16位CRC校验原理与算法分析

16位CRC校验原理与算法分析
16位CRC校验原理与算法分析

16位CRC校验原理与算法分析

2007-12-14 09:37

这里,不讨论CRC的纠错原理以及为什么要选下面提及的生成多项式,只是针对以下的生成多项式,如何获得CRC校验码,作一个比较详细的说明。

标准CRC生成多项式如下表:

名称生成多项式简记式* 标准引用

CRC-4 x4+x+1 3 ITU G.704

CRC-8 x8+x5+x4+1 0x31

CRC-8 x8+x2+x1+1 0x07

CRC-8 x8+x6+x4+x3+x2+x1 0x5E

CRC-12 x12+x11+x3+x+1 80F

CRC-16 x16+x15+x2+1 8005 IBM SDLC

CRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25,

V.34/V.41/V.42, PPP-FCS

CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS

CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP

生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。

I、基本算法(人工笔算):

以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0];

数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。

发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0];

II、计算机算法1(比特型算法):

1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器;

2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或;

否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得);

3)重复第2步,直到数据流(6字节)全部移入寄存器;

4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。

III、计算机算法2(字节型算法):256^n表示256的n次方

把按字节排列的数据流表示成数学多项式,设数据流为BYTE[n]BYTE[n-1]BYTE[n-2]、、、BYTE[1]BYTE[0],表示成数学表达式为BYTE[n]×256^n+BYTE[n-1]×256^(n-1)

+...+BYTE[1]*256+BYTE[0],在这里+表示为异或运算。设生成多项式为G17(17bit),CRC 码为CRC16。

则,CRC16=

(BYTE[n]×256^n+BYTE[n-1]×256^(n-1)+...+BY TE[1]×256+BYTE[0])×256^2/G17,即数

据流左移16位,再除以生成多项式G17。

先变换BYTE[n-1]、BYTE[n-1]扩大后的形式,

CRC16=

BYTE[n]×256^n×256^2/G17+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256 ^2/G17+BYTE[0]×256^2/G17

(Z[n]+Y[n]/G17)×256^n+BYTE[n-1]×256^(n-1)×256^2/G17+...+BYTE[1]×256×256^2/ G17+BYTE[0]×256^2/G17

Z[n]×256^n+{Y[n]×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+...+BYTE[1]×256×2 56^2/G17+BYTE[0]×256^2/G17

Z[n]×256^n+{(YH8[n]×256+YHL[n])×256/G17+BYTE[n-1]×256^2/G17}×256^(n-1)+... +BYTE[1]×256×256^2/G17+BYTE[0]×256^2/G17

Z[n]×256^n+{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17}×256^(n-1)+...+BYTE [1]×256×256^2/G17+BYTE[0]×256^2/G17

这样就推导出,BYTE[n-1]字节的CRC校验码为

{YHL[n]×256/G17+(YH8[n]+BYTE[n-1])×256^2/G17},即上一字节CRC校验码Y[n]的高8位(YH8[n])与本字节BYTE[n-1]异或,

该结果单独计算CRC校验码(即单字节的16位CRC校验码,对单字节可建立表格,预先生成对应的16位CRC校验码),所得的CRC校验码与上一字节CRC校验码Y[n]的低8位(YL8[n])

乘以256(即左移8位)异或。然后依次逐个字节求出CRC,直到BYTE[0]。

字节型算法的一般描述为:本字节的CRC码,等于上一字节CRC码的低8位左移8位,与上一字节CRC右移8位同本字节异或后所得的CRC码异或。

字节型算法如下:

1)CRC寄存器组初始化为全"0"(0x0000)。(注意:CRC寄存器组初始化全为1时,最后CRC应取反。)

2)CRC寄存器组向左移8位,并保存到CRC寄存器组。

3)原CRC寄存器组高8位(右移8位)与数据字节进行异或运算,得出一个指向值表的索引。

4)索引所指的表值与CRC寄存器组做异或运算。

5)数据指针加1,如果数据没有全部处理完,则重复步骤2)。

6)得出CRC。

unsigned short GetCrc_16(unsigned char * pData, int nLength)

