太阳能光伏组件计算方式

太阳能光伏组件计算方式
太阳能光伏组件计算方式

组件计算方式

上图为旺能F5AJ单晶电池片,尺寸125mm×125mm

单片面积S1=125×125-4×21.04×21.04/2+4×1.49×29.7/2=

14828.1mm2(近似值,下面都采用近似值)

(注意△的面积:S=L×H/2,电池片绝对面积可以用软件计算)

用在MSK15W里面的1/4小片,尺寸62.5mm×45.5mm

面积S2=S1/4-(125/2-45.5)×125/2=2644.5mm2

若125单片档次为1600,125*125单片的Pmax=2.38W,Voc=0.617V,Isc=5.16A

其对应的MSK15W里面的1/4小片功率为:P1=2.38×(2644.5/14828.1)=0.4245W

其对应的MSK15W组件功率:P2=P1×36=0.4245×36=15.282W MSK15W组件Voc=0.617×36=22.212V

MSK15W组件Isc=5.16×(2644.5/14828.1)=0.920A

若125单片档次为1625,125*125单片的Pmax=2.41W,代入上

式可知:MSK15W组件功率P2=15.47W

同理可知其它的档次的功率情况。

当然,如果知道了电池片的转换效率和单片面积,也可以用:单片面积×转换效率=单片功率

例如:转换效率1600,单片面积2644.5,则

Pmax=1600×2644.5=0.4231W(注意单位)

组件功率=0.4231×36=15.23W

组件功率换算:

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1xx 太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2xx 太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3xx 太阳能光伏组件生产工序及工艺流程 第4xx 电池片的分选、检测和切割工序 第5xx 电池片的焊接工序 第6xx 叠层铺设工序 第7xx 层压工序 第8 章装边框及清洗工序

第9xx 光伏组件的检验测试 第10xx 光伏组件的包装 第11xx 常用设备及操作、维护要点 第12xx 光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件 12.2 光伏组件的板型设计 12.3光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录 1 常用光伏组件规格尺寸及技术参数 附录2 IEC61215质量检测标准 附录3 ............. 第1xx 太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。 使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N 型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚图1-1 太阳能光伏电池发电原理

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

太阳能光伏组件分原材料及部件

太阳能光伏组件的原材料及部件性能,作 用,特点,及检验 1.太阳能电池片 外形与特点: 太阳能电池片是太阳能电池组件中的主要材料,电池片表面有一层蓝色的减反射膜,还有银白色的电极栅线。其中很多条细的栅线,是电池片表面电极向主栅线汇总的引线,两条宽一点的银白线就是主栅线,也叫电极线或上电极。电池片的背面也有两条(或间断的)银白色的主栅线,叫下电极或背电极。电池片与电池片之间的连接,就是把互连条焊接到主栅线上实现的。一般正面的电极线是电池片的负极线,背面的电极线是电池片的正极线。太阳能电池片无论面积大小(整片或切割成小片),单片的正负极间输出峰值电压都是0.48~0.5v。而电池片的面积大小与输出电流和发电功率成正比,面积越大,输出电流和发电功率越大。 合格的太阳能电池片应具有以下特点。 (1)具有稳定高效的光电转换效率,可靠性高。 (2)采用先进的扩散技术,保证片内各处转换效率的均匀性。 (3)运用先进的pecvd成膜技术,在电池片表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观。 (4)应用高品质的银和银铝金属浆料制作背场和栅线电极,确保良好的导电性、可靠的附着力和很好的电极可焊性。 (5)高精度的丝网印刷图形和高平整度,使得电池片易于自动焊接和激光切割。 太阳能电池片的分类及规格尺寸 太阳能电池片按用途可分为地面用晶体硅太阳能电池、海上用晶体硅太阳能电池和空间用晶体硅太阳能电池,按基片材料的不同分为单晶硅电池和多晶硅电池。目前太阳能电池片常见的规格尺寸主要有125mm×125mm、150mm×150mm和156mm×156mm等几种,厚度一般在170~220μm。 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。 对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。单晶硅电池和多晶硅电池的寿命和稳定性都很好。虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保 分类及规格尺寸 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

