乙醇生产工艺文献综述

乙醇生产工艺文献综述
乙醇生产工艺文献综述

乙醇生产工艺文献综述

前言

本文写的是年产18000吨纯度为80%乙醇的生产工艺文献综述。乙醇是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。因其良好的理化性能,而被广泛地应用于化工、日化、医药等行业。近些年来,由于燃料价格的上涨,乙醇燃料越来越有取代传统燃料的趋势,且已在郑州、济南等地的公交、出租车行业内被采用。山东业已推出了推广燃料乙醇的法规。

乙醇简介

乙醇的结构简式为C2H5OH,俗称酒精,它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。乙醇的用途很广,可用乙醇来制造醋酸、饮料、香精、染料、燃料等。医疗上也常用体积分数为70%——75%的乙醇作消毒剂等。

性状

乙醇(纯)为无色透明液体,有特殊香味的气味,易挥发。能与水、氯仿、乙醚、甲醇、丙酮和其他多数有机溶剂混溶,相对密度(d15.56)0.816,易燃,蒸气能与空气形成爆炸性混合物。

组成/成分

——乙醇的线键式

乙醇分子是由是由C、H、O 三种原子构成(乙基和羟基两部分组成),可以看成是乙烷分子中的一个氢原子被羟基取代的产物,也可以看成是水分子中的一个氢原子被乙基取代的产物。乙醇分子中的羰键(碳氧键)和羟键(氢氧键)比较容易断裂。

理化常数

密度:0.78945 g/cm^3; (液) 20°C

熔点:-114.3 °C (158.8 K)

沸点:78.4 °C (351.6 K)

在水中溶解时:p Ka =15.9

黏度:1.200 mPa·s (cP),20.0 °C

分子偶极矩:5.64 fC·fm (1.69 D) (气)

折光率:1.3614

相对密度(水=1):0.79

相对蒸气密度(空气=1):1.59

饱和蒸气压(kPa):5.33(19℃)

燃烧热(kJ/mol):1365.5

临界温度(℃):243.1

临界压力(MPa):6.38

闪点(℃):12

引燃温度(℃):363

爆炸上限%(V/V):19.0

爆炸下限%(V/V):3.3

溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。电离性:非电解质

乙醇物理性质

乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。

乙醇的物理性质主要与其低碳直链醇的性质有关。分子中的羟基可以形成氢键,因此乙醇黏度很大,也不及相近相对分子质量的有机化合物极性大。室温下,乙醇是无色易燃,且有特殊香味的挥发性液体。作为溶剂,乙醇易挥发,且可以与水、乙酸、丙酮、苯、四氯化碳、氯仿、乙醚、乙二醇、甘油、硝基甲烷、吡啶和甲苯等溶剂混溶。此外,低碳的脂肪族烃类如戊烷和己烷,氯代脂肪烃如1,1,1-三氯乙烷和四氯乙烯也可与乙醇混溶。随着碳数的增长,高碳醇在水中的溶解度明显下降。由于存在氢键,乙醇具有潮解性,可以很快从空气中吸收水分。羟基的极性也使得很多离子化合物可溶于乙醇中,如氢氧化钠、氢氧化钾、氯化镁、氯化钙、氯化铵、溴化铵和溴化钠等。氯化钠和氯化钾则微溶于乙醇。此外,其非极性的烃基使得乙醇也可溶解一些非极性的物质,例如大多数香精油和很多增味剂、增色剂和医药试剂。

乙醇的化学性质

酸性(不能称之为酸,不能使酸碱指示剂变色,也不与碱反应,也可说其不具酸性)

——乙醇的各种化学式

乙醇分子中含有极化的氧氢键,电离时生成烷氧基负离子和质子。

CH3CH2OH→(可逆)CH3CH2O- + H+

乙醇的酸性很弱,但是电离平衡的存在足以使它与重水之间的同位素交换迅速进行。

CH3CH2OH+D2O→(可逆)CH3CH2OD+HOD

因为乙醇可以电离出极少量的氢离子,所以其只能与少量金属(主要是碱金属)反应生成对应的醇金属以及氢气:

2CH3CH2OH + 2Na→2CH3CH2ONa + H2↑

乙醇可以和高活跃性金属反应,生成醇盐和氢气。

醇金属遇水则迅速水解生成醇和碱

乙醇具有还原性,可以被氧化成为乙醛。酒精中毒的罪魁祸首通常被认为是有一定毒性的乙醛,而并非喝下去的乙醇。例如2CH3CH2OH + O2 → 2CH3CHO + 2H2O(条件是在催化剂Cu或Ag 的作用下加热)

实际上是乙醇先和氧化铜进行反应,然后氧化铜被还原为单质铜,现象为:黑色氧化铜变成红色。

乙醇也可被高锰酸钾氧化,同时高锰酸钾由紫红色变为无色。乙醇也可以与酸性重铬酸钾溶液反应,当乙醇蒸汽进入含有酸性重铬酸钾溶液的硅胶中时,可见硅胶由橙红色变为草绿色,此反应现用于检验司机是否醉酒驾车。

乙醇可以与乙酸在浓硫酸的催化并加热的情况下发生酯化作用,生成乙酸乙酯(具有果香味)。

C2H5OH+CH3COOH-浓H2SO4△(可逆)→CH3COOCH2CH3+H2O(此为取代反应,但逆反应催化剂为稀H2SO4或NaOH)

“酸”脱“羧基”,“醇”脱“羟基”上的“氢”

乙醇可以和卤化氢发生取代反应,生成卤代烃和水。

C2H5OH + HBr→C2H5Br + H2O或写成CH3CH2OH + HBr → CH3CH2Br + H-OH

C2H5OH + HX→C2H5X + H2O

乙醇氧化反应

(1)燃烧:发出淡蓝色火焰,生成二氧化碳和水(蒸气),并放出大量的热,不完全燃烧时还生成一氧化碳,有黄色火焰,放出热量

完全燃烧:C2H5OH+3O2-点燃→2CO2+3H2O

不完全燃烧:2C2H5OH+5O2—点燃→2CO2+2CO+6H2O

(2)催化氧化:在加热和有催化剂(Cu或Ag)存在的情况下进行。

2Cu+O2-加热→2CuO

C2H5OH+CuO→CH3CHO+Cu+H2O

即催化氧化的实质(用Cu作催化剂)

总式:2CH3CH2OH+O2-Cu或Ag→2CH3CHO+2H2O(工业制乙醛)乙醇也可被浓硫酸跟高锰酸钾的混合物发生非常激烈的氧化反应,燃烧起来。(切记要注酸入醇,酸与醇的比例是1:3)乙醇可以在浓硫酸和高温的催化发生脱水反应,随着温度的不同生成物也不同。

(1)消去(分子内脱水)制乙烯(170℃浓硫酸)制取时要在烧瓶中加入碎瓷片(或沸石)以免爆沸。

C2H5OH→CH2=CH2↑+H2O

(2)缩合(分子间脱水)制乙醚(130℃-140℃ 浓硫酸)

2C2H5OH →C2H5OC2H5 + H2O(此为取代反应)

脱氢反应;乙醇的蒸汽在高温下通过脱氢催化剂如铜、银、镍或铜-氧化铬时、则脱氢生成醛、

乙醇生产的主要方法:

酒精的生产分为合成法和发酵法,用石油产品生产酒精的合成法已是工艺倒置,而且技术上有困难,已基本不用,因此,发酵法是最有前途的生物能源技术。

从工艺的角度来说,人们熟知的甘蔗、玉米、木薯、谷物等含糖类、淀粉类及纤维素类作物均可作为原料,经前处理、发酵、蒸馏而生产酒精。

淀粉质原料酒精生产的特点

1、在投入生产前必须经过粉碎处理;

2、原料必须经过蒸煮;

3、蒸煮醪要进行糖化,将淀粉转化为可发酵性糖;

4、醪液的粘度先增大,当达到最大限度时,随着温度的继续升高,醪液的粘度下降;

