GaAs工艺

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

硅基锗材料的外延生长及其应用

硅基锗材料的外延生长及其应用 摘要:硅是最重要的半导体材料,在信息产业中起着不可替代的作用。但是硅材料也有一些物理局限性,比如它是间接带隙半导体材料,它的载流子迁移率低,所以硅材料的发光效率很低,器件速度比较慢。在硅衬底上外延生长其它半导体材料,可以充分发挥各自的优点,弥补硅材料的不足。本文介绍了硅衬底上的锗材料外延生长技术进展,讨论了该材料在微电子和光电子等方面的可能应用,重点介绍了它在硅基高速长波长光电探测器研制方面的应用。 关键词:硅基;锗,外延;光电探测器 Epitaxy and application of Ge layer on Silicon substrate Huiwen Nie1, Buwen Cheng2 (1.Hunan Chemical Engineering Machinery School, Hunan Industrial Technology College 2.State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083)

Abstract: Silicon is the most important semiconductor material and it is irreplaceable in the information industry. But Silicon also has some shortcomings, such as very low luminescence efficiency and low device speed due to the indirect bandgap and low carrier mobility. Growing other semiconductors on Si substrate can take the advantages of the different semiconductors and improve the performance of the Si-based devices and integrated circuits. The progress of Ge growth on Si was introduced in the paper. The application of the Si-based Ge epitaxy layer was discussed, especially the application on Si-based high speed photodetectors operating at long wavelength. Key words: Si-based, Germanium, Epitaxy, Photodetector 1引言 硅基光电集成将微电子技术和光子学技术进行融合,是 微电子技术的继承和发展,是信息技术发展的重要前沿研究 领域。其研究内容包括硅基高效光源、硅基高速光电探测器、硅基高速光调制器、低损耗光波导器件等。硅衬底上外延生长的锗(Ge)材料是硅基高速长波长光电探测器的首选材料

硅材料(考试)

第一章 1.原子密度: 2.硅在300K 时的晶格常数a 为5.43?。请计算出每立方厘米体积中的硅原子数 及常温下的硅原子密度。 解: 每个晶胞中有8个原子,晶胞体积为a3,每个原子所占的空间体积为a3/8, 因此每立方厘米体积中的硅原子数为: 8/a3=8/(5.43×108)3=5×1022(个原子/cm3) 密度=每立方厘米中的原子数×每摩尔原子质量/阿伏伽德罗常数 =5×1022×28.09/(6.02×1023)g/cm3=2.33g/cm3 2.晶体内部的空隙: 假使硅晶胞中的原子像圆球一样处在一体心立方晶格中, 并使中心圆球与立方体八个角落的圆球紧密接触,试计算出这些圆球占此体心立方晶胞的空间比率。 圆 球半径定义为晶体中最小原子间距的一半,即 。 3.体心立方堆积: 假使将圆球放入一体心立方晶格中,并使中心圆球与立方体八个角落的圆球紧密 接触,试计算出这些圆球占此体心立方单胞的空间比率。 解:每单胞中的圆球(原子)数为=(1/8)×8(角落)+1(中心)=2;相邻两原子距离[沿 图中立方体的对角线]=;每个圆球半径=;每个圆球体积= ;单胞中所能填的最 大空间比率=圆球数×每个圆球体积/每个单胞总体积=因此整个体心立方单胞有 68%为圆球所占据,32%的体积是空的。 4.硅的基本性质: 属于元素周期表第三周期IV4族,原子序数14,原子量28.085 。有无定形硅和 晶体两种同素异形体。硅原子的电子排布为1s22s22p63s23p2, 原子价主要为 4 价,其次为2价,因而硅的化合物有二价化合物和四价化合物两种,四价化合物 比较稳定。熔点1420℃ 5.所谓硅的化学提纯是: 1.将硅用化学方法转化为中间化合物, 2.再将中间化合物提纯至所需的纯度, 3.然后再还原成高纯硅。 6.固体能带理论的两个近似,并简要说明之 1.绝热近似:由于原子实的质量是电子质量的103~105倍,所以原子实的运动 要比价电子的运动缓慢得多,于是可以忽略原子实的运动,把问题简化为n 个价 电子在N 个固定不动的周期排列的原子实的势场中运动,即把多体问题简化为 多电子问题。 2.单电子近似:原子实势场中的n 个电子之间存在相互作用,晶体中的任一电 子都可视为是处在原子实周期势场和其它(n -1)个电子所产生的平均势场中的 电子。即把多电子问题简化为单电子问题。 7.计算硅中(100),(110),(111)三平面上每平方厘米的原子数。 a 从(100)面上看,每个单胞侧面上有 个原子,所以,每平方厘 8/3a 21441=+?2 1441=+?

相关文档
最新文档