实时图像快速定位算法及其应用_胡竞

实时图像快速定位算法及其应用_胡竞
实时图像快速定位算法及其应用_胡竞

图像去雾霭算法及其实现..

图像去雾霭算法及其实现 电气工程及其自动化 学生姓名杨超程指导教师李国辉 摘要雾霭等天气条件下获得的图像,具有图像不清晰,颜色失真等等一些图像退化的现象,直接影响了视觉系统的发挥。因此,为了有效的改善雾化图像的质量,降低雾霭等天气条件下造成户外系统成像的影响,对雾霭图像进行有效的去雾处理显得十分必要。 本设计提出了三种图像去雾算法,一种是基于光照分离模型的图像去雾算法;一种是基于直方图均衡化的图像去雾算法;还有一种是基于暗原色先验的图像去雾算法。并在MATLAB的基础上对现实生活的图像进行了去雾处理,最后对不同的方法的处理结果进行了简要的分析。 关键词:图像去雾光照分离直方图均衡化暗原色先验

Algorithm and its implementation of image dehazing Major Electrical engineering and automation Student Yang Chaocheng Supervisor Li Guohui Abstract Haze weather conditions so as to obtain the image, the image is not clear, the phenomenon of color distortion and so on some image degradation, directly influence the exertion of the visual system. Therefore, in order to effectively improve the atomization quality of the image, reduce the haze caused by outdoor weather conditions such as imaging system, the influence of the haze image effectively it is necessary to deal with the fog. This design introduced three kinds of algorithms of image to fog, a model is based on the separation of light image to fog algorithm; One is the image to fog algorithm based on histogram equalization; Another is based on the dark grey apriori algorithms of image to fog. And on the basis of MATLAB to the real life to deal with the fog, the image of the processing results of different methods are briefly analyzed. Key words:Image to fog Light separation histogram Dark grey

基于图像增强的去雾方法

第3章基于图像增强的去雾方法 引言 图像增强是数字图像处理技术中最为基本的内容之一。在实际应用中,无论采用何种装置采集的图像,由于噪声、光照、天气等原因,获取的图像视觉效果不理想。例如,雾天获取的图像模糊不清,难以提取细节信息;一幅户外自然风景图像色彩失真严重,视觉效果较差;夜间拍摄的图像,由于光线较暗,图像对比度低,暗处景物难以辨识等。图像增强技术的目的是将图像转化为一种更适合于人或计算机进行分析处理的形式,通过相关算法的处理,使图像的动态范围扩大,拉伸图像对比度,突出图像中研究者感兴趣区域的细节信息,为图像的进一步处理和分析奠定基础。 雾天图像可以看作是清晰图像中引入了低频噪声,图像的灰度集中分布在某个区域,图像的对比度低,视觉效果较模糊。图像去雾的目的主要是去除图像中的噪声(即雾),提高图像的对比度,从而恢复出清晰的无雾图像。 基于图像增强的去雾技术以其方法简单、有效而得到较为广泛的应用。 本章主要研究图像增强技术中常用的直方图均衡、同态滤波、小波变换方法在图像去雾中的应用,重点研究基于Retinex理论的图像去雾算法,介绍Retinex算法中的单尺度、多尺度以及带彩色恢复的Retinex算法。通过对各算法原理的研究和实验结果对比分析,总结各算法的优势与不足。 基于直方图均衡化的雾天图像增强技术 直方图是多种空间处理技术的基础。图像的直方图是图像的重要统计特征,是表示一幅数字图像中每一灰度级与该灰度级出现的频数间的统计关系。直方图均衡化是传统的图像增强理论中常用的方法,图像中原本灰度级集中的区域经直方图均衡处理后均匀分布,从而增大反差,使图像细节清晰,它的根本目的是改善图像的对比度。直方图均衡分为全局直方图均衡和局部直方图均衡。全局直方图均衡主要是通过拉伸图像灰度值的动态范围达到图像整体对比度增强,局部直方图均衡化是针对图像内部细节进行增强处理从而达到图像局部对比度增强。直方图在软件中计算简单,而且有助于商用硬件的实现,因此已成为实时图像处理的一种流行工具。 3.2.1 直方图均衡化 直方图均衡化是把一幅已知灰度概率分布的图像经过变换,使之变成灰度概率分