5、蒸煮过程中原料因受高温高压处理,易产生焦糖。

淀粉质原料酒精生产工艺流程

原料→粉碎→蒸煮→糖化→发酵→蒸馏→产品

乙烯水合法工业上有两种方法,一种是以硫酸为吸收剂的间接水合法;另一种是乙烯催化直接水合法。

①间接水合法也称硫酸酯法,反应分两步进行。首先,将乙烯在一定温度、压力条件下通入浓硫酸中,生成硫酸酯,再将硫酸酯在水解塔中加热水解而得乙醇,同时有副产物乙醚生成。间接水合法可用低纯度的乙醇作原料、反应条件较温和,乙烯转化率高,但设备腐蚀严重,生产流程长,已为直接水合法取代。

②直接水合法在一定条件下,乙烯通过固体酸催化剂直接与水反应生成乙醇:

CH2=CH2+H2O=CH3CH2OH

上述反应是放热、分子数减少的可逆反应。理论上低温、高压有利于平衡向生成乙醇的方向移动,但实际上低温、高压受到反应速率和水蒸气饱和蒸气压的限制。工业上采用负载于硅藻土上的磷酸催化剂,反应温度260℃~290℃,压力约7MPa,水和乙烯的物质的量比为0.6左右,此条件下乙烯的单程转化率仅5%左右,乙醇的选择性约为95%,大量乙烯在系统中循环。主要副产物是乙醚,此外尚有少量乙醛、丁烯、丁醇和乙烯聚合物等。乙醚与水反应能生成乙醇,故将其返回反应器,以提高乙醇的产率。

无论用发酵法或乙烯水合法,制得的乙醇通常都是乙醇和水的共沸物,要得到无水乙醇需进一步脱水。

乙醇的用途:

1、不同浓度消毒剂

99.5%的酒精称为无水酒精。生物学中的用途:叶绿体中的色素能在有机溶剂无水乙醇(或丙酮)中,所以用无水乙醇可以提取叶绿体中的色素

95%的酒精用于擦拭紫外线灯。这种酒精在医院常用,而在家庭中则只会将其用于相机镜头的清洁。

70%~75%的酒精用于消毒。

40%~50%的酒精可预防褥疮。

25%~50%的酒精可用于物理退热。

2、饮料

乙醇是酒主要成分(含量和酒的种类有关系)如白酒为56度的酒。注意:我们喝的酒内的乙醇不是把乙醇加进去,而是发酵出来的乙醇,当然根据使用的发酵酶不同还会有乙酸或糖等有关物质。

白酒的度数表示酒中含乙醇的体积百分比(西方国家常用proof 表示酒精含量),通常是以20℃时的体积比表示的,如50度的酒,表示在100毫升的酒中,含有乙醇50毫升(20℃)。另外对于啤酒是表示啤酒生产原料麦芽汁的浓度,以12度的啤酒为例,是麦芽汁发酵前浸出物的浓度为12%(重量比)。麦芽汁中的浸出物是多种成分的混合物,以麦芽糖为主。啤酒中乙醇浓度一般低于10%。

3、基本有机化工原料

乙醇可用来制取乙醛、乙醚、乙酸乙酯、乙胺等化工原料,也是制取、染料、涂料、洗涤剂等产品的原料

4、汽车燃料

乙醇可以调入汽油,作为车用燃料,我国雅津甜高粱乙醇在汽油中占10%。美国销售乙醇汽油已有20年历史。乙醇汽油也被称为(E 型汽油),我国使用乙醇汽油是用90%的普通汽油与10%的燃料乙醇调和而成。它可以改善油品的性能和质量,降低一氧化碳、碳氢化合

物等主要污染物排放。乙醇汽油作为一种新型清洁燃料,是目前世界上可再生能源的发展重点,符合我国能源替代战略和可再生能源发展方向,技术上成熟安全可靠,在我国完全适用,具有较好的经济效益和社会效益。

乙醇汽油的环保性令人称道,在9个城市调查报告中,使用乙醇汽油期间,城市空气中的二氧化氮、一氧化碳季均值与使用普通汽油比较,二氧化氮下降了8%与一氧化碳下降5%。乙醇汽油唯一的缺点,是使用者感觉它比普通汽油动力下降,油耗增加,天热时还易于气阻熄火。另外由于乙醇汽油一旦遇水就会分层,无法采用成本很低的管道输送,乙醇汽油储运周期只有4—5天,这影响使用乙醇汽油的方便性。

结论:通过对乙醇的学习,让我了解了乙醇对农业、工业的重要性。乙醇不仅是基础的有机化工原料和优质燃料,而且在对环境保护方面发挥着不可替代的作用。全球大约12%的能量供应来自生物质的燃料,其中发展中国家大约35%的初级能源为生物质能,发达国家大约为3%,故随着社会的快速发展,能源问题与环保问题已是人类社会进步的绊脚石,故更好地解决能源环保问题已迫在眉睫,我们若充分的利用乙醇作为燃料,不仅来源便捷,成本廉价,更重要的是同时解决了能源、环保两大问题。然而美中不足的是乙醇燃烧时不能够发出足够大的热量,故还不能大量的推广纯乙醇燃料,所以我们仍需努力,作更进一步的探究,争取把乙醇工业再推上一个新的巅峰。

【参考文献】:

1、酒精生产技术,科学出版社,沈力匀著

2、工业酒精国家标准(GB/T394·1—1994)

3、任波乙醇汽油转折[J].财经,2007,178;100-102

4、秦凤华.燃料乙醇蒸蒸日上[J].中国投资,2007,38-41

燃料乙醇生产工艺初步毕业设计

燃料乙醇生产工艺初步毕业设计 第一章前言 1乙醇的主要性质与用途 1.1 乙醇的物理性质 乙醇(ethan)又称酒精,是由C、H、O 3种元素组成的有机化合物,乙醇分子由烃基(-C2H5)和官能团羟基(-OH)两部分构成,分子式为C2H50H,相对分子量为46.07,常温常压下,乙醇是无色透明的液体,具有特殊的芳香味和刺激味、吸湿性很强。可与水以任何比例混合并产生热量,混合时总体积缩小。纯乙醇的相对密度为0.79,沸点78.3℃,凝固点为-130℃。燃点为424℃,乙醇易挥发、易燃烧。 乙醇能使细胞蛋白凝固,尤以体积分数为75%的乙醇作用最为强烈,浓度过高。细胞表面的蛋白质迅速凝固形成一层薄膜,阻止乙醇向组织内部渗透,作用效果反而降低,浓度过低则不能使蛋白质凝固。因此,常用75%(体积分数)的乙醇作消毒杀茵荆。[4] 乙醇易被人体肠胃吸收,吸收后迅速分解放出热量。少量乙醇对大脑有兴奋作用。若数量较大则有麻醉作用,大量乙醇对肝脏和神经系统有毒害作用。工业酒精含乙醇约95%.含乙醇达99.5%以上的酒精称为无水乙醇。含乙醇95.6%、水4%的酒精是恒沸混合液,沸点为78.15℃,其中少量的水无法用蒸馏法除去。制取无水乙醇时。通常把工业酒精与新制生石灰混合,加热蒸馏才能得到。工业酒精和医用酒精中含有少量甲醇,有毒.不能掺水饮用。 1.2 乙醇的化学性质 乙醇属于饱和一元醇。乙醇能够燃烧。能够和多种物质如强氧化物、酸类、酸酐、碱金属、胺类发生化学反应。在乙醇分子中,由于氧原子的电负性比较大。使C-0键和O-H 键具有较强的极性而容易断裂,这是乙醇易发生反应的两个部位。 1.2.1乙醇燃烧反应机理 乙醇燃烧反应机理和烃的燃烧反应机理有很多相似的地方,都是先裂解成为碳和氢气,然后燃烧,所以从燃烧机理上来讲乙醇也适合用作内燃机燃料。在较高的温度下.乙醇可以发生分子内脱水生成烯烃,可以认为,乙醇燃烧的反应首先是分子内脱水形成烯烃,烃再裂解形成碳和氢气,然后碳和氢气在空气中燃烧,生成二氧化碳和水,乙醇燃烧反应的总反应式: CH3CH2OH+3O2--2CO2+3H2O+Q 1.2.2乙醇的着火和燃烧特性

