海水—氰化物的测定—异烟酸吡唑啉酮分光光度法

海水—氰化物的测定—异烟酸吡唑啉酮分光光度法
海水—氰化物的测定—异烟酸吡唑啉酮分光光度法

FHZDZHS0040 海水氰化物的测定异烟酸吡唑啉酮分光光度法

F-HZ-DZ-HS-0040

海水—氰化物的测定—异烟酸吡唑啉酮分光光度法

1 范围

本方法适用于大洋、近岸、河口及工业排污口水体中氰化物的测定。

检出限:0.05μg/L-CN-。

2 原理

蒸馏出的氰化物在中性(pH7~8)条件下,与氯胺T反应生成氯化氰,后者和异烟酸反应并经水解生成戊烯二醛,与吡唑啉酮缩合,生成稳定的蓝色化合物,在639nm处测定吸光度。

脂肪酸不影响测定。干扰测定的因素主要有氧化剂、硫化物、高浓度的碳酸盐和糖类等。干扰物质的检测与消除干扰方法见6.1。

3 试剂

除非另作说明,本法中所用试剂均为分析纯,水为二次蒸馏水或等效纯水。

3.1 丙酮(CH3COCH3)

3.2 N-二甲基甲酰胺[DMF HCON(CH3)2]。

3.3 氢氧化钠溶液,2g/L:称取5g氢氧化钠(NaOH)加水溶解并稀释至2500mL。转入棕色小口试剂瓶,橡皮塞盖紧。

3.4 氢氧化钠溶液,0.01g/L:取5mL氢氧化钠溶液(2g/L)稀释至1000mL。

3.5 磷酸盐缓冲溶液,pH7:称取3

4.0磷酸二氢钾(KH2PO4)和89.4g磷酸氢二钠(Na2HPO4·12H2O)溶于水中并稀释至1000mL。

3.6 氯胺T溶液,10g/L:取1g氯胺T (CH3C6H4SO2NClNa·3H2O)加水溶解并稀释至100mL盛于125mL棕色试剂瓶中,低温避光保存,有效期一周。

须经常检查氯胺T是否失效,检查方法如下:

取配成的氯胺T若干毫升,加入邻甲联苯胺,若呈血红色,则游离氯(Cl2)含量充足,如呈淡黄色,则游离氯(Cl2)不足,应重新配制。

3.7 异烟酸-吡唑啉酮溶液

3.7.1 吡唑啉酮溶液:称取0.25g吡唑啉酮[C6H5NN:C(CH3)CH2CO]溶于20mL N-二甲基甲酰胺中。

3.7.2 异烟酸溶液:称取1.5g异烟酸,(C6H6NO2),溶于24mL氢氧化钠溶液(20g/L)中。

临用前,将吡唑啉酮溶液和异烟酸溶液按1∶5混合。

3.8 乙酸锌溶液,100g/L:称取50g乙酸锌[Zn(CH3COO)2]加水溶解并稀释至500mL,摇匀。

3.9 酒石酸溶液,200 g/L:称取100g酒石酸[HOOC(CHOH)2COOH]加水溶液并稀释至500mL,摇匀。

3.10 氯化钠标准溶液,0.0192mol/L :取氯化钠(NaCl ,光谱纯)于瓷坩埚中,于450℃高温炉中灼烧至无爆裂声,置干燥器中冷却至室温。准确称取1.1221g 氯化钠溶于水中,并移入1000mL 容量瓶中用水稀释至刻度,摇匀。

3.11 硝酸银标准溶液

称取3.76g 硝酸银,溶于水并稀释至1000mL ,贮存于棕色试剂瓶中,此溶液每周标定一次。

标定:

取25.00mL 氯化钠标准溶液于250mL 锥形瓶中,加入50mL 水,放入玻璃搅拌子,装好滴定装置,滴加2~3滴铬酸钾指示剂,用硝酸银标准溶液滴定至颜色由白色变成桔红色即为终点。平行三次,极差小于0.02mL ,取平均值1V 。

以75mL 水代替氯化钠溶液,按上述步骤平行测定二次,取平均数得空白值o V 按公式(1)计算硝酸银标准溶液摩尔浓度(mol/L ):

C AgNO3=

o

o NaCl NaCl V V V V V c ?×=?×1100.250192.0…………………………(1) 3.12 氰化钾标准溶液

注意:氰化钾剧毒,须小心操作,严禁遇酸。

注1∶接触氰化物时务必小心,要防止喷溅在任何物体上,严禁氰化物与酸接触,不可用嘴直接吸取氰化物溶液,若操作者手上有破伤或溃烂,必须带上胶手套保护。

注2∶含有氰化钾的废液应收集在装有适量硫代硫酸钠和硫酸亚铁的废液物中,稀释处理。 3.12.1 氰化钾标准贮备溶液∶称取2.5g 氰化钾(KCN) 先用少量氢氧化钠溶液(2g/L)溶解,移入1000mL 容量瓶中,再用氢氧化钠溶液(2g/L )稀释至刻度,摇匀。

标定:

量取25.00mL 氰化钾标准贮备溶液于250mL 锥形瓶中,加50mL 氢氧化钠溶液(2g/L ),放入玻璃搅拌子,滴入2~3滴试银灵指示剂,用硝酸银标准溶液滴定至白色变红色为终点,平行滴定三次极差小于0.02mL ,取平均值得1V 。

以75mL 氢氧化钠溶液(2g/L )代替氰化钾溶液,按上述步骤平行测定二次,取平均值得o V 。 按公式(2)计算氰化钾标准贮备溶液的浓度:

()00.2504.5213×?×=?o AgNO CN c ρ (2)

式(2)中:

?

CN ρ—氰化钾标准贮备溶液的浓度,mg/L ; c AgNO3—标定过的硝酸银标准溶液的浓度,mol/L 。

3.12.2 氰化钾标准溶液,10.0μg/mL :量取V 3 mL 氰化钾标准贮备溶液(计算见公式3)放入200mL 容量瓶中,用氢氢化钠溶液(2g/L )稀释至刻度,摇匀。此溶液1.00mL 含10.0μg 氰化物。

V 3=

1000

2000.10××?CN ρ…………………………(3) 式(3)中:

V 3—量取氰化钾标准贮备溶液体积,mL ; ?

CN ρ—氰化钾标准贮备溶液的浓度,mg/mL 。 3.12.3 氰化钾标准使用溶液,1.00μg/mL :量取10.00mL 氰化钾标准溶液(10.0μg/mL )于100mL 容量瓶中,用氢氧化钠溶液(0.01g/L )稀释至刻度,摇匀。此溶液1.00mL 含1.00μg CN -。当天配制。

3.13 铬酸钾指示剂,50g/L :称取5g 铬酸钾(K 2CrO 4)溶于少量水中,滴加硝酸银溶液至红色沉淀不溶解,静置过夜,过滤后稀释至100mL ,盛于棕色瓶中。

3.14 甲基橙指示剂溶液,2g/L :称取0.2g 甲基橙[NaSO 3C 6H 4N ∶NC 6H 4N (CH 3)2]溶解于100mL 水中。盛于棕色滴瓶中。

3.15 对二甲氨基亚苄基罗丹宁(试银灵)-丙酮溶液:溶解20mg 试银灵[(CH 3)2NC 6H 4CH ∶CCONH ∶SS]于100mL 丙酮(CH 3COCH 3)中,搅匀,转入125mL 棕色滴瓶中。

4 仪器设备

4.1 分光光度计。

4.2 1000mL 全玻璃磨口蒸馏器6套(配蛇形冷凝管)。

4.3 6×600W 6联电炉。

5 试样制备

5.1 海水样品用玻璃或金属采样器采集.水样要在现场预处理:水样加固体NaOH 至pH12~13。贮存于棕色玻璃瓶中。密封保存。保存温度4℃,保存时间24h 。详见GB17378.3—1998。

