聚氨酯延迟催化剂浅析

聚氨酯延迟催化剂浅析
聚氨酯延迟催化剂浅析

聚氨酯延迟催化剂浅析

窦凯(上海德音化学有限公司)

聚氨酯延迟催化剂是聚氨酯催化剂中极其特殊的一类催化剂,该类催化剂可以提供聚氨酯熟化所需要的催化活性,同时又可以延长产品使用期,为施工提供更多的操作时间。与抑制剂不同,聚氨酯延迟催化剂是相对延迟而非绝对延迟,与常规催化剂相比前段活性低,总体活性相当,并无法在不添加催化剂的体系中起到延迟反应的作用。

根据用途不同,我们将延迟催化剂分为两大类:泡沫塑料用延迟催化剂;CASE用延迟催化剂(CASE即聚氨酯涂料、聚氨酯密封剂、聚氨酯胶黏剂和聚氨酯弹性体)。

1.泡沫用延迟催化剂

聚氨酯泡沫塑料包含聚氨酯硬泡、软泡、半硬泡、自结皮等产品,主要涉及到的反应有发泡反应、凝胶反应、三聚反应等。因而聚氨酯泡沫塑料常用催化剂主要分为延迟发泡催化剂、延迟凝胶催化剂两种。

常用的延迟发泡催化剂主要是DY-225,即改性双(二甲氨基乙基)醚的二元醇溶液,可以延迟乳白时间,增加前期流淌性加速后期熟化。

延迟凝胶催化剂主要有DY-8154(改性三乙烯二胺溶液)、DY-300等。尤其以DY-8154应用更广泛,在硬泡、软泡、半硬泡、自结皮等领域均有广泛应用,在部分微孔弹性体配方中也可看到其身影。

新型延迟催化剂,此类产品不同于市面常见催化剂,为德音化学特殊开发的一类延迟催化剂,主要产品为DY-215等。拥有发泡效率低,延迟效果好,凝胶效果强等特点,即可以提供前期流动性,又可以加速后熟化加快脱模。可与绝大多数催化剂复配使用,在部分配方中可替代有机锡使用,增加前期流动性,同时不影响后期熟化。

2.CASE用延迟催化剂

与泡沫用催化剂相比,CASE所需要催化剂要拥有凝胶速度快,微发泡甚至不发泡等特点,常见催化剂主要有DY-12(二月桂酸二丁基锡)、DY-20(有机铋)、醋酸苯汞等。因此CASE用延迟催化剂在催化活性上要与锡类等催化剂相当,在发泡效率上很难达到汞类效果也应与二月桂酸二丁基锡效果尽量靠近。

同时CASE应用领域不同于泡棉生产,所用原料、工艺繁杂,聚醚聚酯种类的选择、异氰酸酯的不同以及温度、合成步骤的先后,都会带来结果上的千差万别。因此CASE产品在延迟催化剂上的选择不能一概而论,需要根据诸多因素来确定。

与常规催化剂相比,延迟催化剂前期活性缓和后期熟化速度相似,如下图

下图为无催化剂固化产物与德音化学延迟催化剂所催化固化产品对比图,可以看出选用合适延迟催化剂一样可以做到锡汞类产品的高效少泡效果。

更多具体产品以及应用信息,可浏览我司网址https://www.360docs.net/doc/a617454849.html,或直接与我司联系。

个聚氨酯基本概念

读懂70个聚氨酯基本概念 1、羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 2、当量:一个官能团所占的平均分子量。 3、异氰酸根含量:分子中异氰酸根的含量 4、异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 5、扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 6、硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大 7、软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 8、一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 9、预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。10、半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 11、反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 12、发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(IF)。 13、发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 14、凝胶反应:一般即指氨基甲酸酯的形成反应。 15、凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 16、乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 17、扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 18、低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。 19、氨酯级溶剂:生产聚氨酯选用溶剂要考虑溶解力、挥发速度,但生产聚氨酯所用的溶剂,应着重考虑到聚氨酯中重NC0基。不能选用与NCO基起反应的醇、醚醇娄等溶剂。溶剂中还不能含水、醇等杂质,不能含有碱类物质,这些都会使聚氨酯变质。酯类溶剂不允许含有水分,也不得含有游离酸和醇,它会与NCO基反应。聚氨酯所用的酯类溶剂,应采用纯度高的“氨酯级溶剂”。即将溶剂与过量异氰酸酯反应,再用二丁胺测定未反应的异氰酸酯量,检验其是否合用。原则是消耗异氰酸酯多者不适用,因为它表明了酯中所含水、醇、酸三者会消耗异氰酸酯的总值,如果以消耗leqNCO基所需要溶剂的克数表示,数值大者稳定性好。异氰酸酯当量低于2500以下的不用作聚氨酯溶剂。溶剂的极性对生成树脂的反应影响很大。极性越大,反应越慢,如甲苯与甲乙酮相差24倍,此溶剂分子极性大,能与醇的羟基形成氢键而使反应缓慢。聚氯酯溶剂选用芳烃溶剂较好,它们的反应速度比酯类、酮类快,如二甲苯。在双纽分聚氨酯施工时,用酯类和酮类溶剂可延长其使用期.在生产涂料时,选片前面提到的“氨酯级溶剂”,对贮存的稳定件有利。酯类溶剂溶解力强,挥发速度适中,低毒而使用较多,环己酮也多使用,烃类溶剂固溶解能力低,较少单独使用,多与其他溶剂并用。 20、物理发泡剂:物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的。 21、化学发泡剂:化学发泡剂是那些经加热分解后能释放出二氧化碳和氮气等气体,并在聚