乙酸酐综述

文献综述 前言 本人的毕业设计为《2万t/a醋酸酐生产工艺设计》,目前来看,全球醋酐的生产和消费量为330万吨。其中亚洲早已是醋酐生产能力最大的地区[1]。而就中国而言,国内乙酸酐行业存在的问题是行业整体水平较低、生产规模小、合成技术落后、开工率偏低,从发展趋势看,醋酐市场的发展潜力巨大,为满足我国国内市场的消费与需要[2],醋酸酐的生产必将成为今后炙手可热的发展趋势。因此本文的叙述对今后国内外醋酐的发展具有一定的意义。 本文根据目前国内外学者对乙酸酐的合成生产的研究成果,借鉴他们的成功经验,将其进行整理总结,并在其发展趋势,现有缺陷,选择原因等加以个人想法。所取文献给与本文有很大的参考价值。本文主要查阅进几年有关乙酸酐生产技术及前景的文献期刊。

醋酸酐是一种重要的有机化工原料,其蒸气与空气形成爆炸性混合物遇明火、高热能引起燃烧爆炸。与强氧化剂可发生反应健康危害吸入后对有刺激作用引起咳嗽、胸痛、呼吸困难。眼直接接触可致灼伤蒸气对眼有刺激性。皮肤接触可引起灼伤[3]。主要用于制造醋酸纤维素、醋酸纤维漆、醋酸塑料、不燃性电影胶片、香烟过滤嘴和塑料制品等。此外在医药上可用于制备合霉素、地巴唑、阿斯匹林等;在染料工业中用于生产分散深蓝HGL、分散大红S- SWEL、分散黄棕S- 2REC 等;在香料工业中用于生产香豆素、乙酸龙脑酯、葵子麝香、乙酸柏木酯、乙酸松香酯、乙酸苯乙酯、乙酸香叶酯等。此外,醋酸酐还可用于制备漂白剂、乙酰化剂、脱水剂和聚合反应的引发剂等,用途十分广泛[4]。 1 醋酸酐的生产技术进展 目前,工业化的醋酐生产方法主要有醋酸热裂解法、乙醛氧化法和醋酸甲酯羰基合成法3 种[5]。 1.1醋酸裂解法 醋酸裂解法又称乙烯酮法, 是以醋酸为原料,磷酸铝为催化剂或乙酸甲酯在高温下反应制得乙酸酐。整个工艺过程分两步进行, 首先是气相醋酸裂解生成乙烯酮, 然后醋酸和乙烯酮经吸收生产粗酐,经精馏提纯制得成品乙酸酐。 该法的最大缺点是生产工艺流程复杂、副反应多、能耗大, 但由于技术成熟、生产的安全性高、对在醋酸裂解部分醋酸的质量要求并不高、可以使用其它装置和本身回收的醋酸, 因此在国外早期建设的装置应用该法, 目前我国仍普遍采用。 其中醋酸裂解的产物乙烯酮是一种重要的中间体, 它可以用于生产农药、食品防腐剂等, 这种产物在羰基化的工艺中不会出现, 因此, 该工艺的裂解部分是很有生命力的[3、6]。其反应流程如下: 1.2乙醛氧化法 乙醛氧化法分两步反应完成,首先乙烯在PdCl、CuCI催化剂的作用下,在温度为100~150℃、压力为0.3MPa的条下反应氧化生成乙醛;乙醛在醋酸锰

醋酐生产工艺文献综述

文献综述 前言 本文根据目前国外学者对醋酐合成工段工艺设计的研究成果,借鉴他们的成功经验,在此基础上,查阅了大量资料,并吸取其它醋酐生产厂家的经验,力求使各工艺条件达到理想操作状态,整个生产过程达到最优化,为醋酐装置的工艺设计提供参考。本文主要查阅近几年有关醋酐工艺设计的文献期刊。 本文主要从简介、性质、生产方法和比较、应用、市场发展及预测等方面对醋酐进行了详细的论述。

一、产品简介 1.1.1 产品性质 醋酐又名醋酸酐、乙酐,分子式C 4H 6 O 3 ,相对密度1.080,熔点-73℃,沸点139℃。折 光率1.3904,闪点54℃,自燃点 400℃。常温下是一种有强烈的乙酸气味的无色透明液体,具有吸湿性,可溶于氯仿和乙醚并可缓慢地溶于水形成乙酸,与乙醇作用生成乙酸乙酯。醋酐是一种有毒化学药品,半数致死量约为(大鼠,经口)1780mg/kg;质量浓度为0. 36 mg/m3时即可对眼产生刺激,0. 18 mg/m3时就能改变人的脑电图像,还能引起细胞组织蛋白质变质;其蒸气刺激性更强,极易烧伤皮肤及眼睛,如经常接触会引起皮炎和慢性结膜炎[1]。 1.1.2 产品用途 醋酐的化学性质非常活泼,可用作酯化剂,与乙醇反应生成乙酸乙酯;在水中缓慢水解成醋酸,在热水中分解成醋酸;也可用作酰化剂、硝化或者磺化的脱水剂等[1]。 醋酐是最重要的精细化工原料之一,目前主要用作醋酸纤维素、香烟过滤嘴、胶卷和胶片、纺织用醋酸纤维和赛璐珞塑料等,其次是用于医药、染料、香料和有机合成中的乙酰化剂。醋酐还有许多未开发或者刚开发出来的应用领域,如洗涤剂、炸药、液晶显示器等,尤其在液晶显示器方面市场前景较广[1]。 未来醋酐的消费重点在医药、燃料、农药和二醋酸纤维素,二者占总消费量的75%以上。醋酐在医药方面主要用做合成药物中间体的乙酰化剂和脱水剂。在染料领域中主要用于分散染料的生产,少量用于活性染料、还原染料等。农药行业中醋酐主要用于乙酰甲胺磷、三氯杀虫酯、霜脲氰、氟磺胺草醚、吡嘧磺隆等的生产,还可用于三酸甘油酯、氯乙酸和聚四亚甲基乙二醇醚(PTMEG)等的生产。除上述用途外,醋酐最大的应用在于生产醋酸纤维素,尤其是醋酸纤维素经抽丝加工成香烟过滤咀是目前醋酐最大的应用,截至2008年国香烟过滤嘴仍主要依赖进口,因此醋酸纤维素市场将成为未来国醋酐最大的潜在市场[2.,3]。 二、醋酐的生产方法和比较 1.3 产品生产方法 文献记载醋酐的工业化生产方法主要有三种:乙醛氧化法、乙烯酮法、甲醇羰基化法。其中甲醇羰基化法以其流程短、质量好、消耗低、三废少等优势正逐渐取代另外两种方法。

无水乙醇的制备实验

无水乙醇的制备 一、 实验目的 1.了解氧化钙法制备无水乙醇的原理和方法。 2.熟练掌握回流装置的安装和使用方法。 二、 实验原理 为了制得乙醇含量为99.5%的无水乙醇,实验室中常用最简便的制备方法是生石 灰法,即利用生石灰与工业酒精中的水反应生成不挥发、一般加热不分解的熟石灰(氢氧化钙) CaO 它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、 令人愉快的香味,并略带刺激性。 四、 五、 仪器装置