5.2 试样量

测定水样用量500mL 。

6 操作步骤

6.1 水样中干扰物质的检验及其消除方法:

6.1.1 氧化剂

在水样的保存和处理期间,氧化剂能破坏大部分氰化物.检验方法:点一滴水样于稀盐酸浸过的KI-淀粉试纸上,如出现蓝色斑点,可在水样中加计量的Na 2S 2O 3晶体,搅拌均匀,重复试验,直至无蓝色斑点出现,然后每升加0.1g 过量的硫代硫酸钠晶体。

6.1.2 硫化物

硫化物能迅速地把CN -转化成CNS -,特别是在高pH 值的情况下,并且随氰化物一起蒸出,对比色、滴定和电极法产生干扰。检验方法:点一滴水样于预先用醋酸盐缓冲液(pH=4)浸过

的醋酸铅试纸上,如试纸变黑,表示有硫离子,可加醋酸铅或柠檬酸铋除去。重复这一操作,直至醋酸铅试纸不再变黑。

6.1.3 碳酸盐

高浓度的碳酸盐,在加酸时,可释放出较多的二氧化碳气体,影响蒸馏.而二氧化碳消耗吸收剂中的氢氧化钠。

当采集的水样含有较高的碳酸盐(例如炼焦废水等),其碳酸盐含量较高,可使用熟石灰[Ca(OH)2],使pH提高至12~12.5。在沉淀生成分层后,量取上层清液测定。

6.2 在水样(或经6.1条消除干扰后的水样)中加氢氧化钠固体,直至pH12~12.5。(若水样已在现场加过氢氧化钠,则此操作步骤可以省略)贮存于棕色玻璃瓶中。因氰化物不稳定,水样加碱固定后,亦应尽快测定。

6.3 工作曲线的绘制

6.3.1 分别吸取0、0.20、0.50、1.00、2.00、3.00、4.00、5.00mL氰化钾标准使用溶液(1.00μg/mL)置于8支25mL具塞比色管中,加水至10mL,混匀。

6.3.2 加入5mL磷酸盐缓冲溶液,混匀。迅速加入0.2mL氯胺T溶液立即盖塞子,混匀。放置3min~5min。加入5mL异烟酸-吡唑啉酮溶液,混匀。加水至刻度,混匀。在25℃~35℃水浴中放置40min,取出,冷却至室温。

6.3.3 用10cm吸收皿,以试剂空白(零浓度)为参比,于波长.638nm处测定吸光度A i和A o,在1h内测完。

6.3.4 以A i-A o为纵坐标,相应的CN-量(μg)为横坐标,绘制标准曲线。

6.4 水样测定

6.4.1 量取500mL混匀水样(6.2)于1000mL蒸馏瓶中,依次加入7滴甲基橙指示剂(2g./L)、20mL乙酸锌溶液(100g/L)、10mL酒石酸溶液(200g/L)如水样不呈红色则继续加酒石酸溶液直至水样保持红色,再过量5mL。

6.4.2 放入少许沸石(或几条一端熔封的玻璃毛细管),立即盖上瓶塞,接好蒸馏装置(见图1)。

图1 蒸馏装置示意图

1—1升全玻璃磨口蒸馏瓶;2—蛇形冷凝管;3—玻璃管;4—50mL具塞比色管;5—氢氧化钠吸收液;

6—万用电炉;7—铁架台。

6.4.3 移取10mL 氢氧化钠溶液(0.01 g/L )置于100mL 容量瓶中(吸收液),并将冷凝管出口浸没于吸收液中。

6.4.4 开通冷却水,接通电源进行蒸馏。当馏出液的体积接近100mL 时,停止蒸馏。取下量瓶,并加水至标线,混匀。此液为溜出液B 。

注∶水样进行蒸馏时应防止倒吸,发现倒吸较严重时,可轻敲一下蒸馏器。

6.4.5 量取馏出液(B )10.00mL 置于25mL 具塞比色管中,按6.3.2~6.3.3条操作步测定其吸光度A W 。

注∶25mL 比色管和1000mL 蒸馏器使用完毕后应浸泡在稀硝酸中。

6.4.6 量取纯水500mL ,按水样测定操作步骤6.4.1~6.4.5测定试样空白吸光度A b 。 7 结果计算

由(A w -A b )值从标准曲线中查得相应的CN -微克数.按公式(4)计算水样中CN -的含量:

100021×=?V

V mV CN ρ…………………………(4) 式(4)中:

?

CN ρ—水样中氰化物的浓度, mg/L ; m —查标准曲线或由回归方程计算得到的氰化物质量,μg ;

V 1—馏出液定容后的体积,mL ;

V 2—用于测定的馏出液的体积,mL ;

V —量取水样的体积,mL 。

8 精密度和准确度

5个实验室测定同一天然海水加标样品,内含氰化物(以CN -计)43.4μg/L 。

相对误差:3.8%;重复性(r ):2.7μg/L ,重复性相对标准偏差:2.2%;再现性(R ):4.6μg/L ,再现性相对标准偏差:3.8%。

9 参考文献

[1] GB17378.4—1998 中华人民共和国国家标准 海洋监测规范 第4部分:海水分析[S]. 北

京:中国标准出版社. 1999,98—102.

[2] GB7486—87 中华人民共和国国家标准 水质氰化物的测定 第一部分 总氰化物的测定

[S]. 北京:中国标准出版社. 1987,96—101.

实验四邻菲罗啉分光光度法测定铁的含量(精)

实验四邻菲罗啉分光光度法测定水样中的铁 一、实验目的: 1、掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2、学会标准曲线的绘制方法及其使用。 二、原理: 亚铁离子(Fe2+)在pH=3~9时与邻菲罗啉生成稳定的橙红色络合物,应用此反应可用比色法测定铁。橙红色络合物的吸光度与浓度的关系符合朗伯-比耳定律。若用还原剂(如盐酸羟胺)把高铁离子还原为亚铁离子,则此法还可测定水中的高价铁和总铁的含量。 三、仪器: 721型分光光度计、1cm比色皿、具赛比色管(50ml)、移液管、吸量管、容量瓶等。 四、试剂: 1、铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵 [(NH4)2Fe(SO4)2·6H2O]于100毫升烧怀中(或0.8640g分析纯的 NH4Fe(SO42·12H2O,其摩尔质量为482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好) 2、铁标准使用液(20μg/mL):准确移取铁贮备液20.00ml于100ml 容量瓶中,用水稀释至刻度,摇匀。此溶液中Fe2+的质量浓度为20.0μg/mL。(学生配制)

3、0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制) 4、10%盐酸羟胺水溶液: 5、醋酸-醋酸钠缓冲溶液(pH=4.6):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml比色管中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml醋酸-醋酸铵缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀,(3)放置15分钟后,在510nm波长处,用1cm比色皿,以空白作为参比,测定各溶液的吸光度。 (4)以吸光度为纵坐标,铁含量(μg,50ml)为横坐标,绘制出标准曲线。 2、试样中铁含量的测定 吸取待测水样溶液10.00ml于50ml比色管中,按绘制标准曲线的操作,测得水样的吸光度A,由标准曲线查得相应的铁含量,计算出试样的铁的质量浓度。做平行样。 实验四邻菲罗啉分光光度法测定水样中的铁原始记录表