聚氨酯发泡催化剂

聚氨酯发泡催化剂 DABCO 33-LV 多用途凝胶催化剂,33%Dabco固体+67%二丙二醇(DPG),聚氨酯软泡和硬泡等; DABCO BDMA 苄基二甲胺,减低于高水泡沫的脆性,调整表皮固化; DABCO BL-11 A-1,70%双(二甲胺基乙基)醚的DPG溶液,发泡型催化剂, A-1催化剂主要用于软质聚醚型聚氨酯泡沫塑料的生产,也可用于包装用硬泡; DABCO BL-22 强发泡复合胺催化剂,可取代BL-11,适用于硬泡,模塑软泡和半硬泡; DABCO CS-90 强发泡复合胺催化剂,改善泡沫密度梯度及开孔效果,可减少箱泡角落破裂,使用于软块泡; DABCO NE200 用于各种软膜塑泡沫的低雾化发泡催化剂,适用于模塑软泡; DABCO T 反应性发泡催化剂,低雾化适用于聚醚型聚氨酯软块泡,模塑泡沫,半硬泡和硬泡,特别适用于汽车泡沫; Dabco TL 是一种低气味强发泡叔胺催化剂,可平衡促进反应,适用于聚氨酯软质泡沫; Polycat 5 五甲基二乙烯三胺,强发泡催化剂,改善硬泡流动性; Polycat 8 二甲基环己胺(DMCHA),标准的硬泡催化剂; Polycat 9 三(二甲氨丙基)胺,硬泡及模塑泡沫的低气味催化剂,喷涂; Polycat 77 双(二甲氨丙基)甲胺,凝胶剂发泡平衡性催化剂,制开孔泡沫,增强模塑泡沫回弹性,用于软泡和硬泡; Jeffcat ZF-10 三甲基羟乙基双氨乙基醚,高效反应性发泡催化剂,低散发性,适用于聚醚型聚氨酯软块泡、模塑泡沫、包装用硬泡等; Jeffcat DMP 二甲基哌嗪,聚氨酯发泡/凝胶平衡性催化剂,适用于聚氨酯软泡、硬泡、涂料和胶黏剂等; 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂:

聚氨酯相关 个基本概念

聚氨酯相关70个基本概念 1、羟值:1克聚合物多元醇所含的羟基(-OH)量相当于KOH的毫克数,单位mgKOH/g。 2、当量:一个官能团所占的平均分子量。 3、异氰酸根含量:分子中异氰酸根的含量 4、异氰酸酯指数:表示聚氨酯配方中异氰酸酯过量的程度,通常用字母R表示。 5、扩链剂:是指能使分子链延伸、扩展或形成空间网状交联的低分子量醇类、胺类化合物。 6、硬段:聚氨酯分子主链上由异氰酸酯、扩链剂、交联剂反应所形成的链段,这些基团内聚能较大、空间体积较大、刚性较大。 7、软段:碳碳主链聚合物多元醇,柔顺性较好,在聚氨酯主链中为柔性链段。 8、一步法:指将低聚物多元醇、二异氰酸酯、扩链剂和催化剂等同时混合后直接注入模具中,在一定温度下固化成型的方法。 9、预聚物法:首先将低聚物多元醇与二异氰酸酯进行预聚反应,生成端NCO基的聚氨酯预聚物,浇注时再将预聚物与扩链剂反应,制备聚氨酯弹性体的方法,称之为预聚物法。10、半预聚物法:半预聚物法与预聚物法的区别是将部分聚酯多元醇或聚醚多元醇跟扩链剂、催化剂等以混合物的形式添加到预聚物中。 11、反应注射成型:又称反应注塑模制RIM(Reaction Injection Moulding),是由分子量不大的齐聚物以液态形式进行计量,瞬间混合的同时注入模具,而在模腔中迅速反应,材料分子量急骤增加,以极快的速度生成含有新的特性基团结构的全新聚合物的工艺。 )。 12、发泡指数:即把相当于在100份聚醚中使用的水的份数定义为发泡指数(I F 13、发泡反应:一般是指有水与异氰酸酯反应生成取代脲,并放出CO2的反应。 14、凝胶反应:一般即指氨基甲酸酯的形成反应。 15、凝胶时间:在一定条件下,液态物质形成凝胶所需的时间。 16、乳白时间:在I区即将结束时,在液相聚氨酯混合物料中即出现乳白现象。该时间在聚氨酯泡沫体生成中称为乳白时间(cream time)。 17、扩链系数:是指扩链剂组分(包括混合扩链剂)中氨基、羟基的量(单位:mo1)与预聚体中NCO的量的比值,也就是活性氢基团与NCO的摩尔数(当量数)比值。 18、低不饱和度聚醚:主要针对PTMG开发,PPG的价格,不饱和度降低到0.05mol/kg,接近PTMG的性能,采用DMC催化剂,主要品种Bayer公司Acclaim系列产品。

聚氨酯十大优点

聚氨酯十大优点 1、保温效能好 硬泡体喷涂聚氨酯是一种高分热固型聚合物,是优良的保温材料,其导热系数为0.015~0.025W/(m·k),永久性的机械锚固、临时性的固定、穿墙管道、或者外墙上的附着物的固定,往往会造成局部热桥,而采取聚氨酯喷涂工艺,由于硬泡体喷涂聚氨酯与一般墙体材料粘结强度高,无须任何胶粘剂和锚固件,是一种天然的胶粘材料,能形成连续的保温层,保证了保温材料与墙体的共同作用并有效阻断热桥。 2、稳定性强 硬泡聚氨酯喷涂与基层墙体牢固结合,是保证外保温层稳定性的基本前提。对于墙体,其表面应做界面处理,如果面层存在疏松、空鼓情况,必须认真清理,以确保硬泡聚氨酯喷涂保温层与墙体紧密结合。硬泡聚氨酯喷涂外保温体系应能抵抗下列因素综合作用的影响,即在当地最不利的温度与湿度条件下,承受风力、自重以及正常碰撞等各种内外相结合的负载,保温层仍不与基层底分离、脱落以及在潮湿状态下保持稳定。 3、有较好的防火性能 尽管硬泡体聚氨酯喷涂保温层处于外墙外侧,防火处理仍不容忽视,聚氨酯在添加阻燃剂后,是一种难燃自熄性的材料,它与胶粉聚苯颗粒浆料复合,组成一个防火体系,能有效地防止火灾蔓延。建筑处墙表面及门窗口等侧面,全部用防火胶粉聚苯颗粒材料严密包覆,不得有敞露部位,采用厚型胶粉聚苯颗粒防水抹灰面层有利于提高保温层的耐火性能。

