功率和峰功率的关系,如图2所示。 对于射频脉冲信号,如果知道信号的占空比,就可从测量得到的平均功率按下列公式确定峰功率。 Ppeak = Pavg/占空比 发射功率的测量方法 目前我站配备的测量功率的仪器有德国R&S公司的CMS54综测仪、FSP30频谱分析仪、NRT功率计。下面分别介绍用这三种仪器测量功率的方法。 2.1 CMS54综合测试仪测量发射功率 无线电综合测试仪CMS54含射频信号源、调制信号源、频率计、功率计、电压表、信纳比表、邻频功率测量等,其测量的功率范围为5 mW到50 W,频率范围为400 kHz到1 MHz。使用CMS54综合测试仪测量发射设备输出功率方法步骤如下: (1)测试线路连接如图3所示。 (2)打开CMS电源,待CMS进入稳定的测试界面,按TX-TEST软键,进入发射测试界面。 (3)开启被测发射设备(已知发射功率小于50W),这时即可读出其发射功率。如果知道被测发射设备的发射频率,可以按SET RF软键,通过键盘设置响应频率,然后再开启被测发射设备,读出发射功率。 2.2 FSP30频谱分析仪测量发射功率 FSP30频谱分析仪射频输入最大的功率是1W,当发射设备 输出功率大于1W时,在FSP30频谱分析仪前加一衰减器,以免烧毁频谱仪。测试方法步骤如下: (1)测试线路连接如图4所示。 (2)将FSP30频谱分析仪的输入衰减器(ATT)设置为最大,然后开启被测发射设备。 (3)将被测信号中心频率置于频谱分析仪显示的中心,恰当设置SPAN、RBW和VBW值,这几个值设置的一般建议是:SPAN必须至少覆盖被测量信号的带宽;RBW设置信道带宽的1%和4%之间;VBW至少是RBW的三倍。 (4)调整频谱分析仪输入衰减器(ATT)和参考电平(REFLEVEL),使信号接近显示的顶部。 (5)设置检波器工作方式为均方根检波器。步骤如下:按TRACE键,使用上下键选择DETECTOR项,按相应软键确定, 图2 平均功率和峰功率的关系 峰功率 平均功率 图 3 测试线路连接 被测发射设备C MS54综测仪 图4 测试线路连接 被测发射设备衰减器FSP30频谱分析仪 检测实验室 中国无线电2005/9 53

奋斗版STM32开发板Mini板硬件说明书

奋斗版STM32开发板Mini板的硬件说明 1. 供电电路: AMS1117-3.3输入+5V,提供3.3V的固定电压输出,为了降低电磁干扰,C1-C5为CPU 提供BANK电源(VCC:P50、P75、P100、P28、P11 GND:P49、P74、P99、P27、P10)滤波。CPU的模拟输入电源供电脚VDDA(P22)通过L1 22uH的电感与+3.3V VDD电压连接,CPU的模拟地VSSA(P19)及VREF-(P20)通过R1 0欧电阻与GND连接。VREF+(P21)采用VDDA(P22)电源基准。 为RTC的备份电源采用V1 3.3V锂离子片状电池。 2. 启动方式设置: Boot1—Boot0(P37,P94): x0: 内部程序存储区启动01:系统存储区启动(为异步通信ISP编程方式) 在此将BOOT1始终设置为0, BOOT0为可变的状态,在正常模式下将其置为0,在ISP 编程时将其置为1。用JP1跳线块设置,开路为ISP模式,短路为正常运行模式。 3. 时钟源电路: 外部晶体/陶瓷谐振器(HSE)(P12、P13):B1:8MHz晶体谐振器,C8,C9谐振电容选择10P。系统的时钟经过PLL模块将时钟提高到72MHz。 低速外部时钟源(LSE)(P8、P9):B2: 32.768KHz晶体谐振器。C10,C11谐振电容选择