//函数功能:计算数据流* pData的16位CRC校验码,数据流长度为nLength

{

unsigned short cRc_16 = 0x0000; // 初始化

while(nLength>0)

{

cRc_16 = (cRc_16 << 8) ^ cRctable_16[((cRc_16>>8) ^ *pData) & 0xff];

//cRctable_16表由函数mK_cRctable生成

nLength--;

pData++;

}

return cRc_16;

}

void mK_cRctable(unsigned short gEnpoly)

//函数功能:生成0-255对应的16CRC校验码,其实就是计算机算法1(比特型算法)

//gEnpoly为生成多项式

//注意,低位先传送时,生成多项式应反转(低位与高位互换)。如CRC16-CCITT为0x1021,反转后为0x8408

{

unsigned short cRc_16=0;

unsigned short i,j,k;

for(i=0,k=0;i<256;i++,k++)

{

cRc_16 = i<<8;

for(j=8;j>0;j--)

{

if(cRc_16&0x8000) //反转时cRc_16&0x0001

cRc_16=(cRc_16<<=1)^gEnpoly; //反转时cRc_16=(cRc_16>>=1)^gEnpoly else

cRc_16<<=1; //反转时cRc_16>>=1

}

cRctable_16[k] = cRc_16;

}

}

CRC(Cyclic Redundancy Check/循环冗余校验)

它是利用除法及余数的原理来作错误侦测(Error Detecting)的。实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。

根据应用环境与习惯的不同,CRC又可分为以下几种标准:

①CRC-12码;

②CRC-16码;

③CRC-CCITT码;

④CRC-32码。

CRC-12码通常用来传送6-bit字符串。

CRC-16及CRC-CCITT码则用是来传送8-bit字符,其中CRC-16为美国采用,而CRC-CCITT 为欧洲国家所采用。

CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。

下面为CRC计算过程:

1.设置CRC寄存器,并给其赋值FFFF(hex)。

2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。

3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。

4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。

5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。

6.重复第2至第5步直到所有数据全部处理完成。

7.最终CRC寄存器的内容即为CRC值。

常用的CRC循环冗余校验标准多项式如下:

CRC(16位) = X16+X15+X2+1

CRC(CCITT) = X16+X12 +X5+1

CRC(32位) = X32+X26+X23+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

以CRC(16位)多项式为例,其对应校验二进制位列为1 1000 0000 0000 0101。

CRC基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R 的多项式G(x),根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。

校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2R,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2R除以生成多项式G(x)得到的余数就是校验码。

几个基本概念

1、多项式与二进制数码

多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。

多项式包括生成多项式G(x)和信息多项式C(x)。

如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。

而发送信息位 1111,可转换为数据多项式为C(x)=x3+x2+x+1。

2、生成多项式

是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。

在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。

应满足以下条件:

a、生成多项式的最高位和最低位必须为1。

b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做模2除后应该使余

数不为0。

c、不同位发生错误时,应该使余数不同。

d、对余数继续做模2除,应使余数循环。

将这些要求反映为数学关系是比较复杂的。但可以从有关资料查到常用的对应于不同码制的生成多项式如图9所示:

N K 码距 d G(x)多项式 G(x)

7 4 3 x3+x+1 1011

7 4 3 x3+x2+1 1101

7 3 4 x4+x3+x2+1 11101

7 3 4 x4+x2+x+1 10111

15 11 3 x4+x+1 10011

15 7 5 x8+x7+x6+x4+1 111010001

31 26 3 x5+x2+1 100101

31 21 5 x10+x9+x8+x6+x5+x3+1 11101101001

63 57 3 x6+x+1 1000011

63 51 5 x12+x10+x5+x4+x2+1 1010000110101

1041 1024 x16+x15+x2+1 1100000000000010

1

3、模2除(按位除)