基于图的快速图像分割算法

Efficient graph-based image segmentation 2.相关工作 G=(V ,E),每个节点V i v 对应图像中一个像素点,E 是连接相邻节点的边,每个边有对应有一个权重,这个权重与像素点的特性相关。 最后,我们将提出一类基于图的查找最小割的分割方法。这个最小割准则是最小化那些被分开像素之间的相似度。【18】原文中叫Component,实质上是一个MST,单独的一个像素点也可以看成一个区域。 预备知识: 图是由顶点集(vertices )和边集(edges )组成,表示为,顶点,在本文中即为单个的像素点,连接一对顶点的边具有权重,本文中的意义为顶点之间的不相似度,所用的是无向图。 树:特殊的图,图中任意两个顶点,都有路径相连接,但是没有回路。如上图中加粗的边所连接而成的图。如果看成一团乱连的珠子,只保留树中的珠子和连线,那么随便选个珠子,都能把这棵树中所有的珠子都提起来。如果,i 和h 这条边也保留下来,那么h,I,c,f,g 就构成了一个回路。 最小生成树(MST, minimum spanning tree ):特殊的树,给定需要连接的顶点,选择边权之和最小的树。上图即是一棵MST 。 本文中,初始化时每一个像素点都是一个顶点,然后逐渐合并得到一个区域,确切地说是连接这个区域中的像素点的一个MST 。如图,棕色圆圈为顶点,线段为边,合并棕色顶点所生成的MST ,对应的就是一个分割区域。分割后的结果其实就是森林。 边的权值: 对于孤立的两个像素点,所不同的是颜色,自然就用颜色的距离来衡量两点 的相似性,本文中是使用RGB 的距离,即

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1) 实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像去雾设计报告

课程设计——图像去雾 一、设计目的 1、通过查阅文献资料,了解几种图像去雾算法,; 2、理解和掌握图像直方图均衡化增强用于去雾的原理和应用; 3、理解和掌握图像退化的因素,设计图像复原的方法; 4、比较分析不同方法的效果。 二、设计容 采用针对的有雾图像,完成以下工作: 1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图; 2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像; 3、分析实验效果; 4、写出具体的处理过程,并进行课堂交流展示。 三、设计要求 1、小组合作完成; 2、提交报告(*.doc)、课堂交流的PPT(*.ppt)和源代码。

四、设计原理 (一)图像去雾基础原理 1、雾霭的形成机理 雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致获取的图像质量差,细节模糊、色彩暗淡。 2、图像去雾算法 图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。图1-1介绍了图像去雾算法的分类: 图1-1 去雾算法分类

从图像呈现的低亮度和低对比度的特征考虑,采用增强的方法处理,即图像增强。比较典型的有全局直方图均衡化,同态滤波,Retinex 算法,小波算法等等。 基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原,即图像复原。运用最广泛、最权威的是由何凯明等人提出的暗通道先验的方法。 (1)图像增强技术 为了改善视觉效果或者便于人们对图像的判别和分析,根据图像的特征采取简单的改善方法或者加强特征的措施叫做图像增强。图像增强可分为两大类:频率域法和空间域法。空间域处理主要包括:点处理,模块处理即领域处理。频率域处理主要包括:高、低通滤波、同态滤波等等。 图像增强可分为两大类:频率域法和空间域法。空间域处理主要包括:点处理,模块处理即领域处理。频率域处理主要包括:高、低通滤波、同态滤波等等。 (2)图像复原技术 从广义上讲,图像复原是一个求逆问题,逆问题经常存在非唯一解,甚至无解。图像复原的目的是将所观测到的退化图像恢复到退化前的原始图像,这种恢复过程在很多图像处理中的应用十分重要。为了更好的对图像复原的理解,图1-2为图像复原的流程图:

基于MATLAB的车牌定位算法设计

北京联合大学毕业设计(论文)任务书 题目:基于MATLAB的车牌定位算法设计 专业:电子工程系指导教师:章学静 学院:信息学院学号: 2009080403104 班级: 20090804031 姓名:林本存 一、课题的任务与目的 自从2010年以来,北京的交通拥堵问题成为社会普遍关注和谈论的话题。而其他交通问题也呈现增长趋势。由于车辆牌照是我们标定车辆的唯一ID,因此,车牌的定位识别对于处理突发的交通事件就显得尤为重要。车牌定位识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要课题之一。所谓车牌定位(License Plate Location),就是把车牌区域完整的从一幅具有复杂背景的车辆图像中分割出来。它是进行车牌识别的首要任务和关键技术,能否将牌照的位置找出来,决定着车牌识别的后续工作能否继续进行,如果不能正确找到牌照的位置,那么就无法将它分割出来,字符分割和字符识别工作将无从谈起。同时,车牌定位的效率也直接影响着整个识别系统的效率,一个高效率的车牌识别系统首先必须是建立在高效的车牌定位算法的基础之上。因此,研究与开发车牌定位的算法具有十分重要的实用意义。例如,在公安执法系统、高速公路自动收费系统、城市道路监控系统、智能停车场管理系统等诸多智能交通系统中都有应用。车牌定位的目的是对摄像头获取的汽车图像进行预处理,确定车牌位置。 此次设计的任务就是在MATLAB中对采集到车辆图像进行色彩直方图分析,匹配车牌背景颜色的峰值从而实现车牌在图像位置中的定位。然后将此算法移植到DSP中,在DSP中验证移植的算法正确性。 二、调研资料情况 目前国外车牌定位识别系统已经有很多成熟的产品,以色列Hi—Tech公司的See/CarSystem系列,新加坡optasia公司的IMPS系列都是比较成熟的产品。但是,这些产品基本上只适合于自己国内的状况。而我国的情况与国外有很大的不同,比如车牌的形状,颜色,字符的颜色以及我国车牌中包含着汉字等。同时,目前的牌照识别系统具有一定的识别率,在天气条件差的情况下或夜晚时,识别率会明显下降,此外,也受到其他许多客观干扰的影响,例如天气、背景、车牌磨损、图像倾斜等。因此现有的识别系统要达到完全实用化仍然有很长的路要走。现有的比较好的车牌定位方法主要有J.Barroso等提出的基于水平线搜寻的定位

三边算法在气体源定位上的应用

三边算法在气体源定位上的应用 摘要:无线传感网络是由低成本、低功耗的微型无线传感网络通过自组织通信形式的分布式网络,具有在微小体积内集成信息采集、数据处理和无线通信等多种功能。在环境监测、军事、工业控制和医疗救助等领域具有重要的应用价值。其中节点定位在气体源研究领域已成为关键技术并具有重要的理论意义与实用价值。 本文从无线传感网络的研究背景与意义着手,分别对特点、传感器节点的组成、WSN体系结构和其主要应用领域进行探讨。着重提出网络实施节点定位的主要方法和技术原理,介绍几种典型的无需测距的节点定位算法和特点并对其进行系统分类和优缺点分析。最后重点针对气体源定位的三种三边算法进行研究,对直接三边算法(DT)、组合三边算法(CT)、加权组合三边算法(WCT)的原理和算法实施的具体过程进行讨论,并使用Matlab仿真软件对算法进行仿真,通过仿真实验说明各种算法之间的优越性。最后对全文进行总结。 关键字:无线传感网络;气体源;节点定位;三边算法 Abstract A Wriless Sensor Network(WSN)consists of low-cost,low-power miniature wriless sensor network.It’s composed of self-organzied communication form a distributed network.With within a small volume of integrated information collection,data processing and wireless commurications and other funcations. It is importantly used in environment monitoring fields,military,industrial controlling and medical assistance.The study for node localization of the plume source research area tends to be an curcial technology not only in the theory but also in practice. The thesis discussed the necessity of this research starting from background and significance of WSN.Beside,some issues concerning the research were investigated,for instance,its characteristics,sensor nodes composition,WSN architecture and its key application ares.Focused on the network node location methods and the main technical principle.It introduced a few classical rang-free localization algorithms and its characteristics. The technical highlight is the sort and review of some algorithms for node positioning .At last, focused on researching three kinds investigation of trilateral localazation algorithm, and discussed the principle and procedures of DT , CT and WCT .Furthermore ,it used Matlab for algorithm simulation in the paper, and analyzed a large number of simulation experiment to proved its validity on location accuracy compared with other similar algorithms .Finally, this thesis was concluded. Keyword: wireless sensor network , node localization ,plume source , trilateration