10P。注意:根据ST公司的推荐, B2要采用电容负载为6P的晶振,否则有可能会出现停振的现象。 4. SPI存储电路: D2 AT45DB161(2M Bytes)CPU采用SPI1端口PA7-SPI1-MOSI(P32)、PA6-SPI1-MISO (P31)、PA5-SPI1-SCK(P30)、PA4-SPI1-NSS(P29)控制读写访问, SPI1地址:0x4000 3800 - 0x4000 3BFF 5. 显示及触摸接口模块: 显示器采用2.4” TFT320X240LCD(控制器ILI9325), 采用CPU的FSMC功能,LCD片选CS采用FSMC_NE1(P88),FSMC_A16(P58)作为LCD的RS选择,FSMC_nWE(P86)作为LCD的/WR, FSMC_nOE(P85)作为LCD的/RD, LCD的RESET脚用CPU的PE1(P98)(LCD-RST),FSMC_D0---FSMC_D15和LCD的D1-D8 D10-D17相互连接,触摸屏接口采用SPI1接口,片选为PB7-SPI1-CS3,由于LCD背光采用恒流源芯片PT4101控制,采用了PWM控制信号控制背光的明暗, PWM信号由PD13-LIGHT-PWM来控制。触摸电路的中断申请线由PB6-7846-INT接收。 LCD寄存器地址为:0x6000 0000, LCD数据区地址:0x6002 0000。

无线传输距离和发射功率以及频率的关系

无线传输距离和发射功率以及频率的关系 功率灵敏度(dBm dBmV dBuV) dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值 dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值 dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值 换算关系: Pout=Vout×Vout/R dBmV=10log(R/0.001)+dBm,R为负载阻抗 dBuV=60+dBmV 应用举例 无线通信距离的计算 这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los 是传播损耗,单位为dB,d是距离,单位是Km,f是工作频率,单位是MHz 下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为-105dBm的系统在自由空间的传播距离:

1. 由发射功率+10dBm,接收灵敏度为-105dBm Los = 115dB(10dBm-Los=-105dBm =>Los=115dB) 2. 由Los、f 计算得出d =30公里 (Solve[ 115==32.44+20Log10[x]+20Log10[433.92],x] {{x 30.945}}) 这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。 假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为: d =1.7公里 (Solve[90==32.44+20Log10[x]+20Log10[433.92],x] {{x 1.74016}}) 结论: 无线传输损耗每增加6dB, 传送距离减小一倍 无线传输距离测算 很多时候,需要预估自己的无线究竟能传输多远距离,来粗略评估产品是否能够达到实用的水平。下面大致给出无线在自由空间传播距离的计算公式。自由空间指天线周围附近为无限大真空环境,是理想的环境。无线电波在传播中,能量不会被其他物体吸收、反射、衍射。自由空间中无线通信距离与发射功率,接收灵敏度,工作频率有关。 自由空间无线电波传播的损耗为: Loss=32.44+20lgd+20lgf Loss—传播损耗,单位dB;d—距离,单位km;f—工作频率,单位MHz。 例如:工作频率在2.4GHz,发射功率为0dBm(1mw),接收灵敏度为-70dBm的蓝牙系统在自由空间的传播距离:

国家对GHz无线设备发射功率的限制以及相关规定

国家对无线设备发射功率的限制以及相关规定 关于调整频段发射功率限值及有关问题的通知? 信部无[2002]353号 各省、自治区、直辖市无线电管理机构,各相关单位:? 为适应无线通信技术的发展,为科研、生产单位研发新技术、新产品提供研究频段及便利条件,满足无线电通信业务的需求,根据我国无线电频率划分规定及频谱使用情况,并参照国际上通用的技术标准。决定调整频段无线电发射设备的部分技术参数,现将有关事项通知如下:? 一、自发文之日起,调整 - GHz频段无线电发射设备的主要技术指标如下:? (一)等效全向辐射功率(EIRP):? 天线增益<10dBi时:≤100 mW或≤20 dBm;? 天线增益≥10dBi时:≤500 mW或≤27 dBm。? (二)最大功率谱密度:? 1.直接序列扩频或其它工作方式:? 天线增益<10dBi时:≤10 dBm / MHz(EIRP);? 天线增益≥10dBi时:≤17 dBm / MHz(EIRP);? 2.跳频工作方式:? 天线增益<10dBi时:≤20 dBm / MHz(EIRP);? 天线增益≥10dBi时:≤27 dBm / MHz(EIRP)。? (三)载频容限:20 ppm? (四)带外发射功率(在频段以外):? ≤-80 dBm / Hz (EIRP)。? (五)杂散发射(辐射)功率(对应载波±倍信道带宽以外):? ≤-36 dBm / 100 kHz (30 - 1000 MHz);? ≤-33 dBm / 100 kHz - GHz);? ≤-40 dBm / 1 MHz - GHz);? ≤-40 dBm / 1 MHz - GHz);? ≤-30 dBm / 1 MHz (其它1 - GHz)。?