模2除做法与算术除法类似,但每一位除(减)的结果不影响其它位,即不向上一位借位。所以实际上就是异或。然后再移位移位做下一位的模2减。步骤如下:

a、用除数对被除数最高几位做模2减,没有借位。

b、除数右移一位,若余数最高位为1,商为1,并对余数做模2减。若余数最高位为0,商为0,除数继续右移一位。

c、一直做到余数的位数小于除数时,该余数就是最终余数。

CRC校验程序编写:

编写CRC校验程序有两种办法:一种为计算法,一种为查表法。下面对两种方法分别讨论。

①计算法

计算法就是依据CRC校验码的产生原理来设计程序。其优点是模块代码少,修改灵活,可移植性好。其缺点为计算量大。为了便于理解,这里假定了三位数据,而多项式码为A001(hex)。在窗体上放置一命令按钮Command1,并添加如下代码:

Private Sub Command1_Click()

Dim CRC() As Byte

Dim d() As Byte '待传输数据

ReDim d(2) As Byte

d(0) = 123

d(1) = 112

d(2) = 135

CRC = CRC16(d) '调用CRC16计算函数

'CRC(0)为高位

'CRC(1)为低位

End Sub

注意:在数据传输时CRC的低位可能在前,而高位在后。

Function CRC16(data() As Byte) As String

Dim CRC16Lo As Byte, CRC16Hi As Byte 'CRC寄存器

Dim CL As Byte, CH As Byte '多项式码&HA001

Dim SaveHi As Byte, SaveLo As Byte

Dim i As Integer

Dim Flag As Integer

CRC16Lo = &HFF

CRC16Hi = &HFF

CL = &H1 '多项式码低位&H01

CH = &HA0 '多项式码高位&HA0

For i = 0 To UBound(data)

CRC16Lo = CRC16Lo Xor data(i) '每一个数据与CRC寄存器进行异或

For Flag = 0 To 7

SaveHi = CRC16Hi

SaveLo = CRC16Lo

CRC16Hi = CRC16Hi \ 2 '高位右移一位

CRC16Lo = CRC16Lo \ 2 '低位右移一位

If ((SaveHi And &H1) = &H1) Then '如果高位字节最后一位为1

CRC16Lo = CRC16Lo Or &H80 '则低位字节右移后前面补1

End If '否则自动补0

If ((SaveLo And &H1) = &H1) Then '如果LSB为1,则与多项式码进行异或 CRC16Hi = CRC16Hi Xor CH

CRC16Lo = CRC16Lo Xor CL

End If

Next Flag

Next i

Dim ReturnData(1) As Byte

ReturnData(0) = CRC16Hi 'CRC高位

ReturnData(1) = CRC16Lo 'CRC低位

CRC16 = ReturnData

End Function

②查表法

查表法的优缺点与计算法的正好相反。为了便于比较,这里所有的假定与计算法的完全相同,都而在窗体上放置一个Command1的按钮,其代码部分与上面的也完全一致。下面只介绍CRC函数的编写源代码。

Private Function CRC16(data() As Byte) As String

Dim CRC16Hi As Byte

Dim CRC16Lo As Byte

CRC16Hi = &HFF

CRC16Lo = &HFF

Dim i As Integer

Dim iIndex As Long

For i = 0 To UBound(data)

iIndex = CRC16Lo Xor data(i)

CRC16Lo = CRC16Hi Xor GetCRCLo(iIndex) '低位处理

CRC16Hi = GetCRCHi(iIndex) '高位处理

Next i

Dim ReturnData(1) As Byte

ReturnData(0) = CRC16Hi 'CRC高位

ReturnData(1) = CRC16Lo 'CRC低位

CRC16 = ReturnData

End Function

'CRC低位字节值表

Function GetCRCLo(Ind As Long) As Byte

GetCRCLo = Choose(Ind + 1, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, _