总铁离子的测定邻菲罗啉分光光度法

总铁离子的测定——邻菲罗啉分光光度法 本方法适用于循环冷却水和天然水中总铁离子的测定,其含量小于1mg/L。 1.0 原理 亚铁离子在PH值3~9的条件下,与邻菲罗啉(1,10—二氮杂菲)反应,生成桔红色络合离子:3C12H8N2+Fe2+→[Fe(C12H8N2)3]2+ 此铬合离子在PH值3~4.5时最为稳定。 水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。 2.0 试剂 2.1 1+1盐酸溶液。 2.2 1+1氨水。 2.3 刚果红试纸。 2.4 10%盐酸羟胺溶液。 2.5 0.12%邻菲罗啉溶液。 2.6 铁标准溶液的配制 称取0.864g硫酸铁铵[FeNH4(SO4)2·12H2O]溶于水,加2.5mL硫酸,移入1000mL容量瓶中,稀释至刻度。此溶液为1mL含0.1铁标准溶液。 吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含0.01mg铁标准溶液。 3.0 仪器 3.1 分光光度计。 4.0 分析步骤 4.1 标准曲线的绘制 分别吸取1mL含0.01mg铁标准溶液0,1.0,2.0,3.0,4.0,5.0mL于6只50m容量瓶中,加水至约25mL,各加1毫米长的刚果红试低,在试纸呈蓝色时,各瓶加1mL10%盐酸羟胺溶液,2mL0.12%邻菲罗啉溶液,混匀后用1+1氨水调节使刚果红试纸呈紫红色,再加1滴1+1氨水,使试纸呈红色,用水稀释至刻度。10分钟后于510nm处,用3cm比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。 4.2 水样的测定 取水样50mL于150mL锥形瓶中,放入1毫米长的刚果红试纸,用1+1盐酸溶液调节使水呈酸性,PH<3,刚果红试纸显蓝色。加热煮沸10分钟,冷却后移入50mL容量瓶中,加10%盐酸羟胺溶液1mL,摇匀,1分钟后,再加0.12%邻菲罗啉溶液2mL,用1+1氨水调节PH,使刚果红试纸呈紫红色,再加1滴氨水,试纸呈红色后用水稀释至刻度。10分钟后于510nm处,以3cm比色皿,以试剂空白作参比,测其吸光度。 5.0 分析结果的计算 水样中总铁离子含量X(毫克/升),按下式计算: X= A ×1000 Vw 式中:A—从标准曲线查得的铁离子的含量,毫克; Vw—水样体积,毫升。 6.0 注释 6.1 循环冷却水中铁含量常以三氧化二铁和氢氧化铁沉淀形式存在,加盐酸煮沸以使其溶解。 6.2 分析步骤中溶液的PH控制也可采用加2mL 2mol/L盐酸,在加邻菲罗啉后,再加5mL 22%醋酸

食品中氰化物的测定

食品安全国家标准 食品中氰化物的测定 1范围 本标准规定了食品中氰化物的检测方法三 本标准第一法适用于蒸馏酒及其配制酒二木薯二包装饮用水二矿泉水中氰化物的检测,第二法和第三法适用于蒸馏酒及其配制酒二粮食二木薯二包装饮用水二矿泉水中氰化物的检测三 第一法分光光度法 2原理 木薯粉二包装饮用水和矿泉水中的氰化物在酸性条件下蒸馏出的氰氢酸用氢氧化钠溶液吸收,在p H=7.0条件下,馏出液用氯胺T将氰化物转变为氯化氰,再与异烟酸-吡唑啉酮作用,生成蓝色染料,与标准系列比较定量三 蒸馏酒及其配制酒在碱性条件下加热除去高沸点有机物,然后在p H=7.0条件下,用氯胺T将氰化物转变为氯化氰,再与异烟酸-吡唑啉酮作用,生成蓝色染料,与标准系列比较定量三 3试剂和材料 除非另有说明,本方法所用试剂均为分析纯,水为G B/T6682规定的三级水三 3.1试剂 3.1.1甲基橙(C14H14O3N3S N a):指示剂三 3.1.2酚酞(C20H14O4):指示剂三 3.1.3酒石酸(C4H6O6)三 3.1.4氢氧化钠(N a O H)三 3.1.5磷酸二氢钾(K H2P O4)三 3.1.6磷酸氢二钠(N a2H P O4)三 3.1.7乙酸(C2H4O2)三 3.1.8异烟酸(C6H5O2N)三 3.1.9吡唑啉酮(C10H10N2O)三 3.1.10氯胺T(C7H7S O2N C l N a四3H2O):保存于干燥器中三 3.1.11无水乙醇(C2H6O)三 3.1.12乙酸锌(C4H6O4Z n)三 3.2试剂配制 3.2.1甲基橙指示剂(0.5g/L):称取50m g甲基橙,溶于水中,并稀释至100m L三

氰化物应急处理指南.

氰化物应急处理指南 氰化物是指含有氰根(—CN)的化合物。氰化物在工业活动或生活中的种类甚多,如氢氰酸、氰化钠、氰化钾、氰化锌、乙腈,丙烯腈等,一些天然植物果实中(像苦杏仁、白果)也含有氰化物。氰化物的用途很广泛,可用于提炼金银、金属淬火处理、电镀,还可用于生产染料、塑料,熏蒸剂或杀虫剂等。氰化物大多数属于剧毒或高毒类,可经人体皮肤,眼睛或胃肠道迅速吸收,口服氰化钠50~100mg即可引起猝死。本文探讨在出现氰化物中毒、泄漏时应如何开展紧急救援行动的问题。 氰化物中毒 1.接触途径氰化物可经呼吸道、皮肤和眼睛接触、食入等方式侵入人体。所有可吸入的氰化物均可经肺吸收。氰化物经皮肤、粘膜、眼结膜吸收后,会引起刺激,并出现中毒症状。大部分氰化物可立即经过胃肠道吸收。2.中毒症状氰化物中毒者初期症状表现为面部潮红、心动过速、呼吸急促、头痛和头晕,然后出现焦虑、木僵、昏迷、窒息,进而出现阵发性强直性抽搐,最后出现心动过缓、血压骤降和死亡。急性吸入氰化氢气体,开始主要表现为眼、咽、喉粘膜等刺激症状,高浓度可立即致人死亡。经口误服氰化物后,开始主要表现为流涎、恶心、呕吐、头昏、前额痛、乏力、胸闷、心悸等,进而出现呼吸困难、神志不清或昏迷,严重者可出现抽筋、大小便失禁,最后死于呼吸麻痹。若大量摄入氰化物,可在数分钟内使呼吸和心跳停止,造成所谓“闪电型”中毒。3.应急处理(1)救援人员的个体防护若怀疑救援现场存在氰化物,救援人员应当穿连衣式胶布防毒衣、戴橡胶耐油手套;呼吸道防护可使用空气呼吸器,若可能接触氰化物蒸气,应当佩戴自吸过滤式防毒面具(全面罩)。现场救援时,救援人员要防止中毒者受污染的皮肤或衣服二次污染自己。(2)病人救护立即把中毒人员转移出污染区。检查中毒者呼吸是否停止,若无呼吸,可进行人工呼吸;若无脉搏,应立即进行心肺复苏。如有必要,应对中毒者提供纯氧和特效解毒剂。对中毒者进行复苏时要保证中毒者的呼吸道不被堵塞。如果中毒者呼吸窘迫,可进行气管插管。当中毒者的情况不能进行气管插管时,在条件许可的情况下可施行环甲软骨切开术。(3)病人去污所有接触氰化物的人员都应进行去污操作:①应尽快脱下受污染的衣物,并放入双层塑料袋内,同时用大量清水冲洗皮肤和头发至少5分钟,冲洗过程中应注意保护眼睛。②若皮肤或眼睛接触氰化物,应当立即用大量清水或生理盐水冲洗5分钟以上。若其戴有隐形眼镜且易取下,应当立即取下,困难时可向专业人员请求帮助。③如果是口服中毒,应插胃管并