单片机开发板使用手册

目录 第一章:开发板简介 (3) 1-1.SY_07011开发板的特性简介 (3) 1-2.SY_07011开发板的构成和工作原理 (4) 第二章:开发板使用说明 (5) 2-1.系统操作软件安装 (5) 2-2.开发板键盘设置 (9) 2-3.开发板连接安装 (9) 2-4.运行调试软件 (10) 第三章:开发板用器件资料及说明 (15) 3—1.TIMSP430F1121 (15) 3-2.DTLED-6 (16) 第四章:开发板器件表附件清单 (19) 4—1.调试用源程序 (19) 4-2.原理图....................................................附录插页4-2.包装清单. (30) 第五章:其它51类实验板简介 (32) 5-1.51DEMO I/O板简介 (32) 5-2.A/D89C51数模转换实验板简介 (23) 5-3.流水灯控制器(12路) (34) 5-4.SY0606开发板 (35) 5-5.Atmel_ISP下载线(选配自购件) (37)

5-6.Altera_ISP下载线(选配自购件) (37) 5-7.SY03091开发板 (38) 5-8.MSP430Flash Emulation Tool工具 (39) *********公司其它产品简介见软件盘中电子版文件*********

第一章:MSP430开发板简介 1-1.SY_07011开发板的特性简介 标准的TI的JTAG和BOOTST接口,适用与TI的MSP430 Flash Enulation Tool工具配合使用。 1. 电源适应性强,可随意使用无极性8~15V电源或DC+5V电源 供电。 2. 可用MSP430 Flash Enulation Tool工具一连串的完成编程,调 试,程序的在线烧录(自下载),和设计功能的演示等。 3. 自带3*4标准键盘输入,便于学习者掌握键盘输入和程序编 写。 4. 用串行驱动方式,驱动6位数码管显示,大大节省了单片机 的接口资源(祥见后面“DTLED-6”芯片介绍)。提供数码管字符显示驱动模块的接口,只用三根线就可以驱动6个数码

网优参考信号功率设置说明

参考信号功率设置 实际优化过程中,根据覆盖调整需要经常要修改 RS POWER ,华为MML 对应修改命令 为MOD PDSCHCFG (修改PDSCH 配置信息),如下 W3D FDSCHCFG: LOCALCELL :D-1, REFERENCES! GHALFWR-5 2: Refere nceSig nalPwr 参考信号功率,含义:该参数表示每物理天线的小区参考信号的 功率值。注意是每物理天线的小区参考信号,默认配置为 9.2dBm ,具体公式如下: DL _RS_Power = 单天线发射功率-10log(Nsubcarriers)+ 10log(1+Pb) =(46-10log(8))-30.8+ 3=9.2dBm 10log(1+Pb)为RS 增强技术引入的增益 46dBm 为单小区发射功率,单天线发射功率 =46- 10log(8)=37dBm=5W Nsubcarriers 表示20M 带宽内子载波的数量,20M 带宽内总共100个RB ,每 个RB 包含12个子载波,100个RB 总共有1200个子载波 这样按照默认配置,现网单小区配置,小区功率为单天线功率 *8=5W*8=40W=46dBm 后台DSP CELL 查询小区状态时,能够查询到该小区 单天线发射功率。 号关断状态主基帯处理板信息小区拓扑结枸最犬发射功率心1毫瓦分贝) 启动 0-0-2 启动 0-0-2 NVLL MODPDSCHCFG 本堆小区标亡 1 ±1 基述:模式 65535 4ZiBm-15.05W

查询FESCWS信息本地小1K标识薑考信号功CO 1毫瓦分贝〕FE J":~I 2 ] 142 ] 3 92 黠果个敎=引 通过以上截图可以看出 设置为9.2dBm时,小区最大发射功率为5W*8=40W , 设置为14.2dBm时,小区最大发射功率为15.85W*8=126.8W , 所以提升RS POWER需考虑RRU功率,不能超过RRU发射总功率,特别是双模改造站点,还需要考虑TDS载波功率。 根据RS POWER设置值来计算小区发射功率 单天线发射功率=RS POWER - 10log(1+Pb) + 10log(Nsubcarriers) 发射功率计算附件:直接输入RS POWER,可直接计算出小区最大发射功率。 小区功率计算.xlsx