单位面积光伏组件安装容量测算

单位面积光伏发电系统安装容量测算 1.引言 近年来随着环境污染的愈加严重以及国家对于光伏发电项目的支持力度不断加大,且分布式光伏发电系统具有可安装在任何有阳光照射的地方的优点,越来越多的企业和居民对安装分布式光伏发电系统具有浓厚的兴趣。对于居民及企业用户来讲,摆在面前的首要问题就是投资问题,目前大部分光伏发电项目都是以每瓦成本来进行项目报价,所以居民和企业用户关心的第一个问题就是自己的空余空间能够安装多大容量的光伏发电系统。 2.安装容量测算 对于光伏发电系统的设计,其首要原则就是根据安装地点的具体情况选择合适的组件安装方式,然后根据现场可安装面积进行发电系统容量估算,然后结合客户用电情况及意向确定最终的光伏发电系统安装容量。下面我们将以河南森源集团有限公司22KW分布式光伏发电工程为例,详细阐述单位面积光伏发电系统安装容量的测算方法。 河南森源集团22KW分布式光伏发电工程平面布置如图1所示。 图1 河南森源集团22KW分布式光伏发电工程平面布置图

从图中我们可以看出该安装地点东西长30米,南北宽18米,面积540平方米,由于屋顶平面西侧为电梯机房,高度约5米,考虑电梯机房在安装地点的投影面积,在该机房东侧11米内不考虑安装光伏组件。该分布式光伏发电工程选用光伏组件的功率为250W,尺寸为1640mm*992mm,光伏方阵长度为17.8米,宽度为2.6米,光伏组件的安装方式如图2所示。 图2 光伏组件安装方式 考虑安装地点屋顶承重能力,将多个光伏阵列并行分布在安装楼面,需确定光伏组件阵列间距离以避免南部的方阵对北部方阵形成遮阴。 光伏组件阵列行间距计算: 为防止南边的方阵对北边的形成遮阴,计算的原则是:冬至日上午9点到下午3点期间,南部的光伏阵列对北部的阵列不形成遮挡。计算公式如图: 其中:d为光伏组件前后排间距。 Φ为安装地理位置的纬度。 H为阵列前排最高点与后排组件最低位置的高度差。 此工程安装地点为郑州市,位于河南省中部偏北,东经112°42' -114°14',北纬34°16' - 34°58'之间,计算时取Φ为34°。光伏组件的安装高度差H

光伏组件说明书

篇一:光伏组件使用手册 光伏组件使用手册 请认真阅读以下安装和安全指南。 如果安装时与之不符的话,这样做会使产品保证失效。 指南的目的: 概要 2太阳能光伏系统安装需要专业的技巧和知识。安装人员应该设想到各种受伤害的风险,包括电击风险。组件的安装应该由合格的人员进行。 2所有的组件具有永久的接线盒和#12 awg(4 mm2)电缆线连接到的多功能接触光伏连接头。您可以从您的经销商处得到额外的组件的电缆线。 2每个单独的组件在直接接触到阳光后可以产生大于30 伏特的直流电压。直接接触到30伏特和大于30伏特的直流电压可能导致危险。暴露于阳光下时连接组件或操作组件要小心。 2当拆除连接在暴露在阳光下的组件的缆线的时候,可能产生电弧。电弧会导致燃烧,起火或产生其他安全问题。暴露于阳光下时拆除连接组件上的缆线的时候要小心。 2太阳能光伏组件将光能转换为直流电能,设计为室外使用。适当得支撑结构的设计是系统的设计者和安装人员有的职责。 2组件可以为地面安装,电线杆安装和屋顶安装。 不要尝试分解组件,不要拆除组件上的任何铭牌或者部件。 此种行为会使产品保证失效。 不要在组件上喷涂任何颜料或黏合剂。 不要使用镜子或其他的装备来集中阳光到组件上。 安装组件时,遵守当地,地区和国家的规范和条例。需要建筑或电气许可。 安装太阳能光伏系统的安全防范措施 2当暴露在阳光下时,太阳能组件产生电能。