&H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40, &H1, &HC0, &H80, &H41, &H1, &HC0, &H80, &H41, &H0, &HC1, &H81, &H40)

End Function

'CRC高位字节值表

Function GetCRCHi(Ind As Long) As Byte

GetCRCHi = Choose(Ind + 1, &H0, &HC0, &HC1, &H1, &HC3, &H3, &H2, &HC2, &HC6, &H6, &H7, &HC7, &H5, &HC5, &HC4, &H4, &HCC, &HC, &HD, &HCD, &HF, &HCF, &HCE, &HE, &HA, &HCA, &HCB, &HB, &HC9, &H9, &H8, &HC8, &HD8, &H18, &H19, &HD9, &H1B, &HDB, &HDA, &H1A, &H1E, &HDE, &HDF, &H1F, &HDD, &H1D, &H1C, &HDC, &H14, &HD4, &HD5, &H15, &HD7, &H17, &H16, &HD6, &HD2, &H12, &H13, &HD3, &H11, &HD1, &HD0, &H10, &HF0, &H30, &H31, &HF1, &H33, &HF3, &HF2, &H32, &H36, &HF6, &HF7, &H37, &HF5, &H35, &H34, &HF4, &H3C, &HFC, &HFD, &H3D, &HFF, &H3F, &H3E, &HFE, &HFA, &H3A, &H3B, &HFB, &H39, &HF9, &HF8, &H38, &H28, &HE8, &HE9, &H29, &HEB, &H2B, &H2A, &HEA, &HEE, &H2E, &H2F, &HEF, &H2D, &HED, &HEC, &H2C, &HE4, &H24, &H25, &HE5, &H27, &HE7, &HE6, &H26, &H22, &HE2, &HE3, &H23, &HE1, &H21, &H20, &HE0, &HA0, &H60, _

&H61, &HA1, &H63, &HA3, &HA2, &H62, &H66, &HA6, &HA7, &H67, &HA5, &H65, &H64, &HA4, &H6C, &HAC, &HAD, &H6D, &HAF, &H6F, &H6E, &HAE, &HAA, &H6A, &H6B, &HAB, &H69, &HA9, &HA8, &H68, &H78, &HB8, &HB9, &H79, &HBB, &H7B, &H7A, &HBA, &HBE, &H7E, &H7F, &HBF, &H7D, &HBD, &HBC, &H7C, &HB4, &H74, &H75, &HB5, &H77, &HB7, &HB6, &H76, &H72, &HB2, &HB3, &H73, &HB1, &H71, &H70, &HB0, &H50, &H90, &H91, &H51, &H93, &H53, &H52, &H92, &H96, &H56, &H57, &H97, &H55, &H95, &H94, &H54, &H9C, &H5C, &H5D, &H9D, &H5F, &H9F, &H9E, &H5E, &H5A, &H9A, &H9B, &H5B, &H99, &H59, &H58, &H98, &H88, &H48, &H49, &H89, &H4B, &H8B, &H8A, &H4A, &H4E, &H8E, &H8F, &H4F, &H8D, &H4D, &H4C, &H8C, &H44, &H84, &H85, &H45, &H87, &H47, &H46, &H86, &H82, &H42, &H43, &H83, &H41, &H81, &H80, &H40)

CRC校验码原理

CRC校验码 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 目录 详细介绍 代数学的一般性运算 详细介绍 循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x3+x2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。

CRC16校验程序

CRC16校验程序 -------------------------------------------------------------------------------- 作者:转载 //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT:x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表{ 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,

CRC校验实验报告

实验三CRC校验 一、CRC校验码的基本原理 编码过程: CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成 多项式g(x),将最后的余数作为CRC校验码。 其实现步骤如下: 1 设待发送的数据块是m位的二进制多项式t(x),生成多项式 为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增 加到m+r位。 2 用生成多项式g(x)去除,求得余数为阶数为r-1