发射功率与增益详解

发射功率与增益详解 2011-09-28 15:31:48| 分类:TEC-Hardware|举报|字号订阅 本文转载自jason《发射功率与增益详解》 无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。 Tx是发射(Transmits)的简称。无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准: 功率(W)-相对1瓦(Watts)的线性水准。 增益(dBm)-相对1毫瓦(Milliwatt)的比例水准。 两种表达方式可以互相转换: dBm = 10 x log[ 功率mW] mW = 10 [ 增益dBm / 10 dBm] 在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。天线增益的度量单位为“dBi”。 由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB),例如,发射设备的功率为100mW ,或20dBm;天线的增益为10dBi,则: 发射总能量=发射功率(dBm)+天线增益(dBi) =20dBm +10dBi =30dBm

或者:=1000mW =1W 在“小功率”系统中每个dB都非常重要,特别要记住“3dB法则”。 每增加或降低3dB,意味着增加一倍或降低一半的功率: -3 dB = 1/2 功率 -6 dB = 1/4 功率 +3 dB = 2x 功率 +6 dB = 4x 功率 例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW的发射功率为23dBm。 0dbm=0.001w 左边加10=右边乘10 所以0+10DBM=0.001*10W 即10DBM=0.01W 故得20DBM=0.1W 30DBM=1W 40DBM=10W 还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W 例如机器20W 在400MHZ频率上使用30米50-7(物理发泡低损耗电缆)到天线上还剩下多少增益 20W=43DB 30米50-7损耗一米小于0.09 按照最大值0.09*30=2.7DB 43DB-2.7DB=40.3DB 天线增益16DBi+40.3DB=56.3DB

无线路由器发射功率如何调节

无线路由器发射功率如何调节 家用电器中,应适当调节发射功率,降低无线信号辐射对人体的影响。特别是家里有老人、小孩、孕妇,降低发射功率显得尤为重要。目前市场上大部份产品都不带功率调节功能,比如手机、微波炉、电冰箱等。但也有少数产品,带有功率调整功能,比如JCG无线网络设备——智能无线路由器。 对于智能无线路由器来讲,发射功率其实就是指无线路由器的信号强度。适当的发射功率,不仅可以避免辐射对人的影响,也可以避免不必要的蹭网行为。 一般情况下,如果无线路由器与电脑距离较近,可以把发射功率调整到50%,便可以完成一个房间的无线信号覆盖。当然,如果觉得信号太差,或是电脑与路由器距离较远,阻隔较多,您也可以根据具体情况,适当调节一下无线路由器的发射功率。JCG JHR-N916RS无线路由器的最大发射功率100%。 以我正在使用的JCG JHR-N916RS智能无线路由器为例,说明如何控制发放功率的高低。 图片1 首先,在浏览器上输入192.168.1.1 进入点击高级设置,输入用户名admin 及密码admin,登陆无线路由器后台管理页面。 图片2

进入“无线网络”,选择“高级设置”,在其“发射功率”栏里填入适当的发射功率值。 图片3 填写好发射功率,点击“系统管理”进行系统重启。 图片4 重启成功之后,无线路由器将按您刚才填入的发射功率进行工作。是不是很简单呢?如果您正在使用JCG JHR-N916RS无线路由器,那么可以马上去试一试路由器功率调节功能哦。如果您使用的是其它无线产品,那么赶紧查看一下有没有功率调节功能,调节适当发射功率,避免辐射,安全使用无线网络。

FPGA开发板使用说明书

目录 第一章综述 (1) 第二章系统模块 (2) 第三章软件的介绍 (11) 第四章USB 电缆的安装与使用 (28)

第一章综述 THSOPC-3型FPGA开发板是根据现代电子发展的方向,集EDA和SOPC系统开发为一体的综合性实验开发板,除了满足高校专、本科生和研究生的SOPC教学实验开发之外,也是电子设计和电子项目开发的理想工具。 一、实用范围: ●自主创新应用开发; ●单片机与FPGA联合开发; ●IC设计硬件仿真; ●科研项目硬件验证与开发; ●高速高档自主知识产权电子产品开发; ●毕业设计平台; ●研究生课题开发; ●电子设计竞赛培训; ●现代DSP开发应用; ●针对各类CPU IP核的片上系统开发; ●DSP Biulder系统设计。 二、硬件配置: THSOPC-3型FPGA开发板基于Altera Cyclone II 器件的嵌入式系统开发提供了一个很好的硬件平台,它可以为开发人员提供以下资源: ●支持+5V 电源适配器直接输入或者USB接口供电,5V、3.3V、1.2V混合电压源; ●FPGACycloneII FPGA EP2C8,40万门,2个锁相环; ●isp单片机AT89S8253。isp单片机AT89S8253及开发编程工具,MCS51兼容,12KB isp可编程Flash ROM,2KB ispEEPROM,都是10万次烧写周期;2.7-5.5V工作电压;0-24MHz工作时钟;可编程看门狗;增强型SPI串口,9个中断源等。此单片机可与FPGA联合开发,十分符合实现当今电子设计竞赛项目的功能与指标实现; ●EPM3032 CPLD; ● 4 Mbits 的EPCS4 配置芯片; ●512KB高速SRAM; ●20MHz 高精度时钟源(可倍频到300MHz); ● 4 个用户自定义按键; ●8 个用户自定义开关; ●8 个用户自定义LED; ● 2 个七段码LED; ●标准AS 编程接口和JTAG调试接口; ●两个标准2.54mm扩展接口,供用户自由扩展;