(二)实验装置图 七、

八、实验讨论 1.数据分析 a 无水乙醇产率较高,说明蒸馏过程进行的比较充分 检验后没有变蓝,说明实验仪器干燥较彻底,实验过程操作较规范 b CuSO 4 2.结果讨论 a 回流一定要从第一滴液体滴下开始计时,否则时间不够,CaO与95%乙醇反应不完 全,导致产率偏低 b 蒸馏开始时,应缓慢加热,使烧瓶内的物料缓慢升温。当温度计的温度达到乙醇 的沸点时(78℃),再收集馏分;控制好温度,使之不超过80℃,否则会使产率偏 高 c 蒸馏过程一定要充分,否则产率会明显偏低 d 量无水乙醇的量筒要经过润洗,否则会引入水,导致结果有误 3.实际操作对实验结果的影响 a 仪器应事先干燥,否则将带进水,影响实验结果 b 使用颗粒状的氧化钙,用粉末状的氧化钙将严重暴沸 c 安装温度计时,使红色水银球紧贴支管口下侧,确保蒸馏时水银球能完全被蒸汽 包围,从而获得准确的读书 d 安装冷凝管时,要使冷凝水从下口进,上口流出,保证“逆流冷却” e 必须在烧瓶中加入沸石,以防在回流和蒸馏过程中发生暴沸 f 蒸馏装置的安装顺序一般由左至右,由下至上,首先从左下侧的热源开始安装 g 当烧瓶中的物料变成糊状物时,表示蒸馏已接近尾声。此时,应立即停止加热, 利用电炉的余温将剩余的液体蒸出,以避免烧瓶过热破裂 4.实验注意事项 a 仪器应事先干燥。 b 接引管支口上应接干燥管。(回流过程要求无水操作,则应在球形冷凝管上端安装 一干燥管防潮) c 务必使用颗粒状的氧化钙,切勿用粉末状的氧化钙,否则暴沸严重。 d 在CaO中还应该加入少许NaOH。(除去95%乙醇中少量的醛等杂志) e 回流时用球形冷凝管,蒸馏时用直形冷凝管。

腌制食品综述 (1)

腌制食品的研究进展 马毅朋11415010429 前言:腌制食品的方法是一种很古老的保藏食品的方法,在民间比较普及,不同地区,不同民族都有食用腌制食品的习惯。腌制食品不仅有特殊的风味,有的还有刺激食欲,帮助消化,去油腻的功效,有些地区无论家庭餐桌上,还是豪华的酒楼必有各色腌渍小食品点缀。 关键词:腌制发酵真空腌制 腌制是指用食盐、糖等腌制材料处理食品原料,使其渗入食品组织内,以提高其渗透压,降低其水分活度,并有选择性地抑制微生物的活动,促进有益微生物的活动,从而防止食品腐败,改善食品食用品质的加工方法。腌制是一种食品保藏的主要方法,同时也是一种加工方法。腌制过程实质上是食品外的溶液和食品组织内的溶液通过溶剂的渗透、溶质的扩散,最后达到均衡化的过程。经过腌制加工的食品通腌制品,如腌菜、腊肉等。不同的食品类型,采用的腌制剂和腌制方法均不同。腌制所使用的腌制材料通称为腌制剂。常见的腌制剂有盐、糖等。盐糖在腌制过程中的主要目的是:盐脱水作用、离子水化作用、生理毒害作用、盐液中氧气浓度下降、影响酶的活性。糖:高浓度的糖使溶液中的氧气浓度降低,同时还产生高的渗透压使微生物脱水以达到抑制或杀死微生物的目的。 此外在腌制过程中,除了常用的腌制剂外同时还会加入一些香料和调味品。加入香料后会使食品更具有风味,香料和调味品也会对食品的保藏有促进作用。因为加入香料和调味品后会调节腌制溶液的渗透压,加快脱水作用。另外有些香料和调味品的加入会改变PH值。有些香料和调味品具有天然的杀菌作用如:大蒜辣素、黑芥子苷、辣椒油酰胺、花椒油酰胺、精油等。 一、发酵过程与腌制 腌制过程还利用微生物的发酵过程,这是因为微生物的发酵过程会产

国内燃料乙醇生产技术水平

国内燃料乙醇生产技术水平 ============================= 1、 玉米燃料乙醇生产技术水平 玉米燃料乙醇按照生产工艺可分为“湿法”与“干法” 。对于专业的乙醇生产企业,采用技术手段分离出胚芽生产玉米油是必要的,并且工业生产乙醇时, 只要求玉米淀粉脂肪含量低于110 %即可 。因此“, 半干法”工艺或“改良湿法”工艺均为可选方案。表1 为几种玉米燃料乙醇生产工艺的优劣比较。 表1 玉米燃料乙醇生产工艺的综合比较 由于玉米燃料乙醇技术首先在美国实现工业化生产并迅速得到发展,其经济效益仅次于巴西的甘蔗燃料乙醇。所以有必要介绍一下美国玉米燃料乙醇技术的特点及优势所在。1.1 美国玉米燃料乙醇技术 1.1.1 生产工艺的选择 美国“湿法”工艺用于燃料乙醇的生产源于淀粉企业的产品延伸,其中以ADM 公司为典型代表,采用纯糖浆发酵和酵母回用技术,工艺流程如图1 所示。 图1 美国ADM公司玉米燃料乙醇“湿法”生产工艺 2000 年前美国共有48 个生产厂家,生产约670万吨燃料乙醇。其中产能的60 %由湿法生产,40 %由干法生产。2005 年又新建36 个厂,总数达到84家,产能较2000 年增加约一倍达到1 200万吨。2006年生产厂增至125 家,产量为1 460 万吨,产量跃居世界第一,目前还有在建装置23 家 。新建的专业燃料乙醇生产企业均采用“干法”新工艺。工艺流程如图2 所示(虽然膜分离脱水技术在能耗方面仅为传统共沸蒸馏脱水工艺能耗的10 % —30 % ,然而由于膜使用寿命和成本等问题,美国大部分装置仍然没有采用,但它是以后的重点发展方向) 。 图2 美国玉米燃料乙醇“干法”新工艺 1. 1. 2 技术进步所显现的特点 随着燃料乙醇生产实践经验的积累,现在美国大型燃料生产企业尤其是2000 —2006 年新建厂具有如下特点: (1) 多数采用大颗粒玉米粉(3mm ,有利于饲料回收) ; (2) 高温蒸煮(120 ℃,高温淀粉酶) ,采用同步糖化发酵工艺,从2005 年开始采用无蒸煮工艺(低温淀粉酶) ,大大降低了能耗; (3) 酵母回用发酵技术; (4) 固定化酵母,流化床反应器发酵技术; (5) 广泛实现了自动化控制,应用连续发酵过程,并采用CIP系统(原位循环清洗发酵罐的原位清洗系统) 。 湿法加工技术的新趋势主要涉及加酶湿法加工和膜分离技术的应用。加酶湿法加工的优点是浸渍时间短、投资小、耗能低、用水量大大减少,而且酶可反复使用;其主要缺点是酶价太高。膜分离技术的应用为浸渍水的分离和利用打开了新的途经。浸渍水的膜分离一般包括两个过程:浸渍水经膜分离的截留物含有长链蛋白质,干燥后并入玉米蛋白粉;浸渍水在进入蒸发器前,先用反渗透膜除去57 %的水,这样可大大降低蒸发所需能耗。以上先进技术及设备的采用

酒精生产工艺

重庆能源职业学院 专业实习报告 论文(设计)题目:酒精的生产流程设计 班级:2011级2511班 姓名:刘兴李德静 廖军梁炯 学号:20112511006 20112511032 20112511018 20112511034 指导教师:邓启辉 时间:2013 年7 月5 日

计划表: 内容组员学号备注前言、绪论全部6、18、32、34 汇编 生物发酵法刘兴、李德静6、32 汇编 化学合成法廖军、梁炯18、34 汇编酒精的用途及总结展望全部6、18、32、34 汇编CAD 李德静、廖军32、18 I

前言 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关资料,选定合理的流程方案和设备类型,并进行简要论述。 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述等。 二、设计目的: 1、把课本的知识运用到社会实践当中去,才是我们学习专业理论知识的最终目的 2、通过本次专业实习设计可以看出现有的生产工艺存在哪些不足,学会自主查找资料进行更加科学有效的改进。 三、设计意义: 酒精工业是在酿酒业的基础上发展起来的,有很悠久的历史。近年来,我国酒精生产技术和生产水平又有了新的提高,新工艺新设备新菌种不断涌现,酒精产量有了较大增长,质量稳定提高;在节约代用,降低消耗,降低成本,提高劳动生产率,提高淀粉出酒率及开展综合利用与消除环境污染等各个方面,都取得了很大成绩。目前,我国大多数酒精采用生物发酵和化学合成法工艺流程,逐步实现了淀粉质原料和化学原料的连续化和自动化。 四、设计原理: 生物发酵主要是利用谷物类、薯类植物中的淀粉,其余的部分仍可综合利用,生产出专用饲料和农业复合肥等产品。在综合利用方面以二氧化碳的回收利用最为普遍,有的厂利用二氧化碳制造干冰、纯碱和小苏打。在自动控制仪表方面也有进展,有的厂已采用电脑实现了主要工序集中控制,目前,我国一些酒精厂正在朝着生产过程全面实行自动化方向发展。 化学合成法主要是利用石油工业,石油化学工业、天然气开发和加工工业产生的乙烯气为原料,使得乙烯水合法的原料得到充分保证。 II