基于暗通道先验的图像去雾算法改进研究

基于暗通道先验的图像去雾算法改进研究 摘要:暗通道先验去雾算法求得的的透射率比较精细, 去雾效果优于大多数去雾算法。然而在暗通道求取过程中, 最小值滤波的处理会使得暗色向外扩张,导致透射率扩张变 大,使得去雾后的图像在边缘部分产生“光晕”现象。为了 减弱光晕效应,利用形态学理论对粗略透射率进行腐蚀处理, 腐蚀掉扩张变大的透射率,然后使用容差机制修复不符合暗 原色先验的明亮区域透射率,再使用引导滤波精细化透射率, 最后利用去雾模型复原图像。实验表明,改进后的算法去雾 效果更佳、去雾速度更快,具有更强的鲁棒性。 关键词:暗通道先验去雾;腐蚀;引导滤波 DOIDOI:10.11907/rjdk.161089 中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2016)005-0030-04 0 引言 雾霾天气不仅影响人们的出行,也给视频监控、自动驾 驶等涉及室外图像应用的领域带来了很大挑战,并引起了相 关研究人员的重视,如今已出现了不少研究成果。图像去雾 的研究方法可分为两大类,基于图像增强的方法和基于物理 模型的方法。早期图像去雾研究主要利用图像处理的知识来

去雾,Kim[1]提出对雾图进行局部直方图均衡处理的方法, 这种方法根据每个像素的邻域对像素进行处理,可以突出图 像的特征,但运算量较大,算法复杂度较高。Land[2-3]基于色彩恒常性提出了Retinex即视网膜皮层理论,其后出现了 一些基于Retinex的图像增强算法[4-6],与其它图像增强算法相比,基于Retinex的图像增强算法处理的图像,局部对比 度相对较高,色彩失真较小。基于图像增强的去雾方法可以 利用成熟的图像处理算法来增强图像的对比度,突出图像中 的特征信息,但这种方法会造成图像部分信息损失,导致图 像失真。图像去雾的另一类是基于物理模型的方法,该方法 研究大气悬浮颗粒对光的散射作用,通过大气散射模型来复 原图像,恢复的图像效果更真实,图像信息能得到较好保存。Narasimhan等[7]提出了雾霾天气条件下的单色大气散射模 型,后来基于物理模型的方法几乎均建立在此模型之上。 Tan[8]基于无雾图比雾图有更高对比度的假定来最大化有雾 图像的对比度,该算法在很大程度上能复原图像结构和细节, 然而Tan的算法趋向于过度补偿降低的对比度,容易产生光 晕效应。Fattal[9]把图像场景光分解成反射和透射两部分,然后基于独立主成成分分析来估计场景光强,这种方法可以有 效去除局部的雾但不能很好恢复浓雾的图像。Kim等[10]结合局部对比度增强和去雾模型方法,能够抑制伪影的产生,但 时间复杂度较高。刘倩等[11]使用均值滤波去雾,对单幅图

图像去雾技术研究

编号 图像去雾技术研究 The research on image defogging technology 学生姓名XX 专业电子科学与技术 学号XXXXXXX 学院电子信息工程学院

摘要 本文首先简单介绍了云雾等环境对图像成像的影响,接着从图像增强的角度研究图像去雾技术的基本方法,介绍了去雾算法的原理和算法实现步骤,并对去雾算法的优缺点和适用条件进行了总结。 基于图像增强的去雾原理,本文提出了联合使用同态滤波和全局直方图均衡的改进去雾算法。先进行同态滤波使有雾图像的细节充分暴露,然后采用全局直方图均衡扩展图像的灰度动态范围。去雾效果具有对比度高,亮度均匀,视觉效果好的特点,不足的是图像的颜色过于饱和。 关键字:图像增强图像去雾同态滤波全局直方图均衡

Abstract Firstly, this paper simply introduces the influence of cloud environment of image formation, then from the enhanced image perspective of image to fog technology basic method, is introduced to fog algorithm principle and algorithm steps, and has carried on the summary to fog algorithm advantages, disadvantages and applicable conditions. As for the defogging theory based on the image enhancement, the paper puts forward the improved defogging algorithm which requires combining homomorphic filtering and global histogram equalization. We should use homomorphic filtering to get details of the fogging images clearly exposed and then use global histogram equalization to spread the images’ gray scale dynamic range. Defogging has features of high contrast ratio, uniform brightness and good visual effect. But its drawback is that the image color is too saturated. Key words: image enhancement; image defogging; homomorphic filtering; global histogram equalization;