的二进制 多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式 g(x)编码的CRC校验码。 3 将y(x)的尾部加上校验码,得到二进制多项式。就是包含 了CRC校验码的待发送字符串。 解码过程: 从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位 二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式 所以解码时可以用接收到的数据去除g(x),如果余数位零,则

表示传输过程没有错误;如果余数不为零,则在传输过程中肯定 存在错误。许多CRC的硬件解码电路就是按这种方式进行检错的。 同时,可以看做是由t(x)和CRC校验码的组合,所以解码时将接 收到的二进制数据去掉尾部的r位数据,得到的就是原始数据。 解码过程示例:

运行结果: 附录(实现代码):using System; using ; namespace CRC

{ public abstract class Change { oString("x2").ToUpper(); } } return returnStr; } um; } (databuff);eight < max1) && (data[j].Parent == -1)) { max2 = max1; tmp2 = tmp1; tmp1 = j; max1 =

CRC校验原理及步骤

C R C校验原理及步骤 This model paper was revised by the Standardization Office on December 10, 2020

CRC校验原理及步骤 什么是CRC校验 CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。 CRC校验原理: 其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端。当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数整除(注意,这里不是直接采用二进制除法,而是采用一种称之为“模2除法”)。到达接收端后,再把接收到的新帧除以(同样采用“模2除法”)这个选定的除数。因为在发送端发送数据帧之前就已通过附加一个数,做了“去余”处理(也就已经能整除了),所以结果应该是没有余数。如果有余数,则表明该帧在传输过程中出现了差错。 模2除法: 模2除法与算术除法类似,但每一位除的结果不影响其它位,即不向上一位借位,所以实际上就是异或。在循环冗余校验码(CRC)的计算中有应用到模2除法。 例: CRC校验步骤:

CRC校验中有两个关键点,一是预先确定一个发送送端和接收端都用来作为除数的二进制比特串(或多项式),可以随机选择,也可以使用国际标准,但是最高位和最低位必须为1;二是把原始帧与上面计算出的除数进行模2除法运算,计算出CRC码。 具体步骤: 1. 选择合适的除数 2. 看选定除数的二进制位数,然后再要发送的数据帧上面加上这个位数-1位的0,然后用新生成的帧以模2除法的方式除上面的除数,得到的余数就是该帧的CRC校验码。注意,余数的位数一定只比除数位数少一位,也就是CRC校验码位数比除数位数少一位,如果前面位是0也不能省略。 3. 将计算出来的CRC校验码附加在原数据帧后面,构建成一个新的数据帧进行发送;最后接收端在以模2除法方式除以前面选择的除数,如果没有余数,则说明数据帧在传输的过程中没有出错。 CRC校验码计算示例: 现假设选择的CRC生成多项式为G(X)= X4+ X3+ 1,要求出二进制序列的CRC校验码。下面是具体的计算过程: ①将多项式转化为二进制序列,由G(X)= X4+ X3+ 1可知二进制一种有五位,第4位、第三位和第零位分别为1,则序列为11001 ②多项式的位数位5,则在数据帧的后面加上5-1位0,数据帧变为,然后使用模2除法除以除数11001,得到余数。【补几位0与x的最高次幂相同,模除就是进行异或】

CRC16校验C语言程序源码 (附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码) //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种 //实现方法进行测试。 方法一:查表法(256长度的校验表) 速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表 { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

CRC16校验-C语言代码

//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,

crc校验码详细介绍看懂了就会了

循环冗余校验码( CRC)的基本原理是:在K 位信息码后再拼接R位的校验码,整个编码长度为N 位,因此,这种编码又叫( N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x) 。根据G(x) 可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x) 左移R位,则可表示成C(x)*2 的R次方,这样C(x) 的右边就会空出R位,这就是校验码的位置。通过C(x)*2 的R次方除以生成多项式G(x) 得到的余数就是校验码。编辑本段几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x 的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x 的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x) 。如生成多项式为 G(x)=x^4+x^3+x+1 ,可转换为二进制数码11011。而发送信息位1111 ,可转换为数据多项式为C(x)=x^3+x^2+x+1 。 2、生成多项式是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2 除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2 除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息( CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x 的最高次幂为R的生成多项式G(x) 转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2 的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R 位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 例】假设使用的生成多项式是G(x)=x^3+x+1 。4 位的原始报文为1010, 求编码后的报文。 解:

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

CRC16算法原理

CRC算法及C实现 学习体会2008-09-20 15:21:13 阅读161 评论0 字号:大中小订 阅 一、CRC算法原理 CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以)后,再除以一个多项式,最后所得到的余数既是 CRC码。 假设数据传输过程中需要发送15位的二进制信息 g=101001110100001,这串二进制码可表示为代数多项式g(x) = x^14 + x^12 + x^9 + x^8 + x^7 + x^5 + 1,其中g中第k位的值,对应g(x)中x^k的系数。将g(x)乘以x^m,既将g后加m个0,然后除以m阶多项式h(x),得到的(m-1)阶余项 r(x)对应的二进制码r就是 CRC编码。 h(x)可以自由选择或者使用国际通行标准,一般按照h(x)的阶数m,将CRC算法称为CRC-m,比如CRC-32、CRC-64等。国际通行标准可

以参看 https://www.360docs.net/doc/a49865957.html,/wiki/Cyclic_redundancy_check g(x)和h(x)的除运算,可以通过g和h做xor(异或)运算。比如将 11001与10101做xor运算: 明白了xor运算法则后,举一个例子使用CRC-8算法求101001110100001的效验码。CRC-8标准的h(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1,既h是9位的二进制串111010101。

CRC16校验产生函数

CRC16校验产生函数 /****************************************************************************** * Function Name : crc16 * Input : 数据缓冲区指针:puchMsg ,数据长度:usDataLen * Return : 16 位CRC校验码 * Description : 产生16 位CRC校验码 *******************************************************************************/ INT16U crc16(INT8U *puchMsg, INT8U usDataLen) { INT8U uchCRCHi=0xFF ; /* 高CRC字节初始化*/ INT8U uchCRCLo=0xFF ; /* 低CRC字节初始化*/ INT16U uIndex; /* CRC循环中的索引*/ while(usDataLen--) /* 传输消息缓冲区*/ { uIndex =uchCRCHi^*puchMsg++ ; /* 计算CRC */ uchCRCHi=uchCRCLo^auchCRCHi[uIndex] ; uchCRCLo=auchCRCLo[uIndex]; } return (uchCRCHi<<8|uchCRCLo); } /* CRC 高位字节值表*/ const INT8U code auchCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

CRC循环冗余校验(CCITT-16)

CRC 循环冗余校验(CCITT-16) START MOVLW DATAe MOVWF ADDR ;将[e 00]余式表首地址DATAe 存入ADDR SWAPF BYTEa ,0ANDLW 0FH ;求e 和e 指定的[e 00]余式高字节的相对地址ADDWF ADDR ,1 ;取其绝对地址,存入ADDR MOVF ADDR ,0 ;把这一绝对地址再存入W CALL TABLE ;查表,返回时h e 00放 W 中 MOVWF RESULTh ;把 h e 00 存 RESULTh MOVLW 16ADDWF ADDR ,0;求e 指定的[e 00] 式低字节的绝对地址CALL TABLE ;查表,返回时l e 00放W 中 MOVWF RESULTl ;把l e 00存入RESUL MOVLW DATAf MOVWF ADDR ;将[f 00]余式表首 址DATAf 存入ADDR MOVF BYTEa ,0ANDLW 0FH ;求f 和f 指定的[f 0 余式高字节的相对址 ADDWF ADDR ,1;取其绝对地址,存ADDR MOVF ADDR ,0;把这一绝对地址再存W CALL TABLE ;查表,返回时h f 00放 W 中 XORWF RESULTh ,0;h e 00与h f 00异或, h a 00,存入W XORWF BYTEb ,0;h a 00与b 异或,h abc ,存入W MOVF BYTEa ;h abc 存入BYTEa MOVLW 16ADDWF ADDR ,0;求f 指定的[f 00]式低字节的绝对地址CALL TABLE ;查表,返回时l f 00放W 中