吡唑啉、异恶唑啉类衍生物的合成及应用研究

硕士学位论文 目录 摘要.................................................................... I Abstract.. (Ⅲ) 符号说明 (Ⅴ) 第1章吡唑啉类化合物合成及其荧光探针的应用研究进展 (1) 1.1 绪论 (1) 1.2 吡唑啉类化合物的结构特点 (2) 1.3 吡唑啉类化合物的合成 (3) 1.3.1 α,β-不饱和酮与肼类缩合反应 (3) 1.3.2 曼尼希碱与肼类反应 (5) 1.3.3 β-氯酮与肼类的取代缩合 (5) 1.3.4 1,3-极性加成反应 (6) 1.3.5 1,3-二羰基化合物与肼反应 (6) 1.4 吡唑啉的应用研究进展 (7) 1.4.1 吡唑啉类Hg2+荧光探针 (8) 1.4.2 吡唑啉类Fe3+荧光探针 (9) 1.4.3 吡唑啉类Zn2+荧光探针 (9) 1.4.4 吡唑啉类Cu2+荧光探针 (10) 1.4.5 吡唑啉Al3+荧光探针 (11) 1.5荧光探针的概念 (11) 1.5.1光诱导电子转移(PET)机理 (12) 1.5.2 荧光共振能量转移(FRET)机理 (12) 1.5.3激基缔合物(Excimer) (12) 1.5.4分子内电荷转移(ICT)机理 (13) 1.5.5 基于其他原理的荧光分子探针 (13) 1.6 含蒽荧光团分子识别的研究进展 (13) 1.7 本论文的研究思路 (14) 第2章新型吡唑啉类铜离子荧光探针的合成与应用研究 (15) 2.1 引言 (15) 2.2实验仪器及试剂 (16) 2.3 探针P1的合成方法与测试方法 (17) 2.3.1 探针P1的合成 (17)

海水氰化物的测定

FHZDZHS0041 海水氰化物的测定吡啶巴比土酸分光光度法 F-HZ-DZ-HS-0041 海水—氰化物的测定—吡啶巴比土酸分光光度法 1 范围 本方法适用于大洋、近岸、河口和沿岸排污口水体中氰化物的测定。 检出限:0.3μg/L-CN-。 2 原理 蒸馏出的氰化物在弱酸性(pH4.5)条件下,与氯胺T反应生成氯化氰,后者使吡啶开环,生成戊烯二醛,再与巴比土酸反应,产生红-蓝色染料,在波长579nm处,测定吸光度。 干扰测定的物质主要有氧化剂、硫化物、高浓度的碳酸盐和糖类等。干扰物质的检测与消除干扰方法见第6.1条。脂肪酸不干扰本法的测定。 3 试剂 除非另作说明,本法中所用试剂均为分析纯,水为二次蒸馏水或等效纯水。 3.1 丙酮(CH3COCH3)。 3.2 无水乙醇(CH3CH2OH)。 3.3 氢氧化钠溶液,2g/L 3.4 氢氧化钠溶液,0.01g/L:取5mL氢氧化钠溶液(2g/L)稀释至1000mL。 3.5 磷酸二氢钾缓冲溶液,C(KH2PO4)=1.0mol/L:称取136g磷酸二氢钾(KH2PO4)溶于水,稀释至1000mL(pH 4.4~4.7),盛于棕色试剂瓶中。 3.6 氯胺T溶液,10g/L:称取1g氯胺T (CH3C6H4SO2NClNa·3H2O)加水溶解并稀释至100mL。盛于棕色试剂瓶中,低温避光保存,有效期一周。 注∶须经常检查氯胺T是否失效,检查方法如下: 取配成的氯胺T若干毫升,加入邻甲联苯胺,若呈血红色,则游离氯(Cl2)含量充足,如呈淡黄色,则游离氯(Cl2)不足,应重新配制。 3.7 吡啶-巴比土酸溶液:称取6g巴比土酸于100mL容量瓶中,加入30mL吡啶[C5H5N,ρ0.978g/mL],6mL盐酸(ρ1.19g/mL),剧烈振荡至固体消失,如不溶解,可置于45℃水浴中加热,直至溶解。加水至刻度,摇匀。冰箱中保存,有效期一周。若溶液出现浑浊,须重新配制。 3.8 乙酸锌溶液,100g/L:称取50g乙酸锌[Zn(CH3COO)2]加水溶解并稀释至500mL。 3.9 酒石酸溶液,200 g/L:称取100g酒石酸[HOOC(CHOH)2COOH]加水溶解并稀释至500mL。 3.10 氯化钠标准溶液,0.0192mol/L:取氯化钠(NaCl,优级纯)于瓷坩埚中,于450℃高温炉中灼烧至无爆裂声,置干燥器中冷却至室温。准确称取1.1221g氯化钠,加水溶解,移入1000mL 容量瓶中用水稀释至刻度,摇匀。 3.11 硝酸银标准溶液 称取3.76g硝酸银,溶于水并稀释至1000mL,贮存于棕色试剂瓶中,此溶液每周标定一次。 标定:

2019邻菲罗啉分光光度法测定水样中的铁实验指导

精心整理实验二邻菲罗啉分光光度法测定水样中的铁——标准曲线法 一、实验目的: 1.掌握邻菲罗啉分光光度法测定微量铁的原理和方法; 2.学会标准曲线的绘制方法及其使用。 二、原理: 1. 2. 4Fe3+ 橙红色配合物 3. 4. λ 三 可见分光光度计,1cm比色皿、100mL 容量瓶 1个,20mL 移液管 1 支,50mL 容量瓶 10 个, 10mL 吸量管 1 支,1mL 吸量管(或移液管) 1 支,5mL 移液管 1 支,2mL 移液管1 支。 四、试剂: ①铁贮备液(100μg/mL):准确称取0.7020克分析纯硫酸亚铁铵[(NH4)2Fe(SO4) O]于100毫升烧怀中(或0.8640g分析纯的NH4Fe(SO4)2·12H2O,其摩尔质量为 2·6H2

. 482.18g/mol),加50毫升1+1 H2SO4,完全溶解后,移入1000ml的容量瓶中,并用水稀释到刻度,摇匀,此溶液中Fe的质量浓度为 100.0μg/mL。(实验室准备好)②铁标准溶液(20.00 μg·mL-1)移取100.0μg·mL-1铁标准溶液20.00mL 于100mL容量瓶中,并用蒸馏水稀释至标线,摇匀。(学生自行配制) ③ 10%盐酸羟胺水溶液:(用时配制)。 ④ 0.5%邻菲罗啉水溶液:配制时加数滴盐酸能助溶液或先用少许酒精溶解,再用水稀释至所需体积。(临用时配制)或(避光保存,两周内有效)。 ⑤ HAc-NaAc缓冲溶液(pH≈5.0):称取40克纯醋酸铵加到50毫升冰醋酸中,加水溶解后稀释至100毫升。 五、测定步骤: 1、标准曲线的绘制: (1)分别吸取铁的标准溶液0.00、1.00、2.00、4.00、6.00、8.00、10.00ml于7支50ml容量瓶中,加水至刻度; (2)依次分别加入10%盐酸羟胺溶液1ml,混匀,加入5ml pH≈5.0缓冲溶液,摇匀,加入0.5%邻菲罗啉溶液2ml,摇匀, (3)放置15分钟后,在510nm波长处,用1cm比色皿,以试剂空白作为参比,测定各溶液的吸光度。 附721型分光光度计操作过程: 1.检查仪器各调节钮的起始位置是否正确,选择波长,并将灵敏度档置第1档 2.接通电源,打开开关 3盖上比色皿暗盒盖,用调“100%”调节器使电表指针处于透过率“100%”位,打开比色皿暗盒盖,用调“0”调节器使电表指针处于透过率“0”位;预热 20min 4.放入参比溶液及试样溶液 5.校准:拉动吸收池拉杆,使参比溶液置于光路中,打开比色皿暗盒盖,用调 “0”调节器使电表指针处于透过率“0”位;盖上比色皿暗盒盖,用调 “100%”调节器使电表指针处于透过率“100%”位。重复校正至稳定 .