基于retinex的图像去雾算法

I=imread('1.jpg'); R = I(:, :, 1); G = I(:, :, 2); B = I(:, :, 3); R0 = double(R); G0 = double(G); B0 = double(B); [N1, M1] = size(R); Rlog = log(R0+1); Rfft2 = fft2(R0); sigma1 = 128; F1 = fspecial('gaussian', [N1,M1], sigma1); Efft1 = fft2(double(F1)); sigma2 = 256; F2 = fspecial('gaussian', [N1,M1], sigma2); Efft2 = fft2(double(F2)); sigma3 = 512; F3 = fspecial('gaussian', [N1,M1], sigma3); Efft3 = fft2(double(F3)); DR0 = Rfft2.* Efft1; DR = ifft2(DR0); DRlog = log(DR +1); Rr1 = Rlog - DRlog; DR0 = Rfft2.* Efft2; DR = ifft2(DR0); DRlog = log(DR +1); Rr2 = Rlog - DRlog; DR0 = Rfft2.* Efft3; DR = ifft2(DR0); DRlog = log(DR +1); Rr3 = Rlog - DRlog; Rr = (Rr1 + Rr2 +Rr3)/3; a = 125; II = imadd(R0, G0); II = imadd(II, B0); Ir = immultiply(R0, a); C = imdivide(Ir, II); C = log(C+1); Rr = immultiply(C, Rr); EXPRr = exp(Rr); MIN = min(min(EXPRr)); MAX = max(max(EXPRr)); EXPRr = (EXPRr - MIN)/(MAX - MIN); EXPRr = adapthisteq(EXPRr); Glog = log(G0+1); Gfft2 = fft2(G0); DG0 = Gfft2.* Efft1;

第3章 基于图像增强的去雾方法

第3章基于图像增强的去雾方法 3.1 引言 图像增强是数字图像处理技术中最为基本的内容之一。在实际应用中,无论采用何种装置采集的图像,由于噪声、光照、天气等原因,获取的图像视觉效果不理想。例如,雾天获取的图像模糊不清,难以提取细节信息;一幅户外自然风景图像色彩失真严重,视觉效果较差;夜间拍摄的图像,由于光线较暗,图像对比度低,暗处景物难以辨识等。图像增强技术的目的是将图像转化为一种更适合于人或计算机进行分析处理的形式,通过相关算法的处理,使图像的动态范围扩大,拉伸图像对比度,突出图像中研究者感兴趣区域的细节信息,为图像的进一步处理和分析奠定基础。 雾天图像可以看作是清晰图像中引入了低频噪声,图像的灰度集中分布在某个区域,图像的对比度低,视觉效果较模糊。图像去雾的目的主要是去除图像中的噪声(即雾),提高图像的对比度,从而恢复出清晰的无雾图像。 基于图像增强的去雾技术以其方法简单、有效而得到较为广泛的应用。 本章主要研究图像增强技术中常用的直方图均衡、同态滤波、小波变换方法在图像去雾中的应用,重点研究基于Retinex理论的图像去雾算法,介绍Retinex算法中的单尺度、多尺度以及带彩色恢复的Retinex算法。通过对各算法原理的研究和实验结果对比分析,总结各算法的优势与不足。 3.2 基于直方图均衡化的雾天图像增强技术 直方图是多种空间处理技术的基础。图像的直方图是图像的重要统计特征,是表示一幅数字图像中每一灰度级与该灰度级出现的频数间的统计关系。直方图均衡化是传统的图像增强理论中常用的方法,图像中原本灰度级集中的区域经直方图均衡处理后均匀分布,从而增大反差,使图像细节清晰,它的根本目的是改善图像的对比度。直方图均衡分为全局直方图均衡和局部直方图均衡。全局直方图均衡主要是通过拉伸图像灰度值的动态范围达到图像整体对比度增强,局部直方图均衡化是针对图像内部细节进行增强处理从而达到图像局部对比度增强。直方图在软件中计算简单,而且有助于商用硬件的实现,因此已成为实时图像处理的一种流行工具。 3.2.1 直方图均衡化 直方图均衡化是把一幅已知灰度概率分布的图像经过变换,使之变成灰度概率分