CRC校验码的原理

CRC 校验码的原理 在通信与数字信号处理等领域中循环冗余校验码(Cyclic Redundancy Check,CRC )是一种很常用的设计。一般来说数据通信中的编码可以分为信源编码和信道编码两大类,其中,为了提高数据通信的可靠性而采取的编码称为信道编码,即抗干扰编码。在通信系统中,要求数据传输过程中的误码率足够低,而为了降低数据传输过程中的误码率,经常采用的一种方法是差错检测控制。 在实际的通信系统中,差错检测控制的主要方法又3种:前向纠错(FEC ),自动重发(ARQ )和反馈检验法。FEC 指接收端不仅能够在收到的信码中发现错码,而且还能够纠正错码。一般来说,这种方法不需要反向信道,实时性很好,不过设备较复杂。ARQ 是指接收端在收到的信码中检测出错码时,即设法通知发送端重新发送信号,直到能够正确接收为止。通常,这种方法只用来检测误码,而且只能在双向信道中使用。反馈检验法是指接收端将收到的信码一字不差地转发回发送端,同时与原发送信码进行比较,如果有错,则发端重发。这种方法的原理和设备都比较简单,但需要双向信道的支持,而且传输效率低下; 通过实践检验,在这三中方法中,如果传输过程中的误码率较低,那么采用前向纠错法比较理想,但如果误码率较高时,这种方法又会出现“乱纠”的现象;在网络通信中,广泛的采用差错检测方法时自动请求重发,这种方法只要检错功能即可;反馈检验法时前向纠错法和自动请求重发的结合。 在实现差错检测控制的众多方法中,循环冗余校验就是一类重要的线性分组码。它时一种高效的差错控制方法,它广泛应用于测控及数据通信领域,同时具有编码和解码方法简单,检错能力强,误判概率很低和具有纠错能力等优点。 循环冗余校验码实现的方法 CRC 的基本原理就是在一个P 位二进制数据序列之后附加一个R 位二进制检验码序列,从而构成一个总长位N=P+R 位的二进制序列。例如,P 位二进制数据序列D=[d 1-p d 2-p …d 1d 0],R 位二进制检验码R = [r 1-r r 2-r …r 1r 0],那么所得到的这个N 位二进制序列就是M=[d 1-p d 2-p …d 1d 0 r 1-r r 2-r …r 1r 0],这里附加在数据序列之后的CRC 码与数据序列的内容之间存在着某种特定的关系。如果在数据传输过程中,由于噪声或传输特性不理想而使数据序列中的某一位或某些位发生错误,这种特定关系就会被破坏。可见在数据的接收端通过检查这种特定关系,可以很容易地实现对数据传输正确性的检验。 在CRC 中,检验码R 使通过对数据序列D 进行二进制除法取余式运算得到的,他被一个称为生成多项式的(r+1)位二进制序列G=[g r g 1-r …g 1g 0]来除,具体的多项式除法形式如下: ) ()(x G x D x r =Q(x)+ ) ()(x G x R 其中,)(x D x r 表示将数据序列D 左移r 位,即在D 的末尾再增加r 个0位;Q (x )代表这一除法所得的商,R (x )就是所需的余式。此外,这一运算关系还可以表示为 ?? ? ???=)()(Re )(x G x D x x R r ?? ? ? ??=)()(Re )(x G x M x R 通过上面CRC 基本原理的介绍,可以发现生成多项式使一个非常重要的概念,它决定了CRC 的具体算法。目前,生成多项式具有一下一些通用标准,其中CRC -12,CRC -16,

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码) //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种 //实现方法进行测试。 方法一:查表法(256长度的校验表) 速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表 { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,

相关文档
最新文档