异烟酸—吡唑啉酮显色液的改进

异烟酸—吡唑啉酮显色液的改进 摘要:本文对异烟酸—吡唑啉酮光度法测定水和废水中氰化物的方法进行了改进,在不改变其它步骤的前提下,以去离子水代替二甲基甲酰胺所配得的吡唑啉酮溶液及异烟酸溶液作为显色剂。试验结果表明:改进后新方法的精密度RSD<5%,加标率回收率为92.0~105.0%,通过电镀废水和标准样品的比对试验表明,改进后的方法与标准方法对同一样品的测定结果无显著性差异,满足监测分析要求。 关键词:氰化物异烟酸—吡唑啉酮改进 Abstract: It improve that determination of cyanide in water and wastewater by isonicotinic acid - pyrazolonespectrophotometric methods in this paper. Under the premise of without changing the other steps, With deionized water instead of dimethylformamide as worthy ofthe pyrazolone solution and iso-nicotinic acid solution as a chromogenic agent. The results showed that:The new method improved the precision RSD <5%, plus standard rate of recovery was 92.0 ~ 105.0%.Electroplating wastewater and standard sample by comparison of the tests showed. The improved methods and standard methods for the determination of the same sample was no significant difference. To meet the monitoring and analysis requirements. Keyword:CyanideIsonicotinic acid – pyrazoloneImprove 前言 二甲基甲酰胺(Dimethylfommmide,DMF) 为一种无色、有淡胺味的液体,是工业上经常使用的有机溶剂,它和水及大部分的有机溶剂具有良好的混溶性,广泛应用于纤维、皮革、染料、有机合成及制药等工业生产中。[1]DMF可经呼吸道吸收,液体也可经完整的皮肤及消化道进入人体引起中毒。在低浓度下可出现消化系统症状,表现为恶心、呕吐、食欲不振、腹痛、便秘等[2]。 目前,水和废水中的氰化物测定普遍使用异烟酸—吡唑啉酮光度法,而吡唑啉酮溶液需二甲基甲酰胺溶解,为避免使用有毒试剂DMF,笔者采用去离子水代替二甲基甲酰胺溶解吡唑啉酮得新的吡唑啉酮溶液,以此新的吡唑啉酮溶液和异烟酸溶液作显色液(简称改进显色液),测定水和废水中的氰化物。改进法避免了实验室分析人员使用有毒试剂二甲基甲酰胺,不仅有益操作者身体健康,也节约了成本,值得推广。 1 实验 1.1 仪器:722S型分光光度计,恒温水浴锅;25亳升具塞比色管[3]。 1.2 试剂:

三种白酒中微量氰化物检测方法的比较

三种白酒中微量氰化物的检测方法的比较 摘要:研究和分析了分光光度法、离子色谱法、自动顶空-气相色谱法三种测定白酒中微量氰化物的方法,比较了三种方法测定的线性相关性、方法稳定性和加标回收率。经过实验研究表明,所建立的自动顶空-气相色谱法方法较稳定,线性相关性较好,操作简单,结果精准,适用于白酒企业大量样品中微量氰化物的日常检测。 氰化物是指带有氰离子(CN-)或氰基(-CN)的化合物,通常为人所了解的氰化物都是无机氰化物,速称山奈或山埃。白酒中的氰化物是由含有氰糖苷的原料在发酵过程中水解产生的,其中氢氰酸(HCN)的毒性较强,最低致死量为0.05g。目前,白酒中氰化物的检测方法较多,主要有滴定法、分光光度法、原子吸收法、荧光法、离子色谱法、高效液相色谱法、气相色谱法等。对于蒸馏酒中氰化物的测定,国家标准分析方法为GB/T 5009.48中的异烟酸-吡唑酮分光光度法,但是,在实际样品测定中出现了较多问题:在加入显色剂后,很多样品出现浑浊现象,甚至某些样品显黄绿色、黄色,引起测定结果不准确或者是无法测定,针对上述情况,我们研究了分光光度法测定白酒中氰化物的改进方法,采用强碱固定白酒中的氰化物,以异烟酸-巴比妥酸为显色剂对白酒中的氰化物进行测定。在采用离子色谱仪测定白酒中氰化物时,发现直接对白酒稀释过滤后进样分析不可行,稀释10倍样品中目标物峰面积与稀释20倍样品中目标物峰面积不成倍数关系,针对离子色谱法中存在的问题,我们研究了碱固定法和硫酸回流法对白酒样品进行前处理。针对白酒中微量氰化物的测定,我们还研究了自动顶空-气相色谱法,并对比分析了所建立的分光光度法、离子色谱法和自动顶空-气相色谱法,通过测定相同白酒样品中的氰化物来考察这些方法的稳定性、准确性、实用性,以为白酒中微量氰化物的测定提供参考。 1 材料与方法 1.1 仪器与试剂 1.1.1仪器 水浴锅;CARY300紫外分光光度计;戴安3000离子色谱仪;安捷伦7890气相色谱仪(带自动顶空进样器);水浴锅;全玻蒸馏器;电炉 1.1.2 标准溶液

氰化物应急处理指南

氰化物应急处理指南 氰化物是指含有氰根(-CN)的化合物。氰化物在工业活动或生活中的种类甚多,如氢氰酸、氰化钠、氰化钾、氰化锌、乙腈、丙烯腈等,一些天然植物果实中(像苦杏仁、白果)也含有氰化物。氰化物的用途很广泛,可用于提炼金银、金属淬火处理、电镀,还可用于生产染料、塑料、熏蒸剂或杀虫剂等。 氰化物大多数属于剧毒或高毒类,可经人体皮肤、眼睛或胃肠道迅速吸收,口服氰化钠50~100mg即可引起猝死。本文探讨在出现氰化物中毒、泄漏时应如何开展紧急救援行动的问题。 氰化物中毒 1接触途径 氰化物可经呼吸道、皮肤和眼睛接触、食入等方式侵入人体。所有可吸入的氰化物均可经肺吸收。氰化物经皮肤、

粘膜、眼结膜吸收后,会引起刺激,并出现中毒症状。大部分氰化物可立即经过胃肠道吸收。 2中毒症状 氰化物中毒者初期症状表现为面部潮红、心动过速、呼吸急促、头痛和头晕,然后出现焦虑、木僵、昏迷、窒息,进而出现阵发性强直性抽搐,最后出现心动过缓、血压骤降和死亡。急性吸入氰化氢气体,开始主要表现为眼、咽、喉粘膜等刺激症状,高浓度可立即致人死亡。经口误服氰化物后,开始主要表现为流涎、恶心、呕吐、头昏、前额痛、乏力、胸闷、心悸等,进而出现呼吸困难、神志不清或昏迷,严重者可出现抽筋、大小便失禁,最后死于呼吸麻痹。若大量摄入氰化物,可在数分钟内使呼吸和心跳停止,造成所谓“闪电型”中毒。 3应急处理 (1)救援人员的个体防护 若怀疑救援现场存在氰化物,救援人员应当穿连衣式胶布防毒衣、戴橡胶耐油手套;呼吸道防护可使用空气呼吸器,

若可能接触氰化物蒸气,应当佩戴自吸过滤式防毒面具(全面罩)。现场救援时,救援人员要防止中毒者受污染的皮肤或衣服二次污染自己。 (2)病人救护 立即把中毒人员转移出污染区。检查中毒者呼吸是否停止,若无呼吸,可进行人工呼吸;若无脉搏,应立即进行心肺复苏。如有必要,应对中毒者提供纯氧和特效解毒剂。对中毒者进行复苏时要保证中毒者的呼吸道不被堵塞。如果中毒者呼吸窘迫,可进行气管插管。当中毒者的情况不能进行气管插管时,在条件许可的情况下可施行环甲软骨切开术。 (3)病人去污 所有接触氰化物的人员都应进行去污操作: ①应尽快脱下受污染的衣物,并放入双层塑料袋内,同时用大量清水冲洗皮肤和头发至少5分钟,冲洗过程中应注意保护眼睛。