一种基于HLS的快速图像分割算法

一种基于HLS的快速图像分割算法 【摘要】本文提出了一种新的基于HLS的快速图像分割算法。通过分析HLS 颜色空间特性,提出一种新的图像相似性的定义方法,可以快速选择出相似的颜色区域。在图像的预分割过程中起到了快速定位的作用。与基于MEANSHIFT 的图像分割算法,分水岭算法对比,通过实验结果表明,本论文提出的分割算法具有快速的,良好的的特性。 【关键词】预分割;图像分割;HLS颜色空间 1.分割的意义与现状 图像分割是计算机图像处理与机器视觉研究领域中的基本问题之一。随着计算机硬件和计算机理论的不断取得突破进展,数字图像处理技术和计算机视觉技术得到了广泛的应用。在对图像进行研究和应用中,前景提取或前景分割是一个重要的研究组成部分。在应用的过程中,往往只对图像中某些部分某些区域感兴趣,这些部分通常称之为前景。前景是图像中特定的,具有某些特性的区域,或者说是具有更高层次语义的区域。例如人,桌子等等自然物体,也可能是人身体的一部分,如头发,脸等等。为了进一步的研究分析,需要把前景区域单独提取出来,作为下一步的算法的输入。所以说图像分割算法是指将某些特定区域从背景中分割出来的算法。图像分割是数字图像处理与计算机视觉研究领域中的基本问题之一,也是热点之一。 在每一次交互式的过程中,我们并不需要对整幅图像进行处理,只需要对交互处周围的像素点进行分析即可。这样不仅仅是因为处理的像素点减少,从而可以节省大量的处理时间,同时在处理过程中,可以去掉不相似点的干扰,在处理速度上,在收敛性上,也可以节省大量的时间。所以如果能明确处理的区域,可以提高处理速度,从而保证算法的实时性。 如果定义一个固定的矩形或者圆形等形状的话,对于不同的物体显然具有不同的效果。如果物体比所定义的矩形框大,则不能一次性的分割出相邻的区域。如果物体比所定义的矩形框小很多的时候,不仅仅是处理速度上变慢,分割效果会降低。所以使用简单的分割算法进行粗定位,确定下一步的处理范围,对整个交互式过程来说是一个非常重要的步骤。 在过去二十多年中,人们对前景图像提取问题做了大量的研究。最简单的方法是,能过选取满足用户指定图像的颜色值的所有像素来提取前景。Photoshop 的智能剪刀和魔杖工具就是采用了这种方法。但是这种方法需要大量的用户交互,使用起来极其不方便。 近十年来,研究者提出了很多精确提取前景区域的系统,同时使用户的交互尽可能少。比如智能画布[1]和基于对象的图像编辑系统[2]等,通过将图像分割成区域,然后用户选取一些区域产生最后的前景对象的方法。Grab cut系统[3]

质心定位算法 江南大学

无线传感网技术实验报告(三) 班级:微电子1101学号:0301110115姓名:杨海平 一,实验目的: 通过仿真实验掌握无线传感器网络的定位算法—质心定位算法。 二,实验内容: 在100*100M2的正方形区域里,有n个信标节点和一个未知节点,未知节点和新表节点的通信半径均为R,则: (1),当通信半径R=50M,信标节点个数n=6,12,18,24,30时,利用Monte Carlo方法,分别计算未知节点的实际位置与估计未知的平均误差; (2),当信标节点个数n=20,通信半径R=5,10,15,20,25,30,35,40,45,50m时,利用Monte Carlo方法,分别计算未知节点的实际位置与估计位置的平均误差; 三,实验方法: (1),在边长为100m的正方形中,产生一个信标节点为n,未知节点为1的随机分布图; (2),确定与未知节点相连的信标节点; (3),利用质心算法,对未知节点的位置进行估计; (4),每一组数据(信标节点个数n,通信半径R)需要仿真800次,得出该组数据下未知节点的实际位置与估计位置的平均误差。 四,实验分析过程: (1),实验内容一:当通信半径R=50M,信标节点个数n=6,12,18,24,30时,按照实验一的方法随机产生X,Y坐标为0~100的n个信标节点的坐标,再随机产生一个未知节点的X,Y坐标,然后判断n个信标节点是否能与未知节点通信,把能与未知节点通信的信标节点X,Y坐标相加,除以能与未知节点通信的节点数,即为用质心定位算法估计的未知节点个数,误差即为未知节点与估计未知节点坐标的距离。每组信标节点个数仿真800次,累加每次仿真的误差,取平均值即得到估计误差。 (2),实验内容二:思想方法与实验内容一相同,当信标节点个数n=20,通信半径R=5,10,15,20,25,30,35,40,45,50m时,每组通信半径仿真800次,累加每次仿真的误差,取平均值即得到估计误差。 五,程序 (1),实验内容一程序如下: clear all; close all; nbeacon=[612182430];%信标节点个数n=6,12,18,24,30 nbeaconi=5; error=zeros(1,nbeaconi);%误差数组error nunknow=1;%知节点个数为1 r=50;%通信半径r为50 optimes=800; for ni=1:1:5;%每组信标节点得到一个平均误差 errorsum=0; validtimes=0;%800次仿真中至少有一个信标与未知节点通信的次数 for optimei=1:1:optimes