4、抗湿热性能优良 (1)水密性好 硬泡聚氨酯材料有优良的防水、隔汽性能,材料不含水,吸水率又很低,能很好地阻断水和水蒸汽的渗透,使墙体保持一个良好、稳定的绝热状况,是目前其他保温材料很难实现的。 硬泡聚氨酯喷涂外保温墙体的表面无接缝处、孔洞周边、门窗洞口周围等处严密,使其具有良好的防水性能,避免雨水进入内部造成危险。国外许多工程的实践证明,吸水的面层或者面层中存在缝隙,在雨水渗入和严寒受冻的情况下,容易遭受冻坏。 (2)墙内不会结露 在墙体内部或者在保温层内部结露都是有害的,在新建墙体干燥过程中,或者在冬季条件下,室内温度较高的水蒸汽向室外迁移时由于受到硬泡聚氨酯的阻隔,墙内不可能结露。在室内湿度较低,以及室内墙面隔湿状况良好时,又可以避免由于墙内水蒸汽湿迁移所产生的结露。 (3)能耐受当地最严酷的气候及其变化 无论是高温还是严寒的气候,都不会使外保温体系产生不可逆的损害或变形,外墙外表面温度的剧烈变化(达50度),例如在经过较长时间的曝晒后突然降下阵雨,或者在曝晒后进行遮阴,产生类似上述温差时,对外墙表面都不会造成损害。如此就避免了表面温度变化产生的表面变形使表面出现裂缝。 5、耐撞击性能优于EPS等保温材料 硬泡聚氨酯是一种强度比(材料强度与体积密度比)较高的材料,作为保温材料其性能优于发泡聚苯、岩锦等材料,抵抗外力的能力也较强。

聚氨酯生产工艺

聚氨酯生产工艺流程 摘要: 聚氨酯(Po1yurethane, PU)的发展。1937,德国Bayer合成第一种聚氨酯热塑性塑料Durthane U40年代,制得了合成纤维贝纶U(Perlon U)。50年代,得到聚氨酯弹性体、弹性纤维和泡沫塑料。60年代,聚氨酯涂料和粘合剂等开始应用。我国聚氨酯工业起始于20世纪50年代末,1959年上海市轻工业研究所开始聚氨酯泡沫塑料的研究。 聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控、配方调整余地大及其高分子材料的微观结构特点,可广泛用于人造革、涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行以及高新技术领域必不可少的材料之一,其本身已经构成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。 关键词:原料规格、合成工艺、反应速率影响因素、蒸汽汽提反应单元论述 一、原料规格 聚氨酯树脂主要的原料是含异氰酸酯基(NCO)的多异氰酸酯(isocyanate)和含活泼氢的聚醚(ployether ployol )与聚酯多元醇(polyester ployol)。将以上两种基本原料进行化学改性,这种改性的多元醇中间体,可制成具有特殊工艺和特殊物理性能的聚氨酯树脂,从而增加聚氨酯品种与应用领域。除以上原料外,聚氨酯树脂产品广泛采用催化剂、交联剂、扩链剂、发泡剂等助剂,可通过聚氨酯树脂生产工艺、降低成本,延长使用寿命,增加品种等。 异氰酸酯 脂肪族 芳香族 脂环族 低聚物多元醇聚酯多元醇 聚醚多元醇 环氧丙烷聚醚多元醇 四氢呋喃聚醚多元醇 其它聚醚多元醇 其它多元醇 扩链(交联)剂胺类扩链剂 醇类扩链(交联)剂 催化剂 叔胺类催化剂 金属有机化合物 其它配合剂 阻燃剂 抗氧剂 紫外线吸收剂着色剂 增塑剂 聚氨酯原料

NDI基聚氨酯弹性体项目计划书

NDI基聚氨酯弹性体项目 计划书 投资分析/实施方案

NDI基聚氨酯弹性体项目计划书 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。 该NDI基聚氨酯弹性体项目计划总投资7060.70万元,其中:固定资产投资5286.42万元,占项目总投资的74.87%;流动资金1774.28万元,占项目总投资的25.13%。 达产年营业收入15665.00万元,总成本费用12168.59万元,税金及附加136.60万元,利润总额3496.41万元,利税总额4115.27万元,税后净利润2622.31万元,达产年纳税总额1492.96万元;达产年投资利润率49.52%,投资利税率58.28%,投资回报率37.14%,全部投资回收期4.19年,提供就业职位250个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供

报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ......

MDI 体系聚氨酯弹性体的合成及性能

MDI 体系聚氨酯弹性体的合成及性能 作者:刘锦春,肖建斌 聚氨酯弹性体是一种由低聚物多元醇柔性链段构成软段,二异氰酸酯及扩链剂构成硬段,硬段和软段交替排列,形成重复结构单元的嵌段聚合物,它具有硬度范围宽、耐磨性能好、机械强度高、回弹性好等特点,所以在许多领域得到了广泛的应用。通常情况下,合成聚氨酯弹性体主要有一步法、预聚物法和半预聚物法3 种方法[1 ] ,对TDI 体系,由于TDI 易挥发,毒性较大,一般采用预聚物法,预聚物中游离的-NCO 百分含量较低;而对于MDI 制备的预 聚物,虽然没有TDI 体系较大刺激气味,但MDI 体系预聚物粘度较高,操作困难,故多采用半预聚物法,该方法制得的半预聚体粘度低,其中游离-NCO 百分含量较高,可使扩链剂组分与半预聚物的粘度和混合比例相匹配。同时,针对常用聚氨酯扩链剂MOCA 使用不便的缺点,采用新型液体胺类扩链剂DMTDA[2~4 ] 制备弹性体,通过配方调整,得到配比接近、粘度接近的MDI体系双组分聚氨酯弹性体体系,可广泛用于制作聚氨酯胶辊、聚氨酯筛板等制品。 1 实验部分 1. 1 原材料 聚醚多元醇TDIOL - 1000 , 羟值为110 ±5mgKOH/ g ,聚醚多元醇TDIOL - 2000 ,羟值为56 ±5mgKOH/ g ,均为天津石化三厂生产;四氢呋喃均聚醚二醇羟值为112mgKOH/ g ,为Bayer公司产品; 4 , 4′2 二苯基甲烷二异氰酸酯( 纯MDI) ,为烟台万华聚氨酯股份有限公司产品;扩链剂DMTDA ,为杭州崇禹公司产品; 1 , 4-BDO和催化剂二月桂酸二丁基锡为市售品。 1. 2 合成及工艺 1. 2. 1 A 组分的合成 将聚醚多元醇加入三口烧瓶中, 在100 ~200 ℃,0. 096MPa 的负压下减压脱水1. 5~2h ,冷却至60 ℃,加入称量并熔化好的MDI ,在80 ±2 ℃左右反应1. 5h ,然后再脱气至无气泡,降温密封得预聚物(或半预聚物) 待用。 1. 2. 2 B 组分的制备 将聚醚多元醇、DMTDA 、1 ,4-BDO 等按一定比例称量、混匀并加热至100~120 ℃,真空脱水后加入催化剂,搅拌均匀待用。