城市污泥-氰化物的测定--蒸馏后异烟酸--吡唑啉酮分光光度法修改后

城市污泥氰化物的测定蒸馏后异烟酸-吡唑啉酮分光光度法 1.适用范围 本方法规定了蒸馏后用异烟酸-吡唑啉酮分光光度法测定城市污泥中的氰化物本方法适用于城市污水处理厂和城市其他污泥中氰化物的测定 本方法的氰化物馏出液最低检出限为0.004mg/L(以CN-计) 2.采样 测定氰化物的样品应剔除各类大型纤维杂质和大小碎石块等无机杂质,特别注意样品的代表性,样品采集后应将样品放入聚乙烯瓶或硬质玻璃瓶中,在低温条件下保存,在24h内进行分析。 取适量污泥样品置于研钵中,研磨均匀,准确称取5g至10g污泥,加人200mL去离子水,再加入0.125g固体氢氧化钠,使样品水溶液pH>12,在24h内进行分析,如不能及时测定,置于冰箱中保存。 3.易释放氰化物 易释放氰化物是指在pH=4的介质中,在硝酸锌存在下加热蒸馏,能形成氰化氢的化合物。包括全部简单氰化物(碱金属的氰化物),和在此条件下能生成氰化氢而被蒸出的部分络合氰化物(锌氰络合物等)。3.1 原理 用酒石酸溶液将样品控制在pH约为4的条件下,加入硝酸锌加热蒸馏,简单氰化物及部分络合氰化物以氰化氢的形式蒸出,用碱液吸收。 3.2 试剂 测定过程中,应使用分析纯试剂和不含氰化物和活性氯的蒸馏水或具有同等纯度的水。 3.2.1 硫酸溶液(1+5):将100mL浓硫酸缓缓加入到500mL蒸馏水中,边加边搅拌。

3.2.2 氢氧化钠溶液ρ=40g/L:称取 4.0g氢氧化钠(NaOH)溶于100mL蒸馏水中。3.2.3 氢氧化钠溶液ρ=10g/L:称取1.0g氢氧化钠,用蒸馏水稀释至100ml。 3.2.4 硝酸锌[Zn(NO3)2·6H2O]溶液ρ=100g/L:称取10.0g六水合硝酸锌,用蒸馏 水稀释至100mL。 3.2.5 甲基橙溶液ρ=0.5g/L:称取0.05g甲基橙,用蒸馏水稀释至100mL。 3.2.6 酒石酸溶液ρ=150g/L:称取15.0g酒石酸溶于水,稀释至100mL。 3.2.7 乙酸铅试纸:称取5g乙酸铅溶于水中,稀释至100mL。将滤纸条浸入上述溶 液中,1h后,取出晾干,盛于广口瓶中,密塞保存。 3.2.8 淀粉-碘化钾试纸:称取1.5g可溶性淀粉,用少量水搅成糊状,加入200mL沸水,混匀。放冷,加0.5g碘化钾和0.5g碳酸钠,用水稀释至250mL,将滤纸条浸渍后,取出晾干,盛于棕色瓶中密塞保存。 3.2.9 亚硫酸钠溶液ρ=12.6g/L:称取1.26g亚硫酸钠溶于100mL蒸馏水中。 3.2.10 氨基磺酸(NH2SO3OH)。 3.3 仪器 3.3.1 全玻璃蒸馏器:500mL 3.3.2 可调电炉:600W或800W。 3.3.3 接收瓶:100mL量筒或容量瓶。 3.3.4 天平:感量0.0001g。 3.4 步骤 3.4.1 氰化氢释放和吸收:按图2装置,将处理后的样品全部移入500mL蒸馏瓶中(若氰化物含量较高,可酌量少取,并加水至200mL,同时加入固体氢氧化钠至pH>12),加数粒玻璃珠。向接收瓶内加入10mL氢氧化钠溶液作为吸收液。当样品在酸性蒸馏时,若有较多挥发性酸蒸出则应增加氢氧化钠浓度,(制作校准曲线时,应使用相同的氢氧化钠浓度)。馏出液导管下端插入接收瓶的吸收液中,检查连接部位,使其严密。

水质 铁的测定 邻菲啰啉分光光度法

水质铁的测定邻菲啰啉分光光度法 (量程:0.12~5mg/L) 1 适用范围 本标准适用于地表水、地下水及废水中铁的测定。方法最低检出浓度为0.03mg/L,测定下限为0.12mg/L,测定上限为 5.00mg/L。对铁离子大于 5.00mg/L 的水样,可适当稀释后再按本方法进行测定。 2 原理 亚铁离子在pH3~9 之间的溶液中与邻菲啰啉生成稳定的橙红色络合物,其反应式为: 此络合物在避光时可稳定保存半年。测量波长为510nm,其摩尔吸光系数为 1.1×10 4 L·mol-1·cm-1。若用还原剂(如盐酸羟胺)将高铁离子还原,则本法可测高铁离子及总铁含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 盐酸(HCl):ρ20=1.18g/mL,优级纯。 3.2 (1+3)盐酸。 3.3 10%(m/V)盐酸羟胺溶液。 3.4 缓冲溶液:40g 乙酸铵加50mL 冰乙酸用水稀释至100mL。 3.5 0.5%(m/V)邻菲啰啉(1,10-phenanthroline)水溶液,加数滴盐酸帮助溶解。 3.6 铁标准贮备液: 准确称取0.7020g 硫酸亚铁铵((NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O),溶于(1+1)硫酸50mL 中,转移至1000mL容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含100μg 铁。 3.7 铁标准使用液: 准确移取铁标准贮备液(3.6)25.00mL 置100mL 容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含25.0μg 铁。

4 仪器 分光光度计,10mm 比色皿。2 5 干扰的消除 强氧化剂、氰化物、亚硝酸盐、焦磷酸盐、偏聚磷酸盐及某些重金属离子会干扰测定。经过加酸煮沸可将氰化物及亚硝酸盐除去,并使焦磷酸、偏聚磷酸盐转化为正磷酸盐以减轻干扰。加入盐酸羟胺则可消除强氧化剂的影响。 邻菲啰啉能与某些金属离子形成有色络合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10 倍的铜、锌、钴、铬及小于2mg/L 的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。汞、镉、银等能与邻菲啰啉形成沉淀,若浓度低时,可加过量邻菲啰啉来消除;浓度高时,可将沉淀过滤除去。水样有底色,可用不加邻菲啰啉的试液作参比,对水样的底色进行校正。 6 步骤 6.1 校准曲线的绘制 依次移取铁标准使用液(3.7)0、2.00、4.00、6.00、8.00、10.0mL 置150mL 锥形瓶中,加入蒸馏水至50.0mL,再加(1+3)盐酸(3.2)1mL,10%盐酸羟胺1mL,玻璃珠1~2 粒。加热煮沸至溶液剩15mL 左右,冷却至室温,定量转移至50mL 具塞比色管中。加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚刚变红,加入5mL 缓冲溶液(3.4)、0.5%邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色15min 后,用10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用30mm 或50mm 的比色皿),以水为参比,在510nm 处测量吸光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含量如不同,每新配一次试液,都需重新绘制校准曲线。 6.2 总铁的测定 采样后立即将样品用盐酸(3.1)酸化至pH<1(含CN -或S 2 -离子的水样酸化时,必须小心进行,因为会产生有毒气体),分析时取50.0mL 混匀水样于150mL 锥形瓶中,加(1+3)盐酸(3.2)1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到15mL 左右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。以下按绘制校准曲线同样操作,测量吸光度并作空白校正。 6.3 亚铁的测定 采样时将2mL 盐酸(3.1)放在一个100mL 具塞的水样瓶内,直接将水样注满样品瓶,塞好瓶塞以防氧化,一直保存到进行显色和测量(最好现场测定或现场显色)。分析时只需取适量水样,直接加入缓冲溶液(3.4)与邻菲啰啉溶液(3.5),显色5~10min,在510nm 处以水为参比测量吸光度,并作空白校正。 6.4 可过滤铁的测定 在采样现场,用0.45μm 滤膜过滤水样,并立即用盐酸酸化过滤水至pH<1,准确吸取样品50mL置于150mL 锥形瓶中,以下操作与步骤6.1 相同。 7 结果的计算 铁的含量按下式计算:

DL425.4-1991工业氢氧化钠中铁的测定-邻菲罗啉分光光度法

DL 425 DL 425.4—91 工业氢氧化钠中铁的测定 ——邻菲罗啉分光光度法 中华人民共和国能源部 1991-10-04批准1992-04-01实施 本方法适用于 GB 209《工业用氢氧化钠》中规定的各级工业 用氢氧化钠。 1方法概要用盐酸羟胺(NH2OHHCl)将高铁(三价铁)还原成亚铁(二价 铁)。在pH=4~5的条件下,亚铁与邻菲罗啉生成桔红色络合物,反应如下: Fe C H N Fe(C H N 2+12821282332 [)]2 试剂2.1 浓盐酸。2.2 氢氧化氨(分析纯):1+1溶液。2.3 盐酸羟胺:10%溶液(m/V)。2.4 刚果红试纸。2.5邻菲罗啉:称取1g 邻菲罗啉(C12H8N2·H2O)溶于100mL0.1%乙醇溶液中,用二级试剂水稀释至1L ,摇匀,贮存于棕色瓶中,不用时可放置于冰箱中。 2.6乙酸-乙酸铵缓冲溶液:称取100g 乙酸铵溶于100mL 二级试剂水 中,加200mL 冰乙酸,用二级试剂水稀释至 1L ,摇匀后贮存。2.7铁标准溶液(1mL 含0.1mgFe2O3):称取0.0699g 纯铁丝,加入50mL1+1盐酸溶液,加热溶解后,加少量过硫酸铵,煮沸数分钟,定量转移

至1L容量瓶中,冷却后用二级试剂水稀释至刻度,摇匀,存放于聚乙烯 瓶中。 2.8工作溶液(1mL含0.01mgFe2O3):吸取铁标准溶液(见2.7条)稀释10倍。 3仪器 3.1分光光度计。 3.2pH计。 4测定方法 4.1工作曲线的绘制 4.1.1按表1取铁工作溶液注入一组100mL容量瓶中,并用二级试剂 水稀释至50mL。各加入1mL浓盐酸,摇匀。再加入1mL盐酸羟胺溶液,摇匀。静置5min 后,加入5mL邻菲罗啉溶液(见2.5条),摇匀后向容量瓶中加入一小块刚果红试纸,慢慢滴加氢氧化铵进行调剂,至pH=3.8~4.1,使刚果红试纸由蓝色转变为紫红色。各加入5mL乙酸-乙酸铵缓冲溶液,用二级试剂水(水温在35℃左右)稀释至刻度,摇匀,静置15min后,在分光光度计上波长510nm处,用10mm比色皿(或20mm 比色皿)以空白溶液为参比,测定各显色液的吸光度值,按所测吸光度值和相应的铁含量绘制工作曲线。 表1 铁工作曲线的制作

氰化物中毒应急处理指南

氰化物中毒应急处理指南 氰化物一一是指含有氰根(-CN)的化合物。 氰化物在工业活动或生活中的种类甚多,如氢氰酸、氰化钠、氰化钾、氰化锌、乙腈、丙烯腈等。一些天然植物果实中(像苦杏仁、白果)也含有氰化物。 氰化物——用途很广泛,可用于提炼金银、金属淬火处理、电镀,还可用于生产染料、塑料、熏蒸剂或杀虫剂等。 氰化物大多数属于剧毒或高毒类,可经人体皮肤、眼睛或胃肠道 迅速吸收,口服氰化钠50?100mg即可引起猝死。本文探讨在出现氰化物中毒、泄漏时应如何开展紧急救援行动的问题。 氰化物中毒 1. 接触途径氰化物可经呼吸道、皮肤和眼睛接触、食入等方式侵入人体。 所 有可吸入的氰化物均可经肺吸收。氰化物经皮肤、粘膜、眼结膜吸收后,会引起刺激,并出现中毒症状。大部分氰化物可立即经过胃肠道吸收。 2. 中毒症状氰化物中毒者初期症状表现为面部潮红、心动过速、呼吸急促、头痛和头晕,然后出现焦虑、木僵、昏迷、窒息,进而出现阵发性强直性抽搐,最后出现心动过缓、血压骤降和死亡。急性吸入氰化氢气体,开始主要表现为眼、咽、喉粘膜等刺激症状,高浓度可立即致人死亡。经口误服氰化物后,开始主要表现为流涎、恶心、呕吐、头昏、前额痛、乏力、胸闷、心悸等,进而出现呼吸困难、神志不清或昏迷,严重者可出现抽筋、大小便失禁,最后死于呼吸麻痹。若大量摄入氰化物,可在数分钟内使呼吸和心跳停止,造成所谓“闪电型”中毒。 3. 应急处理 (1 )救援人员的个体防护若怀疑救援现场存在氰化物,救援人员应当穿连衣式胶布防毒衣、戴橡胶耐油手套;呼吸道防护可使用空气呼吸器,若可能接触氰化物蒸气,应当佩戴自吸过滤式防毒面具(全面罩)。现场救援时,救援人员要防止中毒者受污染的皮肤或衣服二次污染自己。 (2)病人救护 立即把中毒人员转移出污染区。检查中毒者呼吸是否停止,若无呼

邻菲罗啉分光光度法测定铁

邻菲罗啉分光光度法测定铁 实验目的 1.1 进一步了解朗伯-比尔定律的应用。 1.2 学会邻菲罗啉分光光度法测定铁的方法和正确绘制邻菲罗啉-铁的标准曲线。 1.3 了解分光光度计的构造及使用。 2 实验原理 邻菲罗啉(又称邻二氮杂菲)是测定微量铁的一种较好试剂,其结构如下: 在pH=1.5~9.5的条件下,Fe2+与邻菲罗啉生成很稳定的橙红色的络合物,反应式如下: 此络合物的logK稳=21.3,ε=11000。 在显色前,首先用盐酸羟胺把Fe3+还原为Fe2+: 4 Fe3++2NH2OH═4 Fe2++N2O+H2O+4H+ 测定时,控制溶液酸度在pH=2~9较适宜,酸度过高,反应速度慢,酸度太低,则Fe2+水解,影响显色。 Bi3+、Ca2+、Hg2+、Ag+、Zn2+离子与显色剂生成沉淀,Cu2+、Co2+、Ni2+离子则形成有色络合物,因此当这些离子共存时应注意它们的干扰作用。