醋酐工艺流程说明

4.2.2 醋酐工艺流程说明 4.2.2.1 流程概述 本装置以醋酸为原料经裂解、吸收、蒸馏、回收工序,制得醋酐产品。 a) 醋酸裂解工序 醋酸裂解工序流程示意图见图4.2-1。 b) 乙烯酮吸收工序 乙烯酮吸收工序流程示意图见图4.2-2。 ①乙烯酮的吸收 由裂解炉产生的乙烯酮气体和废气首先进入第一吸收塔(T-201)底部,与塔顶部喷淋的醋酸,醋酐的混合液逆向接触,使大部分乙烯酮被吸收生成醋酐,塔底出来的粗醋酐浓度为85wt%,进入粗醋酐贮罐中。

图4.2-1 醋酸裂解工艺流程示意图

第一吸收塔吸收液从粗醋酸酐罐(V-301)下部用第一吸收塔循环液泵(P-201)与来自第二吸收塔底部的循环液一起打入第一吸收塔循环冷却器经工业冷却带走反应热后进入第一吸收塔顶部。 第一吸收塔操作真空度:640mmHg;操作温度:35~40℃。 在第一吸收塔中未被吸收的乙烯酮气体,连同废气从塔顶出来进入第二吸收塔底部,与从塔顶喷淋下来的吸收液逆向接触,在第二吸收塔中,乙烯酮气体几乎全部被吸收掉,生成的粗醋酐及醋酸混合液与第一吸收塔循环液合并,同时取出一部分作为循环液进入第二吸收塔循环液泵(P-202)作循环吸收液用。 来自蒸馏系统吸收的醋酸与来自醋酸高位槽(V-401)的冰醋酸根据第一吸收塔排出的粗醋酐的浓度加入到第二吸收塔循环液中。循环液泵打入第二吸收塔冷却器(E-202)用工业水冷却到25℃左右进入第二吸收塔顶部作喷淋吸收液用。 ②尾气洗涤 由第二吸收塔顶部出来的尾气在洗涤塔(T-203)中用循环洗涤液贮槽(V-201)中的水洗涤其中的醋酸蒸汽。洗涤液用循环泵(P-203)输送经冷却器用冷冻盐水冷却后进入洗涤塔。洗涤液循环使用,当稀醋酸浓度提高到20%后,将此醋酸用循环液泵打至稀醋酸回收工序稀醋酸贮槽。 由洗涤塔顶出来的尾气,再经尾气洗涤塔用水洗涤,然后,进入水环真空泵,分离罐,经液封槽进入裂化炉作燃料之用。 尾气洗涤塔的废水经液封槽放入下水,控制废水含酸小于0.09wt%操作温度20℃。 裂化、吸收系统所需要的真空度,全部由水环真空泵(P-204)提供。

食用酒精工艺文献综述

吉林化工学院化工与生物技术学院 文献综述 食用酒精发酵液糖化工艺 学生学号: 学生姓名: 专业班级: 指导教师: 起止日期:2014.4.14~2014.4.28 吉林化工学院 Jilin Institute of Chemical Technology

1 前言 能源是当今世界最令人瞩目的问题之一,目前全世界石油消耗速度以及可开发的原油储量来计算,到21世纪中期石油资源的供应将会逐渐萎缩。因此,许多国家对开发新能源的项目十分重视[1]。此外,随着人民的环保意识不断加强,被誉为可再生绿色能源的燃料酒精,由于其燃烧污染小,容易运输和贮藏在价格上也可与汽油相竞争,因此酒精最有可能成为取代石油的新能源,具有巨大的开发前景[2]。酒精是最具有发展潜力的替代品,目前世界上2/3的酒精被用作燃料[3]。剩余1/3被用来作为医务用品及饮品。高纯度食用酒精是我国配制各种白酒的主要原料。在2011年12月份,我国生产白酒12亿升[4]。 2国内外酒精发酵工艺现状 2.1我国发酵工业总体情况 我国生物化工行业经过长期的发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品已涉及医药、保健、农药、食品等方面[5]。“十一五”期间我国发酵工业产值比“十五”末增长58.5%,产品产量增长102%,出口创汇增长67.5%。进入“十一五”以来,在国家产业政策的指导下,随着科技创新和科学进步的推进,科技推广应用和产业化步伐加快,发酵产业产品空间进一步拓展,产业链不断延长。 2.2酒精发酵行业发展情况 酒精发酵产品应用领域广泛,在中国的酒精发酵行业始终服务于白酒行业,国内所有发酵酒精厂均执行食用酒精国家标准生产不同等级的食用酒精,供白酒厂勾兑白酒,因此生产名牌和品牌白酒的省区,如安徽、贵州等小型酒精装置众多。酒精生产规模从改革开放以后不断扩大,2010年底全国共有注册大小酒精厂1650家,实际酒精厂的数量已经超过2100家,但是每个酒精厂的平均生产规模不到2050t。我国发酵酒精生产的原料结构的现状,玉米原料占60%以上;薯干原料占30%;糖蜜原料占10%以下。鉴于薯干和糖蜜原料酒精发酵过程中产生的废糟液难以治理,环境污染,特别是对水资源的污染十分严重,国家有关部门已经着手对发酵酒精生产的原料结构进行调整。在技术经济指标提升、工艺技术改进、装备水平改善的同时,一些问题也随之而来[6]。下面就以酒精发酵为例阐述现代发酵工业存在的问题及应对措施。酒精发酵是酿酒工艺的核心工艺之一[7],酒精发酵工艺的好坏直接影响了酿酒工业的质量,而现今,我国的发酵工业仍存在一些亟待解决的问题。 2.3国外酒精发酵行业发展状况 上个世纪九十年代以来,世界上酒精的年产量迅速增加,铁表示用发酵法生产的酒精。1975年世界酒精长链超过8000kt,其中合成酒精产量为1600kt:1995年世界酒精产

燃料乙醇的生产技术

燃料乙醇的生产技术 2008-09-27 09:01:01 作者:蒲公英来源:中国生物能源网浏览次数:197 网友评论 0 条 燃料乙醇的生产技术 生物燃料乙醇是通过发酵法生产的,即利用微生物的发酵作用将糖分或淀粉转化为乙醇和CO2,也可将纤维素类水解生成单糖后再发酵产生乙醇。用于发酵法制取燃料乙醇的原料,按成分分为三种 ... 生物燃料乙醇是通过发酵法生产的,即利用微生物的发酵作用将糖分或淀粉转化为乙醇和CO2,也可将纤维素类水解生成单糖后再发酵产生乙醇。用于发酵法制取燃料乙醇的原料,按成分分为三种:糖质、淀粉质和纤维素,后两种原料均需要先通过水解得到可发酵糖;按照发酵过程物料存在状态,可分为固体发酵法、半固体发酵法和液体发酵法;根据发酵醪注入发酵罐的方式不同,可分为间歇式、半连续式和连续式。 糖质原料制取乙醇技术是以甘蔗、甜高粱茎秆为原料,经过物理方法预处理后,采用发酵蒸馏的方法生产燃料乙醇;淀粉质原料制取乙醇技术是以玉米、木薯、甘薯等淀粉含量高的生物质为原料,经过粉碎、蒸煮和糖化后,形成可发酵性糖,再进行发酵处理,得到燃料乙醇的技术;纤维素原料制取乙醇技术是以秸秆为原料,经过物理或化学方法预处理,利用酸水解或酶水解的方法将秸秆中的纤维素和半纤维素降解为单糖,然后,再经过发酵和蒸馏生产的燃料乙醇的技术。 表 1 各类燃料乙醇生产工艺技术特性的对比