2只有相同额定输出电流的组件能串联。如果组件是串联起来的,总电压相当于是所有的单独组件的电压之和。 2只有相同电压的组件和组件组合能并联。如果组件是并联,总电流相当于所有的组件或组件组合的电流之和。 2在传送和安装组件的机械和电气部件时,儿童不能靠近系统。 addr: huangtang industrial zone, xuxiake town, jiangyin, jiangsu,p.r china, p.c. 214407 2在安装组件时,用不透明的材料覆盖住整个组件,以防产生电流。 在安装和维修组件时不要佩戴金属指环,表带,耳环,鼻环或唇环,或其他金属物品。电气装置上使用被批准的适当的安全设备(绝缘工具,绝缘手套等)。 2所有系统中用到的部件,包括电线和电缆,连接器,dc-断路器,安装装备,逆变器等,要遵守所有的安装说明和安全防范规范。 2请只使用适用于光伏系统的设备,连接器,电线和安装装备。 2在特定光伏系统内只使用同一型号的组件。 2在正常工作状态下,pv组件会产生不同于数据表内的电流和电压。数据表只适用于标准测试状态。 2短路电流和开路电压在决定与光伏或系统输出相关的电压额定值、传导器载流容量、保险丝大小和控制器尺寸时应该乘以1.25的因数。 常规安装要点 2安装系统的部件不能盖住排水孔。接线盒的一个透气孔必须朝下安装,不能被雨淋到。安装时接线盒应该在组件的较高处,这样便于正确安排透气孔的位置。 2在提组件的时候不要抓接线盒或电气导线。 2不要站在或踩在组件上。 2不要使组件掉落或使其他物件掉落在组件上。 2不要在组件上放置重物。 2不当的运输和安装可能损害组件的玻璃和边框。 机械安装

光伏电站组件容量配比优化方案

光伏电站组件容量配比优化方案 近年来,不同地区的光伏电站采用光伏组件容量与逆变器容量配比值大于1的设计的思路,以达到提高逆变器的运行效率、电站收益的目的。本文将基于某地的实测辐射值进行分析,并计算不同配比值情况下的电站新增发电量与新增投资的关系,以确定合理的配比值。 一、某地实测辐射数据分析 本文采用某地某全年的实测辐射数据。选取其中的水平面总辐射、温度数据进行计算分析。实测数据采样时间为1min,共计525600组,数据完备率96.32%。完成缺失数据插补后,该地全年水平面总辐射量为6262.5MJ/m2。 根据上述数据得出如下:逐月、年代表日逐时、月代表日逐时的辐射量(值)分布图。(其中:数据已调整为真太阳时):

图1该地区逐月总辐射量直方图 图2该地区年代表日总辐射值分布图 图3该地区逐月代表日总辐射值分布图根据上图可得出如下结论:

(1)该地月总辐射量最大值发生在春、夏换季的5月;且全年逐月总辐射量较平均,有利于光伏电站平稳出力; (2)该地年代表日总辐射极大值差异较小,4个年代表日差异主要是日照时长及当日天气情况而引起的日总辐射量的差异。 (3)该地5月至8月的正午(真太阳时)存在总辐射值超过1000W/m2的情况发生,根据对数据的分析。超过总辐射值超过1200W/m2在6月时有发生。 (4)该地10月至次年4月的空气质量好,透明度高,日总辐射值变化较平稳。 二、不同容量配置比值的计算 本文将采用基于实测的辐射数据完成光伏电站全年逐时(分钟)的发电功率计算。计算时根据如下步骤分别进行计算: (1)光伏组件容量与逆变器容量配比值选择1、1.05、1.1、1.15、1.20分别计算全年逐时发电功率。 (2)考虑各光伏电站实际效率存在差异,光伏组件至逆变器直流母线的效率分别取80%、85%对步骤(1)的各计算结果进行折算。 (3)考虑到逆变器具备的短时超发能力,分别计算超过逆变器标称功率100%、105%、110%的能量损失。 (4)根据步骤(1)~(3)的计算结果,综合计算因光伏组件超配增发的功率与不同效率值、逆变器不同超发能力情况下而限电的最终增发的功率比值。 (5)光伏电站综合单位投资分别取7.5元/W(其中组件价格取3.5元/W)、8元/W(其中组件价格取4元/W)进行光伏电站新增投资比例的计算; (6)综合步骤(4)、(5)的计算结论,计算△发电量与△投资的比值,其结果如下:

光伏组件计算公式

光伏发电系统设计计算公式 1.转换效率 η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中: Pin=1KW/㎡=100mW/cm2。 2.充电电压 Vmax=V额× 1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数 1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池

7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~ 2.0根据当地污染程度、线路长短、安装角度等 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~ 2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取276 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等: 安全系数:

电力光伏系统设计计算公式

光伏电能发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

关于光伏组件功率衰减分析研究

关于光伏组件功率衰减分析研究 发表时间:2018-08-06T15:19:54.707Z 来源:《电力设备》2018年第11期作者:李宁良罗婷吴月旺曹红亮周芬肖琳 [导读] 摘要:多晶硅光伏组件在使用过程中会出现不同程度的功率衰减现象。 (湖南兴业太阳能科技有限公司 411201) 摘要:多晶硅光伏组件在使用过程中会出现不同程度的功率衰减现象。组件功率的衰减可分为三类:由破坏性因素导致的组件功率骤然衰减、组件初始的光致衰减、组件的老化衰减。本文主要研究分析了导致组件初始的光致衰减和组件的老化衰减原因,并通过试验结果得到验证,提出降低组件功率衰减的改进方案。 关键词:光伏组件;输出功率;初始衰减;老化衰减 随着光伏电站运营时间的不断增长,发电量会发生不同程度的减少,光伏组件是光伏发电的核心部件,光伏组件发电功率衰减直接影响到整个光伏电站的发电效率。目前,我国大多数集中式光伏电站未定期开展光伏组件功率衰减的测试工作,部分开展测试工作的光伏电站出于保密很少公开数据,这不利于光伏组件功率衰减特性的研究。相比德国、美国、日本等光伏应用较早的国家,我国在数据统计、长期跟踪、检测检验、加速老化测试等方面的研究相当匮乏。本文介绍了光伏组件发电功率衰减测试的标准及方法,并对光伏组件发电功率衰减测试工作进行了展望。 1.光伏组件发电功率衰减测试标准 按照光伏产业链来划分,光伏标准大致可以分为基础通用标准、光伏制造设备标准、光伏材料标准、光伏电池和组件标准、光伏部件标准、光伏系统标准和光伏应用标准七大类。中国现行有效的光伏标准共计120项,其中国家标准72项,行业标准41项,其他标准7项,已形成了光伏产业标准体系的基本框架,现行的光伏标准主要集中在太阳能电池和组件标准、电池基体材料标准以及应用标准方面,光伏设备标准、光伏材料标准、光伏部件标准和光伏应用标准以自主制定为主,而电池和组件标准以及光伏系统标准以转化IEC标准为主,光伏组件发电功率衰减测试标准主要参考国际电工委员会标准IEC60904、IEC61215与IEC61852。太阳能组件的产品标准和检测标准的制订、修订情况严重滞后于产业实际发展需求,衡量光伏质量关键因素的组件衰减率标准在中国仍处于缺失状态。 2.研究思路与测试方案 2.1研究思路 研究思路主要从考虑光伏组件受到多种环境因素的影响着手,如标准太阳光辐照、强紫外光辐照、温度、湿度等。因为环境因素太复杂,相互影响因素太多,获得有效评定光伏组件2年衰减率(甚至是25年使用质量保证)的模型公式是相当困难的,所以该方案引入类似IEC61215中设定一个标准条件来对组件功率进行测试的方式,同样对光伏组件的寿命制定一个“标准测试方法和程序”进行评定。建立一个统一的标杆(见测试程序)区分组件的质量,然后在后期的工作中考虑各种环境因素、各种材料因素,再通过实验室的模拟与户外数据的拟合来建立组件功率衰减率的模型。 2.2气候环境对光伏组件材料的影响 通过实验室内模拟各种复杂气候环境,同时结合业界相关机构与企业的经验积累,及国内外相关文献,得出气候环境对光伏原辅材料的影响因素主要为:1)太阳光曝晒:易造成电池片效率正常的光致衰减。2)紫外老化:易造成EV A黄变、密封胶脆化、背板老化等封装失效。3)动态机械载荷:易造成电池片隐裂。4)高低温变化:易造成焊接电路连接失效,电池片隐裂加剧,接线盒和组件连接失效。5)湿热和湿冻:易造成玻璃雾化、封装失效、腐蚀、接线盒和组件连接失效。6)电势诱导衰减PID:易造成湿热地区组件实际使用中的系统电压引起的电池片失效。7)热斑:易造成组件局部发热过大引起的热斑失效。8)二极管热性能:易造成二极管过热导致压降过大,漏电流过高。 2.3测试程序 根据上述主要环境影响因素,并参照IEC组件产品的相关标准,设计了测试方案(见表2), 注:表格中测试项目条件参数参考IEC61215、IEC61646、IEC62782、IEC61730-2标准的要求 以评定组件在多种环境条件下的寿命可靠性。每个序列的目的及意义说明如下:(1)第一序列为参考组件的控制序列,其他序列的组件衰减率是和参考组件比较得来。(2)第二序列主要考核的是材料老化与封装失效,IEC61215中规定紫外辐照量为15kwh/m2,湿冻试验的循环次数为10次,然而在大量试验后得出上述老化量不够,甚至不衰减。该方案考虑一定的严酷程度选择紫外辐照总量为30kwh/m2,湿冻试验循环20次。(3)第三序列主要考核的是电势诱导衰减PID衰减和耐受性,PID现象是近年来被广泛关注的光伏组件失效现象,是导致光伏组件衰减的很大诱因,测试要求为温度85℃,湿度85%,试验时间96h,1000V电压反向连接。所以有必要将该测试方法加入方案。使用IEC62782中的动态载荷试验,更能够符合组件运用的实际情况。 2.4实验室加速老化测试法 在常规户外环境下,环境应力因素对光伏组件性能的影响较缓慢,需长时间观察、测试、收集才能反馈组件存在的质量问题。为了在较短时间内,通过合理的方法、途径发现光伏组件存在的潜在问题,加速老化试验被引入到光伏组件的质量测试及寿命评估方面,并得到了不断发展。实验室加速老化测试方法是利用环境试验箱模拟户外实际运行时的辐照度、温度、湿度等环境条件,并对相关参数进行加严