聚氨酯产品催化剂大全

聚氨酯产品催化剂大全 (2012-07-24 10:57:28) 标签: 杂谈 一、美国气体产品编号公司产品编号产品介绍美国气体产品编号胺类催化剂 DABCO 33LVR A-33 33%三乙烯二胺的二丙二醇溶液,工业标准产品。三乙烯二胺的化学结构很独特,是一种笼状化合物,两个氮原子上连接三个亚乙基。这个双分子的结构非常密集和对称。从结构式上可以看出来,N 原子上没有位阻很大的取代基,它的一对空电子容易接近。在发泡体系中,一旦氨基甲酸酯键生成后,它就会游离出来,有利于更进一步催化。由于这个原因,虽然三乙烯二胺不是强碱,却对异氰酸酯基团和活泼氢化合物的反应表现出极高的催化活性。是一种强凝胶催化剂。其他公司相同产品牌号,美国 GE: NIAX Catalyst A-33; 日本东曹: TEDA L33; 国内厂家一般用 A-33 作产品名。 DABCOR 1027 1027 改性三乙烯二胺,用于单乙醇聚酯及聚醚鞋底原液系统,能调 DABCO 1028 1028 改性三乙烯二胺,用于 1,4 丁二醇聚整纤维及脱模时间。 酯及聚醚鞋底原液系统,能调整纤维及脱模时间。 乙DABCO 8154 8154 延迟性三乙烯二胺型催化剂,可改善泡沫流动性。延迟性三烯二胺,可改善泡沫流动性. 配方需要一段延迟的起始时间,或配方需用大量传统催化剂才能获得完全得泡沫固化。该催化剂的催化中心是由一种氨酸盐加以化学抑制,此项催化剂内含多种不同组合的氨酸盐,因而能提供规则的发泡曲线。再者,此项产品的腐蚀性远较其它延迟作用催化剂为低。用途:该产品适用于所有方便注模、合模,以及改良流程模塑泡沫用。在此配方中的唯一氨基凝胶催

聚 氨 酯

聚氨酯 【摘要】:聚氨酯硬泡大很多应用场合都是阻燃要求的,20年来中国相应的材料阻燃标准在不断修订,并逐步与国际标准接轨。通过对以往研究工作的总结,本文就聚氨酯硬泡在实施《建筑材料燃烧性能分级方法》(GB8624-2006)后应向什么方向发展,提出了几点建议。[关键词]:阻燃标准;聚氨酯硬泡;阻燃方向 聚氨酯硬泡20余年执行的相关阻燃标准 1.1《建筑材料燃烧性能分级方法》(GB8624-1997)对于PU硬泡B1等级的严格要求近20年来,我国聚氨酯工业发展很快。由于该产品具有非常低的导热系数及透水蒸汽性,质轻、比强度高,加之其与纸、金属、木材、水泥板、砖墙塑料板、沥青毡等具有很强的粘接性,不需另加其它粘合剂等优点,已为众多的工业及民用部门所采用。但是,聚氨酯与其它有机高分子材料一样是一种可燃性较强的聚合物。硬质聚氨酯泡沫塑料的密度小,绝热性能好,与外界的暴露面比其它材料大,因此更容易燃烧。随着聚氨酯泡沫塑料的广泛运用,其材料的耐燃、防火等问题已成为迫切需要解决的重要课题。在我国,由于不慎引燃聚氨酯泡沫塑料而导致火灾的事件时有发生,给聚氨酯泡沫的应用带来了一些负面影响。在国外许多专家甚至认为这个问题是硬质聚氨酯泡沫塑料今后能否继续发展的关键之一。因此硬质聚氨酯泡沫塑料的耐燃性、安全性,已成为能否用于建筑材料的重要技术指标。许多国家的建筑立法机构都制定了一系列难燃法规,与此同时又相应的制定了一系列对聚氨酯泡沫塑料燃烧性能的测试方法。我国从1980年开始制定了4项塑料燃烧性能试验方法的国家标准,即氧指数法(GB2406-1980)、炽热棒法(GB2407-1980)、水平燃烧法(GB2408-1980)、垂直燃烧法(GB2409-1980),特别是氧指数法(GB2406-1980)是我国适用于硬质聚氨酯泡沫塑料燃烧性试验的第1个国家标准。1984年上海市公安局颁布了《关于生产、销售、使用高分子建筑材料的管理规定》,其中明确指出:硬质聚氨酯泡沫塑料使用在建筑上,氧指数不得小于26%。相当多的省市部门及公安消防机构参照此规定陆续颁布了各地方和部门的法规。研制氧指数大于26%的硬质聚氨酯泡沫塑料,也引起了国内相关研究部门的普遍重视。国家科委在“六五”、“七五”期间将硬质聚氨酯泡沫塑料氧指数大于26%的指标列为国家攻关课题,并在“七五”攻关成功。这对安全使用硬质聚氨酯泡沫塑料,减少和消除火灾事故,起到了积极的作用。但随着我国科学技术不断提高,生产、使用硬质聚氨酯泡沫塑料的有关单位和公安消防部门的工作人员逐渐认识到,其是一种有机高分子材料,即使氧指数达到26%或者更高,并非意味着在火中不燃烧。高氧指数可通过提高阻燃剂的含量来达到,而大量阻燃剂的使用却又带来了烟雾大、