目前,我国淀粉类原料发酵法制取乙醇技术比较成熟,并已经进行了工业化生产,中粮集团正在广西北海建设年产20 万吨燃料乙醇项目。我国在甜高粱、木薯等能源作物开发和利用方面取得了一定成绩,自主开发的固体、液体发酵工艺和技术达到应用水平,并在黑龙江省建成年产5000 吨的甜高粱茎秆生产乙醇示范装置。但是,目前还存在着发酵菌种培育、关键工艺和配套设备优化、废渣废水回收利用等问题。据测算,我国农作物秸秆年产量约6 亿吨,其中有1.5亿~2 亿吨可能源化利用。纤维素原料来源比较丰富,有一定的发展前景。国际能源公司都在竞相改进将纤维素转化为乙醇的技术。但由于技术上的限制,目前世界上还没有一家纤维素乙醇制造厂的产量达到商业规模。我国也正在开展纤维素制取燃料乙醇的技术研究开发,中粮黑龙江肇东酒精有限公司、安徽丰原集团、山东龙力科技有

醋酸甲酯羰基合成醋酐的工艺进展

所谓羰基合成醋酐就是指醋酸甲酯与CO进行羰基合成过程。根据羰基合成所处的状态可分为液相法和气相法,反应的起始原料可以是甲醇(直接法),也可以是醋酸甲酯(间接法)。以甲醇为原料生产醋酐有两条路线,一是甲醇与醋酸先酯化,然后醋酸甲酯羰基化生产醋酐;二是醋酸甲酯羰基化生产醋酐,部分醋酐产品与甲醇反应提供原料醋酸甲酯。 液相羰化法依斯曼柯达公司采用反应蒸馏工艺制造醋酐。醋酸(含水量小于0.5%)与甲醇在塔式反应器内进行酯化反应,生成的醋酸甲酯产品直接由塔顶蒸出,用硫酸作催化剂。自羰化工序循环的醋酸进入反应蒸馏塔的上部,新鲜的由塔底部进入,两种反应物料逆向流动,酯化反应蒸发在每块板上进行。由于反应蒸馏在每个塔板上蒸发除去醋酸甲酯,这就大大促进了酯化反应,提高了转化率。原料甲醇和酯化反应生成的水与产物醋酸甲酯形成共沸物,如醋酸甲酯95%与水5%;醋酸甲酯81%与水19%(均为质量分数)。原料醋酸也是萃取剂,又可以把剩余的共沸物中的甲醇反应掉。因此产品很容易提纯。这种反应蒸

馏技术要比其它类型酯化技术先进合理,国内也有很多单位在研究。在反应区塔盘上的停留时间的选择是很重要的参数,它直接影响到萃取的效率,这些逆流塔盘可以是高效的金属丝网、泡罩塔和逆流的槽式塔盘,均具有较长的停留时间,可达到24h。产品纯度非常之高,转换率也很高,反应产物与反应物分子比较接近化学当量。反应段的温度控制在65~85℃之间、塔的操作压力为大气压,催化剂硫酸浓度为95%~98% (质量分数),在塔的萃取蒸馏段的底部进入,与醋酸的质量比为0.01,反应物的停留时间随硫酸浓度增加而增加。由于反应物是高腐蚀性的,所以塔的再沸器需要特种材料。反应蒸馏的塔顶冷凝器采用部分冷凝,冷凝液回流进塔,未冷凝的气相醋酸甲酯供给羰基化反应工序。回流比控制在1.5~1.7,回流比超过2.0时转化率会迅速下降。 反应产物与H2/CO物质的量比有密切相关,氢的比例增大,羰化产率也增大。因为H2能使[Rh(CO)2I4]-还原为具有活性的[Rh(CO) I2]-,但过高的H2浓度会增加副产物醋酸乙烯,一般原料CO中含 2 H22%~7%,可以增加催化剂的活性与寿命。在羰化工序中来自酯化工序的醋酸甲酯与等当量的碘甲烷混合进入进料罐中,用泵将催化剂复合物经进料预热器将物料温度升到180℃,然后将此液相物料从反应器(带有搅拌器)上部进入反应器,操作压力2.45MPa,反应气体(主要是CO和少量H2)由循环压缩机打循环,以保持催化剂的活性。反应转换率为75%,选择性大于95%,反应温度以循环的反应液通过废热锅炉来控制。未反应气体通过冷凝后除去冷凝液,由循环压缩机压入反应器内。反应产物经控制后进入带有夹套的闪蒸器中,闪蒸器压力降至

实验三 无水乙醇的制备教学文案

实验三无水乙醇的制备 预习要求: 1.阅读教材P97-99,实验步骤在98页(用分子筛制备无水乙醇);2.阅读教材P37-41,蒸馏和沸点的测定。 一、实验目的 1.学会用分子筛制取无水乙醇的原理和方法; 2.巩固蒸馏操作。 二、实验原理 分子筛具有高度选择性吸附性能,是由于其结构形成许多与外部相通的均一微孔,凡是比此孔径小的分子可以进入孔道中,而较大分子则留在孔外,借此以筛分各种大小不同的混合物。3A型分子筛只吸附水等分子,水由于水化而被牢牢地吸附在分子筛中,不吸附乙醇,故能制取无水乙醇。 名称相对分子 量 mp/℃bp/℃ 相对 密度 折光率 溶解度/ g·mL-1 H2O 乙醇乙醚 无水乙醇46.07 -117.3 78.4 0.7893 1.3614 ∞∞∞%的乙醇mL 五、仪器装置 制备装置蒸馏装置

六、实验步骤和现象 实验步骤现象和数据记录 1. 测样品酒精度; 2. 在色谱柱中装入1/3柱高的3A型分子筛,从色谱柱上端加入%的乙醇(使乙醇液面高度略低于分子筛),装上氯化钙干燥管; 3. 静置1h; 4. 将色谱柱中乙醇全部放入干燥的蒸馏烧瓶中,水浴蒸馏,收集馏分,测量馏分体积; 5. 测馏分酒精度。样品酒精度为% 加入%乙醇mL 馏分为mL 外观:无色透明液体馏分酒精度为% 七、产品和产率 原料酒精度: 馏分酒精度: 回收率: 产品外观:无色透明液体 八、讨论 1. 实验室制备无水乙醇的方法有哪些? 答:氧化钙法、分子筛法或阳离子交换树脂脱水法。 2. 为什么本实验所用仪器均需彻底干燥?蒸馏时尾接管为什么要装上氯化钙干燥管? 答:因为无水乙醇具有很强的吸水性,所以在操作过程中必须防止水蒸气进入仪器,所用仪器必须事先干燥。为了防止水分进入蒸馏体系,应在尾接管上装上氯化钙干燥管。 3. 如何检验乙醇中是否含水? 答:检验乙醇中是否含有水分,常用的方法有下列两种:⑴取一支干燥洁净的试管,加入制得的无水乙醇2mL,随即加入少量的无水硫酸铜粉末,如果乙醇含有水分则无水硫酸铜变成蓝色硫酸铜。⑵取一支干燥洁净的试管,加入制得的无水乙醇2mL,随即加入几粒干燥的高锰酸钾,若乙醇中含有水分,则呈紫红色溶液。 4. 如果液体具有恒定的沸点,那么能否认为它是单纯物质? 答:不能。因为共沸混合物也具有恒定的沸点。