功率和dB的关系很详细

功率和dB的关系应该如下: 1.dB的引入是为了把乘除关系变换为加减,便于工程中的运算。 2.[dB] = 10lg(输出功率W/输入功率W)。如:输入功率为1W而输出功率为1000W,则系统的增益为10lg(1000/1)=30dB。 3.通信中为了表示一个输出功率的绝对值,则引入了dBm。dBm表示相对于1mW 输入功率的系统增益。如果系统的输出功率为1W,换算为dBm则为: 1W=10lg(1W/1mW) = 10lg(1000) = 30 dBm. 一句话dB与W不可以换算,但是dB = 10lg(输出功率W/输入功率W)。如:输入功率为1W而输出功率为10000W,则系统的增益为10lg(10000/1)=40dB。 dB是一个纯计数单位,在工程中有不同的定义方式(仅仅是看上去不同)。对于功率,dB = 10*log()。对于电压或电流,dB = 20*log()。 dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。如(此处以功率为例): 100000 = 10*log(10^5) = 50 dB 0.000000000000001 = 10*log(10^-15) = -150 dB dBm定义的是miliwatt。0 dBm = 10log(1) mW = 1 mW; dBw定义watt。0 dBw = 10log1 W = 10*log(1000) mw = 30 dBm。 dB在缺省情况下总是定义功率单位,以10*log 为计。当然某些情况下可以用信号强度(Amplitude)来描述功和功率,这时候就用20log 为计。不管是控制领域还是信号处理领域都是这样。比如有时候大家可以看到dBmV 的表达。

51开发板说明书

开发板开发板简介简介简介 硬件:供电方式采用USB 取电和外部电源(5V)供电。带有多种品牌(Atmel,Winbond,SST,STC )单片机的ISP 电路,均通过下载接口或USB 线和PC 相连,简单方便稳定,速度快。有常用的LCD 接口,数码管显示电路,等等。

一、STC单片机的程序烧写与运行 1.1 打开STC-ISP V483软件的exe 文件,如下图所示: 步骤1:选择要下载的单片机型号,如下图所示: 步骤2:打开要下载的程序文件,注意这里下载的需要是扩展名为.hex或.bin的文件,这里的图片是默认的测试文件

再双击test-hex文件夹得到以下图片:

选择twoball-2k.bin,点击打开。 步骤3:选择端口 首先把实验板通过USB延长线连接到电脑上,然后右击“我的电脑”,选择“管理”,单击设备管理器,点击端口前的加号将其展开,当发现这个时,说明驱动的安装和实验板的下载电路应该是没什么问题的,这里的可以看出端口是COM14。 其次是选择好端口,如下图所示: 步骤4:下载程序到单片机(注意的是STC的单片机需要重新给系统上电才能下载到单片机)点击下图所示的Download/下载按钮 当出现下图所示的提示时,如果实验板是在通电的情况下,则按一下实验板的开关稍等两秒左右,再按一下开关重新给实验板上电,稍等片刻就下载成功。如果实验板是在不通电的情况下,则按一下实验板的开关重新给实验板上电,稍等片刻就下载成功 下载成功的提示如下图: 下载过程中如果端口选择对的情况下,出现如下图所示: 原因在于连电脑USB插口松动。解决办法:1、重新把延长线从实验板上拔掉,然后再插上。

天线增益的计算及单位转换

天线增益的计算及单位转换 增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W 的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。 半波对称振子的增益为 G=2.15dBi。4 个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表示比较对象是各向均匀辐射的理想点源 )。 如果以半波对称振子作比较对象,其增益的单位是 dBd 。 半波对称振子的增益为 G=0dBd (因为是自己跟自己比,比值为 1 ,取对数得零值。)垂直四元阵,其增益约为 G=8.15 – 2.15=6dBd 。 天线增益的若干计算公式 1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益: G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)} 式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。 2)对于抛物面天线,可用下式近似计算其增益: G(dBi)=10Lg{4.5×(D/λ0)2} 式中, D 为抛物面直径; λ0为中心工作波长; 4.5 是统计出来的经验数据。 3)对于直立全向天线,有近似计算式 G(dBi)=10Lg{2L/λ0} 式中, L 为天线长度; λ0 为中心工作波长; 关于天线的db, dBi,dBd等单位 有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。