聚氨酯三聚型催化剂

聚氨酯三聚催化剂 DABCO TMR 胺系三聚催化剂,加速PIR硬泡后期固化而不影响乳白时间,适用于硬泡和半硬泡; DABCO TMR-2 胺系延迟性三聚催化剂,较温和,缩短脱模时间,适用于硬泡和半硬泡; DABCO TMR-3 酸封闭的胺系延迟三聚催化剂,反应较慢,适用于硬泡和半硬泡; DABCO TMR-4 三聚反应催化剂,提供泡沫优良的流动性,适用于硬泡和半硬泡; DABCO TMR-30 2,4,6-三(二甲氨基甲基)苯酚,基本三聚催化剂; Polycat 41 三(二甲氨丙基)六氢三嗪,具有优异发牌能力的三聚共催化剂,适用于高水量发泡硬泡、半硬泡、鞋底; Polycat 46 用于促进异氰酸酯反应(三聚反应),适用于各种硬质泡沫中。 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂 N,N-二甲基苄胺(BDMA):在聚氨酯行业是聚酯型聚氨酯块状软泡、聚氨酯硬泡及胶黏剂涂料的催化剂,主要用于硬泡 三乙烯二胺:聚氨酯高效催化剂,用于软泡 双(二甲氨基乙基)醚:高催化活性的聚氨酯催化剂,多用于聚氨酯软泡 N,N-二甲基乙醇胺:聚氨酯反应型催化剂 五甲基二乙烯三胺(PMDETA):聚氨酯凝胶发泡催化剂,广泛用于聚氨酯硬泡 2,4,6-三(二甲氨基甲基)苯酚(DMP-30):聚氨酯三聚催化剂,也可作环氧促进剂 双吗啉二乙基醚(DMDEE):聚氨酯强发泡催化剂 二甲氨基乙氧基乙醇(DMAEE):用于硬质包装泡沫的低气味反应性催化剂

二月桂酸二丁基锡(T-12):聚氨酯强凝胶性催化剂 三(二甲氨基丙基)六氢三嗪(PC-41):具有优异发泡能力的高活性三聚共催化剂 四甲基乙二胺(TEMED):中等活性发泡催化剂,发泡/凝胶平衡性催化剂 四甲基丙二胺(TMPDA):可用于泡沫塑料微孔弹性体的催化剂,也可作环氧促进剂 四甲基己二胺(TMHDA):特别用于聚氨酯硬泡,是发泡/凝胶平衡性催化剂 三甲基羟乙基丙二胺(Polycat 17):反应性低烟雾平衡性叔胺催化剂 三甲基羟乙基乙二胺(Dabco T):反应性发泡催化剂,具有低雾化性 新典化学

MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究 【中文摘要】随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进

行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG 作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。通过FT-IR

聚氨酯概况综述

聚氨酯概况 一、聚氨酯定义 聚氨酯:凡是在大分子主链中含有氨基甲酸酯基的聚合物称为聚氨基甲酸酯,简称聚氨酯。 分类:聚酯型聚氨酯; 聚醚型聚氨酯。 聚酯型聚氨酯:以异氰酸酯和端羟基聚酯为原料制备的聚酯称为聚酯型聚氨酯。 聚醚型聚氨酯:以异氰酸酯和端羟基聚醚为原料制备的聚氨酯。 二、聚氨酯生产常用原料简介 己二酸(AA) 1、物理性质: 白色晶体或结晶粉末,略有酸味,微溶于水、环己烷,溶于丙酮、乙醇、乙醚。不溶于苯、石油醚。熔点152℃,沸点330.5℃(760mmHg),比重1.360(20/4℃),闪点196℃。 2、用途: AA主要用于生产尼龙(纤维和树脂),约占总生量的70%以上,聚氨酯行业中AA 的用量只约 20%,余下的用于增塑剂、造纸、药物等方面生产。 在PU行业中,AA用于生产PU革用树脂、鞋底原液、弹性体、胶粘剂和油漆等方面。 二苯基甲烷-4,4’-二异氰酸酯(MDI) 1、物理性质: 白色到微黄色结晶体(或粉末)。溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.197(70℃),凝固点38-39℃,沸点190℃(5mmHg)。 2、用途: MDI只用于聚氨酯行业中,其应用范围是:弹性体、纤维、革用树脂、鞋底原液、胶粘剂和油漆等方面。 多亚甲基多苯基多异氰酸酯(PAPI) 1、物理性质: 棕色粘稠液体,溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.23(25℃)。 2、用途: 在PU行业中,PAPI主要用于生产硬泡,此外还可用于胶粘剂、铺装材料等。

甲苯二异氰酸酯(TDI) 1、物理性质 无色至淡黄色液体,有强烈刺激性气味。可溶于醚、丙酮、苯、四氯化碳、氯等。与水、醇及胺等反应,比重 1.2244(20/4℃),熔点19.5-21.5℃,沸点251℃(760mmHg)。 2、用途: TDI的主要用途是生产PU泡沫,约占TDI总量的80%以上。此外还用于胶粘剂、弹性体、油漆、固化剂等方面。 N,N-二甲基甲酰胺(DMF) 1、物理性质: 无色透明液体,有氨气味,溶于水、乙醇、乙醚、氯仿等大多数有机溶剂,微溶于苯。溶解能力强,被称为万能有机溶剂。比重0.9445g/cm3(25/4℃),熔点-61℃,沸点153℃,折射率为1.4269。 2、用途: DMF主要用于革用树脂的合成和PU皮革生产加工方面,约占总量的90%以上,余下的用于医药和分析方面。 1,4—丁二醇(BDO) 1、物理性质: 无色粘稠油状液体,味苦,有吸湿性,无气味。可溶于水、甲醇、乙醇和丙酮,微溶于乙醚,不易挥发。比重为1.016g/cm3(20/4℃),凝固点为20.9℃,沸点为228℃,折射率为1.4446(25℃)。 2、用途: 用于制造聚酯多元醇、不饱和树脂、药物、染料、化妆品及油漆等。 多元醇 一):聚酯多元醇 1、分类: 聚酯多元醇的种类繁多,根据其结构来分可分为三大类:聚酯多元醇类(主要是己二酸系列),聚ε—己内酯类,聚碳酸酯类。 聚酯多元醇是由二元酸与二元醇或三元醇经酯化、缩聚成一定分子量的端羟基高聚物。 聚ε—己内酯类是ε—己内酯在催化剂(有机钛类、辛酸亚锡)存在下,由起始剂(二醇或二胺)开环聚合成线性的端羟基或端胺基高聚物。 聚碳酸酯类是1,6—己二醇与二苯基碳酸酯经酯交换、缩聚而成的聚碳酸己二醇酯二醇。 2