我国传统白酒固态酿造和液态食用酒精发酵的对比研究

我国传统白酒固态酿造和液态食用酒精发酵的对比研究 摘要:我国的酒文化源远流长,酒制品的酿造一直有自己独特的方式。近年来,酒精制品的作用逐渐显著,被广泛的运用到各个领域中,如医疗、工业生产等,酒精的发酵问题逐渐的 受到了关注。我国白酒的固态酿造工艺与液态发酵的食用酒精发酵技术存在一些相似之处, 但也存在着更大的不同。本文根据中国传统白酒酿造与食用酒精液态发酵的工艺和特点,从 酿造方式、所用原料等方面进行了比较和分析,为后续研究提供参考。 关键词:生产原料;预处理方法;比较; 引言 我国是白酒的起源之地,古代便利用谷物自然发酵进行提炼,可以获得高纯度的白酒。我国 白酒的品种繁多,口感丰富,可以说,我国的酒文化享誉全球。从古至今,酒一直都是人们 生活中不可或缺的要素,从古人的“劝君更进一杯酒”,到如今的餐厅对饮,酒产品丰富了人 们的生活。液态发酵的食用酒精已经成为现代发展的基础化工原料,在各个领域都发挥着重 要的作用。二者进行参考比较,既可以改善白酒的酿造水平,提高酿造效率,也能为液态发 酵的食用酒精保留住白酒特有的风味提供思路,从而带动二者的共同进步。 1生产原料的比较 食用酒精液态发酵是建立在传统酿酒工业的基础上得出的,其应用领域越来越广泛,带动了 下游产业的发展。由于生物酶的特异性,发酵得到的食用酒精纯度极高,已经替代工业酒精,在下游化工行业得到广泛应用。食用酒精液态发酵同时借鉴其它工业产品生产过程及技术其 自身也在不断进步和发展。早在二十世纪初期阶段,我国液态发酵的食用酒精产业开始起步,并不断的进步与更新,同时,白酒的酿造工艺也不断的得到优化。研究二者的不同可以带动 双方水平的提高。二者明显的区别是原材料的不同,原材料的质量与酿造的质量息息相关。 我国传统酿酒技术所使用的原材料大多是优质谷物,如高粱、大米、小麦等谷物,这些谷物 丰富的有机物组份造成所酿造的白酒营养成分较高,口感醇爽,对人的身体有一定的益处。 白酒的生产原料本身具有较高的营养物质,如小麦中所含的淀粉含量较高,具有丰富的氨基 酸物质,发酵后产生的微量有益物质能够有效的促进人体新陈代谢,所以一直以来都是进行 白酒酿造的主要原料。高粱产品是酿酒中使用频率最高的一种,它含有大量的淀粉物质,出 酒率较高。同时,高粱谷物的栽种较为容易,能够大面积的种植,市场价格较低,作为白酒 的生产原料能有有效的降低生产成本,因此很受当下制酒企业的欢迎。与传统的白酒酿造原 料相比,液态发酵的食用酒精所需原材料来源广泛。除了传统的淀粉质原料外,还可以用其 它的糖质和纤维素原料进行酒精发酵。纤维素原料满足了当下我国所提倡的可持续发展的战 略目标。纤维素可以通过生物酶等预处理手段获得酵母发酵所需要的糖原料,从而液体发酵 获取食用酒精。目前大自然中存在大量未被利用的纤维素原料,如果能够有效的收集并利用,就可以避免资源的浪费,实现有效的生物质循环链。近年来,随着食用酒精液态发酵法所需 的原料价格逐渐走高,我国大量科研院校开始针对廉价的纤维素进行研究,国家也在大力发 展纤维素乙醇。纤维素乙醇符合不与农争地的原则,能够获得国家和农业部的大力支持。同 时发展纤维素乙醇可以大量的减少废弃物对于环境的污染,达到了保护土地和水资源等的效果,能够获得生态环保部的支持。当然,由于纤维素中含有较多的杂质,其只适合现代化的 液态发酵和精馏工艺,通过多道提纯手段达到食用标准。所以纤维素乙醇是未来液态发酵食 用酒精的主要原材料之一,具有很大的发展空间。 2预处理方法的比较 白酒酿造技术与食用酒精液态发酵技术的预处理方法上有很大的不同。在白酒的酿酒过程中,由于原材料内部的淀粉等物质成颗粒状,具有不容易被水解的特点,因此在酿造的过程中需 要对原料进行适当的预处理。传统酿酒工艺中预处理技术主要是对原材料只进行蒸煮等相关 处理,破坏细胞的同时达到杀菌作用,细胞破坏后淀粉物质流出,高温让淀粉链打断从而降

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统 燃料乙醇作为一种较为清洁的能源,生产成本较低,得到广泛应用,暂时解决了能源需 求的矛盾。为了推动可持续发展,实现绿色发展,在加强人们生态环保意识的同时,还要就 燃料乙醇的制造工艺、合理加工以及燃料乙醇产生的废气废液处理办法进行改进和创新,完 善燃料乙醇作为新型能源的功效,推动社会和经济发展。 二、生物发酵法制燃料乙醇 现阶段燃料乙醇制造的工艺已出现三代,第一代燃料乙醇分为糖基乙醇和淀粉基乙醇, 主要以玉米、甘蔗中所含的酵糖作为原料,进行生物发酵制乙醇,是目前最为常见的制燃料 乙醇方法。第二段燃料乙醇是纤维素乙醇,以木质纤维素类为主的生物物质,主要来源包括 农业废料、林业产物及废弃物、(藻类)和城市垃圾等,第三代燃料乙醇就是主要以藻类为 原料通过生物法生产的燃料乙醇。 生物法又称生物发酵法,是通过生物物质所含的物质,经过水解、发酵等一系列工序制 成燃料乙醇。生物发酵法是现阶段制燃料乙醇最主要,也是最普遍的一种方法。根据不同原 料所含的物质不同,生产工艺和工序都有相应的变化。粮食作物作为原料以碾磨、液化和糖 化工艺为必须内容,木质纤维的步骤则必备预处理和水解工序,本身高糖类物质则可以省去 部分步骤。值得注意的是,一些物质在操作过程或者运输时沾染了金属或有毒物质,还需要 进行先解读再提取,以防不良化学反应的产生。 燃料乙醇的一般生产工艺,如图1所示: 生物发酵法在粉碎原料之后需要进行蒸煮的工作,因为物质原料富含植物细胞,蒸煮后,会促进原料中的淀粉酶与淀粉发生化学反应,发生水解,进行发酵。 生物发酵法要确保酵母菌的酒精发酵环境,视情况而定,进行相应的高压、高温环境蒸 煮操作。 三、生物发酵法制燃料乙醇生产中废气废液的处理方法 生物发酵法制燃料乙醇生产中不可避免的会出现相应的废气废料,纤维素乙醇废液是一 种高温度、高悬浮物、粘度大、呈酸性的有机废水,其主要含有残余的糖、纤维素、木质素、各种无机盐及菌蛋白等物质。一般来源于制燃料乙醇各个工序中,要想妥善处理相关问题, 需要优化制造工艺,从源头解决;或是加强后续补救措施,解决废气废液的排放问题。 (一)源头处理方法 在生产过程中优化处理就是指在提高燃料制乙醇的液化效果,使得原料物质中所含有的 糖被全部利用。因为没有被完全利用的糖分会随着水解过程中产生的水排除,形成废液。并 且未被利用的糖也是一种资源浪费。通过对液化的温度、时间和工艺方法的优化,使得生物 发酵法进行连续发酵,提高燃料乙醇的制作效率。通过连续发酵法,把发酵罐之间的串联起来,使得总会有发酵反应进行。 优化蒸馏工序也是减少制燃料乙醇废气废液的办法之一,通过燃料乙醇直接加热气体的 方法,进行蒸馏后排出,这种方法既不环保,又造成资源浪费。需要优化蒸馏技术,通过差 压蒸馏,使得两边蒸馏塔中的压强有一定差异,使得负压塔能够排出二氧化碳等有害物质,