KR-51开发板使用说明

KR-51/AVR开发板使用说明 声明: 本指导教程和配套程序仅在开发和学习中参考,不得用于商业用途,如需转载或引用,请保留版权声明和出处。 请不要在带电时拔插芯片以及相关器件。自行扩展搭接导致不良故障,本公司不负任何责任。产品不定时升级,所有更改不另行通知,本公司有最终解释权。 一、开发板硬件资源介绍 1 .开发板支持USB 程序下载(宏晶科技STC系列单片机) 2. 开发板支持AT89S51 ,AT89S52 单片机下载(需要配合本店另外下载器下载) 3. 开发板支持ATmega16,ATmega32 AVR 单片机下载(需要配合本店另外转接板和下载器使用) 4. 开发板供电模式为:电脑USB 供电(USB 接口)和外部5V 电源供电(DC5V接口) 5. 开发板复位方式:上电复位和51按键复位 6. 外扩电源:通过排针外扩5路5V 电源,3路3.3V电源方便连接外部实验使用 7. 所有IO 引脚全部外扩,方便连接外部实验使用 8. 开发板集成防反接电路,防止接反,保护开发板 二、开发板功能模块介绍 (1 )8 位高亮度贴片led 跑马灯; (2) 4 位共阳数码管显示; (3)LCD1602 和LCD12864液晶屏接口; (4) 1 路无源蜂鸣器; (5) 1 路ds18b20 温度测量电路(与DHT11 温湿度接口共用); (6) 1 路红外接口电路 (7) 4 路独立按键 (8) 1 路CH340 USB转串口通讯电路(全面支持XP/WIN7/WIN8系统); (9)1路蓝牙模块接口(可做蓝牙测试板,USB转蓝牙); (10)1路2.4G模块接口; (11)1路WiFi模块接口(可做WiFi测试板,USB转WiFi) 三开发板跳线选择 本开发板接线简单,适合初学者使用,开发板各模块的跳线使用注意事项:烧写程序时,拔掉蓝牙模块,WiFi模块,J10处用跳线帽短接1,3和2,4。蓝牙模块和WiFi模共用串口,不能同时使用。使用1602、12864液晶接口时请拔下数码管J4 跳线帽。以下是几个主要跳线的使用说明;

设置发射功率

设置发射功率: CC2530 设置RF的发送功率寄存器为TXPOWER,全局搜索一下可以看到以下代码 1.#define MAC_RADIO_SET_PAN_COORDINATOR(b) st( FRMFILT0 = (FRMFIL T0 & ~PAN_COORDINATOR) | (PAN_COORDINATOR * (b!=0)); ) 2.#define MAC_RADIO_SET_CHANNEL(x) st( FREQCTRL = FREQ_24 05MHZ + 5 * ((x) - 11); ) 3.#define MAC_RADIO_SET_TX_POWER(x) st( TXPOWER = x; ) 4. 5.#define MAC_RADIO_SET_PAN_ID(x) st( PAN_ID0 = (x) & 0x FF; PAN_ID1 = (x) >> 8; ) 6.#define MAC_RADIO_SET_SHORT_ADDR(x) st( SHORT_ADDR0 = (x) & 0xFF; SHORT_ADDR1 = (x) >> 8; ) 继续跟踪MAC_RADIO_SET_TX_POWER /********************************************************************************** **************** 1.* @fn macRadioUpdateTxPower 2.* 3.* @brief Update the radio's transmit power if a new power level has be en requested 4.* 5.* @param reqTxPower - file scope variable that holds the last request power level 6.* macPhyTxPower - global variable that holds radio's set power level 7.* 8.* @return none 9.**************************************************************************** ********************** 10.*/ 11.MAC_INTERNAL_API void macRadioUpdateTxPower(void) 12.{ 13. halIntState_t s; 14. 15./* 16. * If the requested power setting is different from the actual radio sett ing, 17. * attempt to udpate to the new power setting. 18. */ 19. HAL_ENTER_CRITICAL_SECTION(s);

相关文档
最新文档