聚氨酯热敏延迟环保催化剂CUCAT-RM30AB

聚氨酯热敏延迟环保催化剂C U C A T-R M30A B 1、性状描述 CUCAT-RM30A,深褐色至近黑色液体,密度 1.045g/cm3 (25℃),粘度3000±500mPa.s(25℃); CUCAT-RM30B,深褐色至近黑色液体,密度 1.051g/cm3 (25℃),粘度800±200mPa.s (25℃) 具特殊化合物气味,不含八大重金属,使用 CUCAT-RM30A/B 合成的聚氨酯材料,符合国际常规工业环保法规,是淘汰传统有机汞、铅、锡等毒性催化剂的环保取代品。 2、独特性能 通用型热敏催化剂,具有显著热敏延迟催化作用,常温下物料混合催化活性极低,保持低粘度和良好流动性,可操作时间(Pot life)很长,利于物料快速充满复杂模腔;当物料温度达到热敏激发温度时,催化活性瞬间呈几何增长,使反应在短时间内迅速完成。 (1)流动期长。一般只要混合后物料不达到热敏激发温度就一直保持流动性;非常适合形状复杂、高硬度等需超长可操作时间的产品生产。 (2)后期催化活性高,后熟化和成型快。解决常规铋锌催化剂前期流动性差、后期催化活性不足问题。 (3)催化活性高,对水分不敏感。制品无气泡、针孔、裂缝等问题; 在各种异氰酸酯/活性氢体系中均表现出明显热敏性,达到热敏点后比有机汞催化活性更高,制品更透明,反应更彻底。 (4)物性不降低。不存在胺类强凝胶热敏催化剂强烈催化有害副反应造成的硬度/伸长/撕裂均大幅降低等弊端,力学性能不但不降低,因反应更充分无歧化,更提高了材料性能。 (5)RM30A和RM30B的热敏突变温度基本无差异,催化活性自60-70℃开始呈几何增长;在对比实验中发现,熟化温度为70-80℃温度时材料的成型性能最优;RM30B后期熟化成型时间比RM30A快30%以上;RM30B更适合用于聚酯体系。

聚氨酯弹性体替代汞催化剂CUCAT-HN(版3)

聚氨酯弹性体替代汞催化剂CUCAT-HN 1、性状描述 无色透明液体,色度(Fe-Co)≤1;密度 1.00g/cm3(25℃),粘度30mPa.s(25℃);具特殊气味,易溶于一般聚氨酯原料如聚醚、聚酯多元醇等。 不含八大重金属、偶氮、邻苯酸盐限制成分,在聚氨酯某些领域是淘汰传统有机汞、铅等催化剂的取代品。 2、独特性能 针对聚氨酯CASE 领域产品(尤其针对聚氨酯弹性体)无气泡的要求而研发,不同于常用胺类催化剂,特有的弱催化微量水分与异氰酸酯反应的靶向催化特性,可有效避免上述反应产生的CO2 气泡(聚醚多元醇无需高温真空脱水即可使用),能有效避免产品出现多泡、开裂、鼓包、等现象。 本产品相比CUCA T-8具有更长的操作时间(较长的Po t li fe),可使组合料在混合后保持低粘度和良好流动性,有利于减少混合产生的机械性气泡以及快速充满模腔;而该产品具有的快速后固化的催化特性使得混合后可在10 分钟(甚至更短)内达到脱模所需强度,甚至不需后续的加热硫化,可降低能耗提高效率。 综合以上,CUCAT-HN 在特定的聚氨酯体系,具有前慢后快无气泡的特性,与有机汞很相似,是有机汞环保替代品。 3、应用领域 CUCAT-HN 非常适用于DETDA(E-100)做固化剂的组合料,如用于生产透明溜冰鞋滑轮,相比其他催化剂具有更长的流动时间(pot life)来满足充模需要,可生产硬度超过92A 滑板轮、避震和大件制品。 需要说明的是CUCAT-HN 不适用于MOCA 做固化剂的组合料,请慎重选择。基于MOCA 作固化剂的体系,请采用本公司其他催化剂CUCAT-DG01/DG02 等。 可广泛用于聚氨酯CASE 领域生产溜冰轮、单双组分密封胶、涂料、胶黏剂等,用于脂肪族异氰酸酯,不会使制品发黄。 4、使用说明 使用时建议加入多元醇(P 料)组份,且最好在真空脱气之后加入,搅拌均匀即可。也可加入异氰酸酯(ISO,I 料)组份中,但因包装密封性及配方差异性不排除有凝胶罐中可能性风险,请先进行适用性试验。 使用量与配方有关,一般用量为P 料重量的0.1~0.3% 。 因为产品用途不同环保要求各异,建议最终使用者使用前依相关环保标准做第三方认证检测,并以此为准。