定位算法调研

定位算法调研 一、定位算法的研究意义 对于大多数应用,不知道传感器位置而感知的数据是没有意义的。传感器节点必须明确自身位置才能详细说明在什么位置或区域发生了特定事件,实现对外部目标的定位和追踪。用无线传感器网络进行目标的跟踪定位,就是综合传感器自身位置信息和网络节点与目标的关系信息,确定目标所处的地理位置。对于移动目标而言,连续不断的定位就是跟踪。传感器自身的位置信息,是实现目标定位跟踪的基础,而网络节点与目标的关系信息,则是实现目标定位跟踪的关键。另一方面,了解传感器节点位置信息还可以提高路由效率,可以为网络提供命名空间,向部署者报告网络的覆盖质量,实现网络的负载均衡以及网络拓扑的自配置等。b5E2RGbCAP 尽管现有的许多定位系统和算法能够较好的解决WSN自身定位问题。但依然存在如下一些问题: (1> 未知节点必须与锚点直接相邻,从而导致锚点密度过高。(2> 定位精度依赖于网络部署条件。 (3> 没有对距离/角度测量误差采取抑制措施,造成误差传播和误差积累,定位精度依赖于距离/角度测量的精度。(4> 依靠循环求精过程抑制测距误差和提高定位精度,虽然循环求精过程可以明显地减小测距误差的影响,但不仅产生了大量的通信和计算开销,而且因无法预估循环的次数而增加了算法的不确定性。(5> 算法收敛速度较慢。因此必须采用一定的机制改进或者避免以上问题,从而实现更高精度的WSN自身定位。p1EanqFDPw

二、定位算法的研究现状 从1992年AT&T Laboratories Cambridge开发出室内定位系统Active Badge至今,研究者们一直致力于这一领域的研究。事实上,每种定位系统和算法都用来解决不同的问题或支持不同的应用,它们在用于定位的物理现象、网络组成、能量需求、基础设施和时空的复杂性等许多方面有所不同。DXDiTa9E3d 根据定位算法中对节点位置的不同计算方式,可以分为集中式定位算法以及分布式定位算法。集中式定位算法把所需信息传送到某个中心节点,并在那里进行节点定位计算的方式。Doherty等[1]假定网络中存在一定比例的锚点,根据凸规划(convex optimization>来估计不确定节点的位置。MDS-MAP[2]则采用了多维定标的方法来提高定位精度。这两种算法都是典型的集中式定位算法,其后一系列的算法对该算法进行改进以提高节点定位精度。分布式定位算法是指依赖节点间的信息交换和协调,由节点自行进行定位计算的方式。质心算法中[3],每个节点通过计算它所侦听到的锚点的中心位置来确定自身位置,如果锚点布置的比较好,则定位误差能够得到很好的改善。APIT算法[4]中的节点侦听自己附近锚点的信号,根据这些信号,APIT算法把临近这个节点的区域划分为一个个相互重叠的三角形区域。然后采用划分网格的方法找出自己所在的区域,如果能够侦听到足够多的锚点信息,这个区域可以变得很小,从而提高算法的定位精度。RTCrpUDGiT

基于matlab的图像去雾算法详细讲解与实现附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab 实现源代码

————————————————————————————————作者: ————————————————————————————————日期: ?

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为:? S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x,y)=r(x,y)+l(x, y)=log(R(x,y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x,y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x,y): G(x,y)=S'(x, y)-log(D(x, y)) ;