3 仪器和试剂 3.1 可见分光光度计。 3.2 铁盐标准溶液的配制: A液(母液→0.1g·L-1):准确称取1.4060g分析纯硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O]于200mL烧杯中,加入50.0mL 1mol·L-1HCl,完全溶解后,移入250mL容量瓶中,加去离子水稀释至刻度,摇匀。 B液(0.01g·L-1):用25mL移液管,准确移取A液25.00mL,置于250mL的容量瓶中,加去离子水稀释至刻度,摇匀,备用。 3.3 乙酸-乙酸钠(HAc-NaAc)缓冲溶液(pH= 4.6):称取135g分析纯乙酸钠,加入120mL冰乙酸,加水溶解后,稀释至500mL。 3.4 ω=1%的盐酸羟胺水溶液,因不稳定,需临用时配制。 3.5 ω=0.1%的邻菲罗啉水溶液:先用少许乙醇溶解后,用水稀释,新近配制。 3.6 50mL容量瓶7个(先编好1、2、3、4、5、6、7号),10mL移液管(有刻度)1支,5mL移液管(有刻度)4支,5mL量筒1个,500mL烧杯1个,洗瓶1个,洗耳球1个,小滤纸,镜头纸。 4 实验步骤 4.1 吸收曲线的绘制和测量波长的选择 用吸管吸取铁盐标准溶液(B液)5.00mL于50mL容量瓶中,依次加入5.0mL HAc~NaAc缓冲液、2.5mL盐酸羟胺、5.0mL 邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀。用1cm比色皿以试剂空白为参比,在450~550nm范围内,每隔10nm测量1次吸光值。在峰值附近每间隔5nm测量1次。以波长为横坐标、吸光度为纵坐标绘制吸收曲线,确定最大吸收波长。 4.2 标准曲线绘制 4.2.1 分别移取铁的标准溶液(0.01g·L-1)0.0、1.0、2.0、3.0、4.0、 5.0mL于6只50mL容量瓶中,依次分别加入5.0mL HAc~NaAc 缓冲液、2.5mL盐酸羟胺、5.0mL邻菲罗啉溶液,用蒸馏水稀释至刻度,摇匀,放置10min。 4.2.2 按仪器说明书要求,将分光光度计各部分线路接好,光源接10V电压。

氰化物泄露的应急处理

编号:SM-ZD-87700 氰化物泄露的应急处理Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

氰化物泄露的应急处理 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1.水上泄漏的应急处理 氰化物泄漏入水后,首先应当分析其水溶性。绝人多数重金属无机氰化物难溶于水,例如氰化锌、氰化亚铜、氰化汞等;其它类氰化物大都易溶于水,例如氰化钠、氰化钾、氰化钙、氰化铵、氰化氢等。低分子量的有机氰化物(或称腈类)在水中溶解度较大,例如乙腈能与水混溶,丙腈和丙烯腈也可溶解于水,但丁腈以上难溶于水。工业储存和运输过程中以碱金属盐类氰化物、丙烯腈等液态腈类较为常见,这类物质在水中大都能溶解,事故处理较艰难。 在运输过程中,如氰化钠或丙烯腈在水体中泄漏或掉入水中,现场人员应在保护好自身安全的情况下,开展报警和伤员救护,及时采取以下措施: (1)现场控制与警戒 在消防或环保部门到达现场之前,如果已有有效的堵漏

氰化氢异烟酸-吡唑啉酮光度法测定气中

异烟酸?毗哩琳酮光度法测定水中 瓢化氢的测量不确定度评定 1检测方法 1.1方法依据 依据异烟酸-毗哇咻酮光度法,对固定污染源有组织排放和无组织排放的铜化氢不确定度进行评定。 1.2方法原理 用氢氧化钠溶液吸收铜化氢(HCN),在中性条件下。与氯胺T作用生成铜化氢(HCN), 铜化狙与异烟酸反应,经水解生成戊烯二醛,再与毗哇咻酮进行缩聚反应,生成蓝色化合物, 用分光光度法测定,在638nm波长进行光度测定。 1.3主要仪器 25ml比色管分光光度计 1.4操作步骤 1.4.1标准曲线绘制 1.4.1.1标准使用液配制 标准溶液从中国计量科学研究院够买,编号为8052,质量浓度为70mg/L,相对扩展不确定为1%。用15.00mL无刻度吸管(A级)准确吸取标准溶液15.00mL至1000mL容量瓶中,用0.1%氢氧化钠溶液稀释至标线,得到质量浓度为1.05mg/L的总氧化物标准使用液。共稀释66.7倍。 1.4.1.2标准曲线绘制 吸取氤化物标准使用溶液0, 0.20, 0.50, 1.00, 2.00, 3.00, 4.00, 5.00mL 于25mL 比色管,各加1滴0.1 %酚猷指示剂,摇动下逐滴加入0.6%乙酸溶液,至酚猷指示剂刚刚好褪色为止,加入5mL磷酸盐缓冲溶液,混匀,加入0.20mL氯胺T溶液,立即盖塞,混匀,放置3~5min,加入5mL异烟酸毗哇嘛酮溶液,混匀,加水稀释至标线,摇匀,在25~35°C 水浴中放置40min?在638nm波长下,用10mm比色皿,零浓度空白液管作参比,测定吸光度。 由测得的吸光度,减去零浓度空白的吸光度后,得到校正吸光度,绘制以铜化物质量(pg) 对校正吸光度的校准曲线。 1.4.2样品测定 (1)无组织排放样品测定:采样后,将样品移入25ml具塞比色管中,用少量水洗涤吸管

邻菲罗啉测定铁

邻菲罗啉测定铁 (1)掌握研究显色反应的一般方法。 (2)掌握邻二氮菲分光光度法测定铁的原理和方法。 (3)熟悉绘制吸收曲线的方法,正确选择测定波长。 (4)学会制作标准曲线的方法。 (5)通过邻二氮菲分光光度法测定微量铁在未知式样中的含量,掌握721型,723型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、原理: 可见分光光度法测定无机离子,通常要经过两个过程,一是显色过程,二是测量过程。 为了使测定结果有较高灵敏度和准确度,必须选择合适的显色条件和测量条件,这些条件主要包括入射波长,显色剂用量,有色溶液稳定性,溶液酸度干扰的排除。 (1)入射光波长:一般情况下,应选择被测物质的最大吸收波长的光为入射光。(2)显色剂用量:显色剂的合适用量可通过实验确定。 (3)溶液酸度:选择适合的酸度,可以在不同PH缓冲溶液中加入等量的被测离子和显色剂,测其吸光度,作DA-PH曲线,由曲线上选择合适的PH范围。(4)有色配合物的稳定性:有色配合物的颜色应当稳定足够的时间。 (5)干扰的排除:当被测试液中有其他干扰组分共存时,必须争取一定的措施排除干扰。 邻二氮菲与Fe2+ 在PH2.0-9.0溶液中形成稳定橙红色配合物。配合无的ε =1.1 ×104 L? mol ?cm-1 。 配合物配合比为3:1,PH在2-9(一般维持在PH5-6)之间。在还原剂存在下,颜色可保持几个月不变。Fe3+ 与邻二氮菲作用形成淡蓝色配合物稳定性教差,因此在实际应用中加入还原剂使Fe 3+还原为Fe2+ 与显色剂邻二菲作用,在加入显色剂之前,用的还原剂是盐酸羟胺。此方法选择性高Br3+ 、Ca2+ 、Hg 2+、Zn2+ 及Ag+ 等离子与邻二氮菲作用生成沉淀,干扰测定,相当于铁量40倍的Sn2+、Al3+、Ca2+、Mg2+ 、Zn2+ 、Sio32-,20倍的Cr3+、Mn2+、VPO3-45倍的Co2+、Ni2+、Cu2+等离子不干扰测定。 三、仪器与试剂: 1、仪器:721型723型分光光度计 500ml容量瓶1个,50 ml 容量瓶7个,10 ml 移液管1支 5ml移液管支,1 ml 移液管1支,滴定管1 支,玻璃棒1 支,烧杯2 个,吸尔球1个,天平一台。 2、试剂:(1)铁标准溶液100ug?ml-1,准确称取0.43107g铁盐 NH4Fe(SO4)2?12H2O置于烧杯中,加入0.5ml盐酸羟胺溶液,定量转依入500ml 容量瓶中,加蒸馏水稀释至刻度充分摇匀。 (2)铁标准溶液10ug?ml-1.用移液管移取上述铁标准溶液10ml,置于100ml容量瓶中,并用蒸馏水稀释至刻度,充分摇匀。 (3)盐酸羟胺溶液100g?L-1(用时配制)

相关文档
最新文档