聚氨酯催化剂

聚氨酯催化剂 聚氨酯催化剂是聚氨酯工业中最重要的添加剂之一,按成分主要分为叔胺类催化剂及金属盐类催化剂;按作用效果可分为:发泡催化剂、凝胶催化剂、平衡催化剂、三聚催化剂、低气味催化剂、延迟催化剂等;按应用领域可分为:聚氨酯泡沫用催化剂、CASE用催化剂等。 一、按成分划分 叔胺催化剂 DY-1:标准发泡聚氨酯催化剂,70%的BDMAEE溶于二元醇中 DY-1P:双(二甲氨基乙基)醚,高效发泡催化剂 DY-5:五甲基二乙烯三胺,用于硬泡的标准发泡聚氨酯催化剂 DY-33:33%的三乙烯二胺溶液,广泛用于聚氨酯泡沫的制备,也用于聚氨酯胶粘剂的生产 DY-41:三嗪催化剂,催化三聚反应,用于聚氨酯硬泡多个领域 DY-50:季铵盐,提供杰出的泡沫熟化性能,适用于很多要求提高生产效率的领域 DY-50Y:三聚催化剂,与钾类催化剂相比,能够均匀地控制起发反应,提供更好的流动性 DY-54:三苯酚,聚氨酯三聚催化剂/环氧促进剂 DY-83:模塑及硬泡的凝胶共催化剂,促进表皮固化 DY-215:延迟凝胶型聚氨酯催化剂,提供高流动性同时可缩短脱模时间 DY-225:具有延迟作用的发泡催化剂,可提高流动性和缩短脱模时间 DY-300:延迟凝胶催化剂,改善流动性,开孔性好.用于模塑高回弹、自结皮等 DY-400:延迟发泡催化剂,可提高泡沫承载力.用于模塑高回弹、自结皮、微孔发泡等 DY-8154:具有延迟作用的凝胶聚氨酯催化剂,可提高流动性和缩短脱模时间 DY-BDMA:苄基二甲胺,聚氨酯块状软泡、硬泡、胶粘剂及涂料催化剂 DY-DMEA:二甲基乙醇胺,弱平衡催化剂,提供较早的乳白时间 DY-DMDEE:发泡催化剂,用于湿固化型聚氨酯体系 DY-DBU:强凝胶聚氨酯催化剂催化剂

NDI基聚氨酯弹性体项目规划设计方案 (1)

NDI基聚氨酯弹性体项目规划设计方案 规划设计/投资方案/产业运营

报告说明— 该NDI基聚氨酯弹性体项目计划总投资14960.58万元,其中:固定资产投资12764.92万元,占项目总投资的85.32%;流动资金2195.66万元,占项目总投资的14.68%。 达产年营业收入16593.00万元,总成本费用13039.58万元,税金及附加245.60万元,利润总额3553.42万元,利税总额4289.15万元,税后净利润2665.07万元,达产年纳税总额1624.09万元;达产年投资利润率23.75%,投资利税率28.67%,投资回报率17.81%,全部投资回收期7.11年,提供就业职位337个。 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。

目录 第一章基本情况 第二章承办单位概况 第三章项目必要性分析第四章建设内容 第五章项目选址研究 第六章土建方案说明 第七章项目工艺先进性第八章项目环境分析 第九章项目安全管理 第十章风险应对评估 第十一章项目节能情况分析第十二章实施安排方案 第十三章项目投资方案分析第十四章项目盈利能力分析第十五章项目评价 第十六章项目招投标方案

第一章基本情况 一、项目提出的理由 NDI即1,5-萘二异氰酸酯,也称为萘-1,5-二异氰酸酯,分子式为 C12H6O2N2,分子量为210.19,CAS编号为3173-72-6、25551-28-4(泛指萘二异氰酸酯)。1,5-萘二异氰酸酯是白色至浅黄色片状结晶固体。 二、项目概况 (一)项目名称 NDI基聚氨酯弹性体项目 (二)项目选址 xxx临港经济技术开发区 所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。 (三)项目用地规模 项目总用地面积46696.67平方米(折合约70.01亩)。 (四)项目用地控制指标

低气味催化剂

低气味催化剂 一、低气味催化剂简介 聚氨酯行业在近数十年飞速发展,越来越多的聚氨酯产品应用到日常生活的各个领域,包括汽车领域,家私等消费品。但人们随着经济高速发展,对于环境的诉求日益严苛。对于聚氨酯行业来说,环境的问题包括生产环节和使用环节,如早期使用TDI逐步向富含MDI 体系的泡沫转变,改善了生产工人的生产环境。而在消费者使用的环节,聚醚多元醇、胺类催化剂、有机硅表面活性剂、阻燃剂、抗氧化剂等原材料都决定了最终产品的性能,其中包括VOC排放,如醛类,苯类等物质。低VOC散发(Low Emission)、低雾化(Low Fog ging)、低气味(Low odor)的聚氨酯产品已经越来越多的被要求使用到汽车内饰行业中去。普通胺类催化剂目前是焦点问题,而新一代的胺催化剂可平衡凝胶和发泡的反应,具有很宽的加工工艺,它们在聚氨酯行业中能够满足低的胺排放、低雾化和减少气味,包括所有的MDI、TDI/MDI和TDI基配方的要求。 很多年来,叔胺类催化剂是典型聚氨酯泡沫配方中的重要组成部分,一部分催化剂偏向于水和异氰酸酯的反应(发泡反应),然而其他一些催化剂则会偏向于多元醇与异氰酸酯的反应(凝胶反应),这取决于催化剂本身的分子结构以及其空间位阻、电子效应等,都会影响其作用。 在高回弹软泡中,双(2-二甲基氨乙基)醚)BDMAEE作为传统的发泡催化剂使用,由于其特有的化学结构,这是一种典型的很强的高效的叔胺催化剂,促进水与异氰酸酯的反应,亦称发泡反应或前期反应。绝大多数的泡沫配方中是BDMAEE与三乙烯二胺TEDA配合使用。TEDA是一种常用的凝胶催化剂,目前商业上有很多催化剂为了平衡效果和工艺速率而采取催化剂混合复配的使用方法。 如果不考虑泡沫中挥发出的VOC的散发、PVC表皮的变色、雾化及气味,这类普通胺类催化剂的使用还会继续。这些问题已经在硅油、聚醚多元醇、阻燃剂、抗氧剂有了很大的提高。尤其是在家具、汽车内饰等领域,是这一项技术改进的关键推动者。普通的叔胺催化剂TEDA、BDMAEE在泡沫产品中明显有VOC物质放出。近几年来,已有几种方法去减少胺的释放。 大分子量的叔胺催化剂在使用中有三个明显的优势:第一,催化剂的分子在组合聚醚中受到一定限制从而不能自已地扩散,从而改善气味,PVC表皮变色和雾化值;第二,由于大的分子量催化剂在特定温度下,低蒸汽压下降了挥发性;第三个优点,这种催化剂的替代