图像去雾技术

龙源期刊网 https://www.360docs.net/doc/a54383039.html, 图像去雾技术 作者:万晓丹 来源:《电子技术与软件工程》2018年第11期 摘要图像去雾技术分为图像增强去雾技术与图像恢复去雾技术,两种技术的运用需要根 据图像的实际情况来选择。其中,图像增强去雾可以分为完备图像增强与非完备图像增强两种类型。 [关键词]图像去雾图像增强去雾图像处理 计算及视觉系统在军事、交通、安全领域有着十分广泛的运用,图像去雾技术已经成为了计算机视觉领域的重要研究课题。在自然环境较差的清下采集的图像会收到大气散射的影响导致图像画面质量下降,对比度降低,难以清晰辨认物体特征,严重影响了计算机视觉技术的使用。因此,需要使用图像去污技术来进行增强与或修复,以改善视觉效果。 1 图像去雾技术类别 当前对雾天图像处理技术主要分为两种类型,分别为雾天图像增强以及雾天图像复原。其中,雾天图像增强在不考虑图像质量的基础上有着较广的使用范围,可以显著提升雾天图像的对比度,使得图像的细节更加清晰,改善图像的视觉效果。但是对于部分突出的画面可能会导致一定损失。雾天图像复原是对雾天图像降质的物理过程,并且构建雾天退化模型,补偿在退化过程中出现的失身,以便获得没有经过退化处理的无雾图像。这种方式具有很强的针对性,可以获得理想的物去雾效果,通常不会出现信息损失。现文章针对图像去雾增强技术开展适当研究。 2 图像增强去雾 图像增强去雾技术不需要获得图像降质的物理模型,仅仅只需要从人类视觉的角度入手,直接强化图像的对比度,使得图像色彩对比度更加明显以改善图像质量。图像增强去雾处理是主观的过程,这一方式按照是否恢复场景的色彩信息可以分为完备图像增强与非完备图像增强两种类型。 2.1 完备图像增强 完备图像增强法中最具有代表性的就是Retinex图像去雾方法。Retinex理论即为视网膜皮层理论,全称为Retina-cortex theory。学者Land和McCann站在人眼对颜色感知的特点入手,提出了颜色恒常性的Retinex理论。Retinex理论提出,在视觉信息传递的过程中人类的视觉系统会不自觉对信息进行一定的处理,去除光源强度与照射不均匀等相关因素,仅仅保留展现物体本质特点的信息。当这些关于物体本质的信息传递进入大脑皮层后将会经过更加复杂的信息处理,从而最终形成人的视觉。根据照度一反射模型将图像转变为照度分量以及反射分量的乘

无线定位常用算法概述

无线定位算法综述 一无线传感网络与节点定位 1. 无线传感网络中的关键技术 无线传感器网络作为当今信息领域新的究热点,涉及多学科交叉的研究领域,涉及到非常多的关键技,主要包括:拓扑控制;网络协议;网络安全;时间同步;定位技术;数据融合;嵌入式操作系统;无线通信技术;跨层设计和应用层设计。2. 无线传感器网络节点定位机制 无线传感器网络节点定位问题可表述为:依靠有限的位置己知节点即信标节点(锚节点),确定布设区中其它未知节点的位置,在传感器节点间建立起一定的空间关系的过程。无线定位机制一般由以下三个步骤组成: 第一步,对无线电信号的一个或几个电参量(振幅、频率、相位、传播时间) 进行测量,根据电波的传播特性把测量的电参量转换为距离、距离差及到达角度等,用来表示位置关系; 第二步,运用各种算法或技术来实现位置估计; 第三步,对估计值进行优化。 3. 节点间距离或角度的测量 在无线传感器网络中,节点间距离或角度的测量技术常用的有RSSI、TOA、TDOA和AOA等。 4. 计算节点位置的基本方法 (1) 三边测量法

(2) 三角测量法; (3) 极大似然估计法。 5. 无线传感器网络定位算法的性能评价

几个常用的评价标准:定位精度;规模;锚节点密度;节点密度;覆盖率;容错性和自适应性;功耗;代价。 6. 无线传感器网络定位技术分类 (1)物理定位与符号定位; (2)绝对定位与相对定位; (3)紧密耦合与松散耦合; (4)集中式计算与分布式计算; (5)基于测距技术的定位和无须测距技术的定位; (6)粗粒度与细粒度; (7)三角测量、场景分析和接近度定位。 二典型的自身定位系统与算法 到目前为止,WSN 自身定位系统和算法的研究大致经过了两个阶段。第1 阶段主要偏重于紧密耦合型和基于基础设施的定位系统。对于松散耦合型和无须基础设施的定位技术的关注和研究可以认为是自身定位系统和算法研究的第2 阶段。 1. Cricket定位系统 未知节点使用TDOA技术测量其与锚节点的距离,使用三边测量法提供物理定位。 2. RADAR系统 建立信号强度数据库,通过无线网络查询数据库,选择可能性最大的位置定位自身。 在三边测量定位方式下,未知节点根据RSSI计算与多个基站的距离,然后使用三边测量法定位, 3. AHLos系统 AHLos算法中定义了3 种定位方式——原子式、协作式和重复式最大似然估计定位(atom,collaborative和iterative multilateration)。

相关文档
最新文档