太阳能光伏组件种类

太阳能光伏组件种类 光伏系统的界定与光伏介绍 光伏系统定义:光伏系统是利用太阳电池组件辅助其他和设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统独立系统、并网系统和混合系统。如果根据光伏光伏系统的表现形式应用形式,应用规模和型态负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(SmallDC);简单变频器系统(SimpleDC);大型太阳能电力系统(LargeDC);交流、直流供电系统(AC/DC);并网系统(UtilityGridConnect);混合供电系统(Hybrid);并网混合系统。下面就每种或进行系统的工作原理和特点进行点出。 1.小型发电供电系统(SmallDC) 该系统的特点负载是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了东部这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(SimpleDC) 该系统的特点是系统的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天转用使用,所以系统中没有选用使用电瓶,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载送电,省去了能量在蓄电池中的储存和释放过程,以及驱动器中的能量驱动程序损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施。下图显示的就是一个简单三

相的PV水泵系统。这种地区在发展中国家的无纯净自来水供饮的系统 得到了广泛的应用,形成了良好的社会效益。 3大型太阳能供电系统(LargeDC) 与两种上述两种发电系统相比,这种光伏系统仍然是适用于系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给 负载提供稳定有效保证的电力供应,其相应的控制系统系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应 用形式有用有通信、遥测、监测电子系统电源,农村的集中供电,航 标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站 就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地 区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通 讯基站工程。 4交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时 为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载达致的需求。通常这 种系统的负载一般会耗电量也比较大,从而系统的比重也较大。在一 些同时具有交流和逆变器负载技术交流的通讯基站和其它一些含有交、直流负载的应用光伏发电站中得到应用。5并网系统(UtilityGridConnect) 种太阳能光伏系统最大的特点就是光伏阵列产生的直流电经过并 网逆变器转换成符合市电电网要求的交流电之后直接接入市电网络, 并网系统中PV方阵所产生电力除了供给交流负载外,多余的日电力反 馈给电网。在阴雨天或夜晚,光伏阵列没有产生电能或者不能产生的 电能不能满足负载需求时则就由电网供电。因为直接将电能输入电网,免去配置蓄电池,省掉了电磁铁储能和省掉释放的过程,可以充分利 用PV方阵所发的电力从而减小了能量的损耗,并减少了系统的成本。 但是系统中必需需要专用的并网逆变器,以保证输出的电力满足用户

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

光伏组件计算公式

光伏组件计算公式集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

光伏发电系统设计计算公式 1.转换效率 η=Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2.充电电压 Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数

损耗系数:取1.6~2.0根据当地污染程度、线路长短、安装角度等 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取276 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等:安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3 10.2蓄电池容量=10×负载总用电量/系统工作电压:10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率 组件总功率=组件发电电流×系统直流电压×系数1.43 系数1.43:组件峰值工作电压与系统工作电压的比值。

详解太阳能电池组件中逆变器的工作原理

太阳能电池组件中逆变器的工作原理逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。

1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz 到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导 通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

太阳能电池组件技术示范

太阳电池组件成品技术规范 编写: 校对: 审核: 会签:、 、 、 、

、 、 批准: 太阳电池组件技术总规范 1目的 通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。保证产品质量,满足客户要求。 2适用范围 2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。 2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。 2.3本技术规范不能取代本公司与客户签订的技术协议。 3职责权限 3.1技术开发部制定太阳能电池组件成品技术总规范; 3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。 4引用文件 4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,

IDT); 4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004); 4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004); 4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0; 4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2; 4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2; 4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2; 4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2; 4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0; 4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范; 4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0; 4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0; 4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules. 5定义 5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。 6内容 6.1 关键材料要求 用于制造晶硅太阳电池的所有材料应根据客户要求,考虑强度、耐用性、化学物

相关文档
最新文档