醋酐生产工艺介绍

醋酐生产工艺介绍 想了解醋酐生产工艺吗?今天我到好多网站上都没有找到,忽然想起好久之前注册的万客化工网,或许会有吧,没想到还真让我找到了,呼呼~~ 生产工艺 工业化的醋酐生产工艺有三种:乙醛氧化法、乙烯酮法和醋酸甲酯羰基化。 1.1 乙醛氧化法 乙醛氧化法技术来源为加拿大Sha Winigan化学公司。生产工艺如下:乙醛和氧在60℃、101 kPa或70℃、600-700kPa条件下进行氧化反应,用氧气或空气作氧化剂,以醋酸乙酯为溶剂,醋酸钴为催化剂,醋酸铜为促进剂。乙醛与氧气(过量约1%-2%)反应首先生成过氧醋酸,过氧醋酸再与乙醛反应生成醋酐和醋酸。在此条件下,乙醛转化率为95%,醋酐及醋酸产率的质量比为56:44。醋酐的总收率为70%-75%。通过改变工艺条件,可以提高醋酐的产率。反应方程式为: CH3CHO+O2→CH3COOOH; CH3COOOH+CH3CHO→CH3COOOCH(OH) CH3(单过氧醋酸酯); CH3COOOCH(OH)CH3→(CH3CO)2O+H2O; CH3COOOCH(OH)CH3→2CH3COOH。 每吨醋酐消耗乙醛1.165 t,标准状态空气2300 m3。乙醛氧化法流程简单,工艺成熟,但腐蚀严重,消耗较高,已逐渐被淘汰。在国外已被醋酸甲酯羰基化和乙烯酮法所替代。我国上海化学试剂总厂这种装置已经处于停产状态。 1.2 乙烯酮法 乙烯酮法按照原料不同又可以分为:醋酸法和丙酮法。 1.2.1 醋酸法 醋酸法技术来源为德国Wacher化学公司。生产工艺如下:第一步,醋酸在700-750℃、10-20kPa的压力及0.2%-0.3%磷酸三乙酯(按醋酸质量计)作催化剂的条件下,裂解脱水制成乙烯酮,醋酸转化率约为85%-90%,对乙烯酮的选择性(物质的量计)约为90%-95%。反应方程式为: CH3COOH→CH2=C=O+H2O+147 kJ/mol。 第二步是液体乙酸吸收乙烯酮生成醋酐,经精馏提纯制得成品醋酐,乙烯酮的转化率约100%。反应方程式为: CH3COOH+CH2=C=O→(CH3CO)2O+62.8kJ/mol。 该生产工艺是德国Wacher化学公司开发成功的,并于1936年实现工业化。现有两种生产流程: 其一,为塔式流程。用4个填料塔进行合成与分离。每吨醋酐的消耗定额为,醋酸1.35t,催化剂1.5-2kg,氨0.7-1.0kg,回收醋酸100-160kg。 其二,为液环泵流程。以液环泵为反应及吸收设备。该流程十分简单,正在取代塔式流程。每吨产品的消耗定额为,醋酸1.22 t,裂解率75%,合成收率96%。 1.2.2 丙酮法

无水乙醇的制备实验报告

化学工 程学院 有 机 化 学 实 验 报 告 实 验 名 称: 无水乙醇的制备 专 业: 化学工程与工艺 班 级: 化工13-6班 姓 名:白慧超 学 号 日 期: 2014年10月31日 指 导 教 师: 房江华 王灵辉 一、 实验目的 1.了解氧化钙法制备无水乙醇的原理和方法。 2.熟练掌握回流装置的安装和使用方法。 二、 实验原理 为了制得乙醇含量为99.5%的无水乙醇,实验室中常用最简便的制备方法是生石灰法,即利用生石灰与工业酒精中的水反应生成不挥发、一般加热不分解的熟石灰(氢氧化钙),以得到无水乙醇。 CaO Ca +H 2O (OH)2 试剂 结构简式 相对分子密度 熔点 沸点 相对密度

它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。 四、 五、仪器装置 (二)实验装置图

步骤现象 回流:在100 ml的圆底烧瓶中,加入50 ml 95%乙醇,慢慢放入10克小颗粒状的生石灰和几颗NaOH,回流1h。随着加热慢慢有蒸气溢出,之后回流管内也慢慢有液体流出 蒸馏:回流毕,改为蒸馏装置,以圆底烧瓶做接受器,接引管支口上接盛有无水氯化钙的干燥管。所蒸得的乙醇密封储存,并用无水CuSO4检验。冷凝管内壁慢慢出现小液滴,约78℃时有液体流入锥形瓶中 检验:向蒸馏得出的乙醇中加入少许CuSO4。不变蓝回收:把检验好的乙醇倒入回收瓶中。 七、 项目蒸馏稳定温 度蒸馏所得乙醇 体积 无水乙醇回收 率 数据73.0℃42.0ml84% 八、实验讨论 1.数据分析

a 无水乙醇产率较高,说明蒸馏过程进行的比较充分 b CuSO4检验后没有变蓝,说明实验仪器干燥较彻底,实验过程操作较规 范 2.结果讨论 a 回流一定要从第一滴液体滴下开始计时,否则时间不够,CaO与95% 乙醇反应不完全,导致产率偏低 b 蒸馏开始时,应缓慢加热,使烧瓶内的物料缓慢升温。当温度计的温 度达到乙醇的沸点时(78℃),再收集馏分;控制好温度,使之不超 过80℃,否则会使产率偏高 c 蒸馏过程一定要充分,否则产率会明显偏低 d 量无水乙醇的量筒要经过润洗,否则会引入水,导致结果有误 3.实际操作对实验结果的影响 a 仪器应事先干燥,否则将带进水,影响实验结果 b 使用颗粒状的氧化钙,用粉末状的氧化钙将严重暴沸 c 安装温度计时,使红色水银球紧贴支管口下侧,确保蒸馏时水银球能 完全被蒸汽包围,从而获得准确的读书 d 安装冷凝管时,要使冷凝水从下口进,上口流出,保证“逆流冷却” e 必须在烧瓶中加入沸石,以防在回流和蒸馏过程中发生暴沸 f 蒸馏装置的安装顺序一般由左至右,由下至上,首先从左下侧的热源 开始安装 g 当烧瓶中的物料变成糊状物时,表示蒸馏已接近尾声。此时,应立即 停止加热,利用电炉的余温将剩余的液体蒸出,以避免烧瓶过热破裂 4.实验注意事项 a 仪器应事先干燥。 b 接引管支口上应接干燥管。(回流过程要求无水操作,则应在球形冷 凝管上端安装一干燥管防潮) c 务必使用颗粒状的氧化钙,切勿用粉末状的氧化钙,否则暴沸严重。 d 在CaO中还应该加入少许NaOH。(除去95%乙醇中少量的醛等杂志) e 回流时用球形冷凝管,蒸馏时用直形冷凝管。

文献综述-全自动液体灌装机控制系统的设计与研究

2灌装生产线概念设计 全自动液体灌装机的使用和需求日益增长,已经逐步代替手工灌装或半自动灌装, 并将发展成为液体灌装行业所必备的设备。目前,市场上对全自液体灌装机没有明确的定义和划分,大多只对能进行自动计量或某部分机构能实现自动控制就定义其为全自动灌装机,这种定义不完全,不能真正的对全自动液体灌装机进行定义。 2.1液体灌装基本原理 灌装就是将一定量的液体物料注入到包装容器中的过程IUl。这种液体物料主要是指 具有低粘度的可流动型液体物料,如酒类、汽水、果汁等。它们可以依靠自重以一定速度流入到包装容器中。另外还可灌装一些中等粘稠液体物料和一些高粘度物料,如果酱、油脂,牙膏及黄油等。对这些物料的灌装依靠重力是不能使其按要求流动的,因此需要施加一定的压力将其挤入或压入到包装容器中。由于液体种类很多,其性能不一,如粘度、起沫性、含气性、挥发性等各不相同,所以采用的灌装方法不一样,其次液料的包装容器也不同,有玻璃瓶、金属罐、塑料瓶、复合纸盒等,所以,依据不同的包装容器、包装物料及不同的灌装工艺,灌装机的灌装方法也是不相同的。 2.2液体灌装方式 由于液体物料性能不同,灌装方式多种多样。根据灌装压力的不同可分为常压灌装、 压力灌装、等压灌装、负压灌装等旧。 2.2.1常压灌装 常压灌装,又称重力灌装,即在常压下,利用液体自身的重力将其灌入包装容器内, 其整个系统处于敞开状态下工作,该灌装方法是最原始的灌装方法。至今仍被用在流动性很好的液体灌装中,这各方法比较适用于流动性好、不含气、不易挥发的液体中。如矿泉水、白酒、酱油、牛奶等。 2.2.2负压灌装 负压灌装是先将包装容器抽气形成负压,再将液体物料灌入包装容器内【13J。这种灌 装方法不但能提高灌装速度,而且能减少包装容器内残存的空气,防止液体物料氧化变质,可延长产品的保存期。此外,还能限制毒性液体的逸散,并可以避免灌装有裂纹或

相关文档
最新文档