聚氨酯低气味催化剂

聚氨酯低气味催化剂 DABCO 8154 酸封闭的TEDA催化剂,延迟反应凝胶催化剂,可改善泡沫流动性;适用于软泡和硬泡; DABCO DC5LE 是一种低排放反应延迟用辅催化剂,适用于聚氨酯软质材料、硬质材料及CASE材料; DABCO DMAEE 低气味反应性催化剂,改善表面固化,用于包装泡沫,也用于模塑软泡; DABCO MP602 一种无散发、延迟反应的胺类催化剂,改善表皮固化,适用于冷固化和热固化软质模塑聚氨酯泡沫体系中; DABCO NE200 用于各种软膜塑泡沫的低雾化发泡催化剂,适用于模塑软泡; DABCO NE400 用于聚酯型PU软块泡的低雾化反应性催化剂,适用于聚酯型软块泡; DABCO NE500 用于各种聚醚型PU软块泡的非散发凝胶催化剂,适用于聚酯型软块泡; DABCO NE600 用于各种聚醚型PU软块泡的非散发平衡性催化剂,适用于聚酯型软块泡; DABCO NE1060 用于各种软模塑泡沫的非散发凝胶催化剂,适用于模塑软泡; DABCO PT303 催化剂是一种强发泡的低气味叔胺类催化剂,适用于不同种类的硬质泡沫塑料,尤其是硬质喷涂泡沫; DABCO RP202 是一种无散发胺类平衡催化剂,用于生产软质块状聚氨酯泡沫; DABCO T 反应性发泡催化剂,低雾化适用于聚醚型聚氨酯软块泡,模塑泡沫,半硬泡和硬泡,特别适用于汽车泡沫; Dabco TL 是一种低气味强发泡叔胺催化剂,可平衡促进反应,适用于聚氨酯软质泡沫; Polycat 9 三(二甲氨丙基)胺,硬泡及模塑泡沫的低气味催化剂,喷涂; Polycat 15 四甲基二丙烯三胺,反应性催化剂,促进表面固化,主要用于模塑软泡和半硬泡,也用于聚醚型聚氨酯软泡; Polycat 17 羟乙基亚丙基二胺,低雾化反应性平衡性胺催化剂,可用于枕头生产;

聚氨酯基互穿网络聚合物

收稿日期:2003-05-01 作者简介:王结良,男,硕士研究生,从事高性能复合材料的研究(E-mail:Wang -jie-l@hotmai)。梁国正,导师(T el:029-*******,E-mail :lgz hen g @nw pu .edu .cn )。 聚氨酯基互穿网络聚合物 王结良,梁国正,赵 雯,吕生华,何 洋 (西北工业大学化学工程系, 陕西西安710072) 摘要:在37篇文献的基础上对聚氨酯进行互穿网络改性的最新研究进展进行了综述;比较了用聚丙烯酸酯、聚苯乙烯、聚硅氧烷、环氧树脂、乙烯基树脂等对聚氨酯互穿网络改性的效果。指出了各种互穿体系的特性,并在此基础上展望了聚氨酯互穿网络聚合物的发展趋势。 关键词:聚氨酯;互穿聚合物网络;聚丙烯酸酯;聚苯乙烯;聚硅氧烷;环氧树脂;乙烯基树脂中图分类号:T M 215;T Q 323.8 文献标识码:A 文章编号:1009-9239(2003)04-0033-05 Interpenetrating polymer networks based on polyurethane WAN G Jie -laing ,LIANG Guo -zheng ,ZHAO Wen ,LU ?? Sheng -hua ,HE Yang (Dep artment of Chemical E ngineering ,N orthw ester n P oly technical Univ ersity ,X i 'an 710072,China )Abstract :Advances in polyurethane (PU )modification by interpenetrating po lymer netw or ks (IPN) are review ed w ith 37references .IPN based o n PU in this paper include PU /poly methancry late ,PU /po lysilx ane,PI/po lysty rene,PU /vinylester r esin,PU /unsaturated po lyester,PU/epo xy and so on.Keywords :polyurethane;IPN ;PSiO;PM A;PS;V E;EP 1 前言 聚氨酯(poly ur ethane,PU)是最常用的高分子材料之一。相对于其它高分子材料,它具有很多优点,如物理机械性能好,性能可调节范围广、成型工艺性能好等,但也存在着高温性能差等缺点。为了改善其不足,进一步拓宽聚氨酯的应用领域,各国学者对聚氨酯进行了一系列的改性研究,如纳米粒子共混改性[1] 、聚合物共混改性[2,3] 、熔融共混改性[4] 、纤维增强改性等[5]。其中对聚氨酯进行互穿网络改性已成为聚氨酯改性研究的一大热点。 2 改性机理 互穿网络聚合物(Interpenetrating Poly mer Net-w ork ,IPN )是指由两种或两种以上聚合物相互贯穿而形成的聚合物网络体系,参与互穿的聚合物之间并未发生化学反应,而是相互交叉渗透,机械缠结,起到“强迫互溶”和“协同效应”的作用。这种网络间的缠绕可明显地改善体系的分散性、界面亲和性,从而提高 相稳定性,实现聚合物性能互补,达到改性的目的。互穿网络已成为改善聚合物材料性能的一种有效的方法。聚氨酯预聚体易于与其它单体或聚合物混合,进 行互不干扰的平行反应,得到性能优良的聚氨酯互穿网络,成为目前研究最为广泛的一类互穿网络聚合物体系。 3 研究现状 3.1 聚氨酯/聚丙烯酸酯 聚丙烯酸酯(PM A )具有良好的综合力学性能,与聚氨酯形成互穿网络可提高聚氨酯的拉伸强度和断裂伸长率,改善聚氨酯的力学性能。 Anzlovar A 等人[6] 以带有羧基官能团的聚氨酯预聚体和带有叔胺基官能团的聚甲基丙烯酸酯 (PM A )预聚体为原料制得了聚氨酯/聚甲基丙烯酸酯半互穿聚合物网络。研究表明,网络的微相结构取决于官能团的浓度,官能团之间的物理相互作用有利于杨氏模量的提高,随着官能团数量的增大,产物表现出典型高聚物的性能。这可能与产物的互穿程度有关,高的官能团浓度使得两种网络间有较多的连接点。Desai S 等人[7]用同步聚合法形成聚甲基丙烯酸甲酯/聚氨酯互穿网络聚合物,在体系中加入2%的

相关文档
最新文档