3×100 MW火力发电厂电气部分设计 课程设计

3×100 MW火力发电厂电气部分设计 课程设计
3×100 MW火力发电厂电气部分设计 课程设计

前言

一、设计任务的内容

3×100 MW火力发电厂电气部分设计

1、电厂为3台100MW汽轮发电机组,一次设计完成。

2、有220 kV 和110kV两级电压与系统连接,220KV出线有4回,每回出线最大输送容量为50MVA;110KV出线有3回,每回出线输送容量为35MVA。本厂无

6~10 kV及35 kV出线。

3、气象条件:年最高温度38℃,年最低温度-7℃。

4、系统阻抗在最大运行方式下(SJ=100MVA),与110kV系统的联系阻为0.012,与220kV系统的联系阻抗为0.068,两系统均视为无穷大容量系统。

5、发电机参数:型号:QFN-100-2 Pe=100MW Ue=10.5kV Ie=6475A

cosφ=0.85 Xd”=0.183

二、设计的目的

发电厂电气部分课程设计是在学习电力系统基础课程后的一次综合性训

练,通过课程设计的实践达到:

1、巩固“发电厂电气部分”、“电力系统分析”等课程的理论知识。

2、熟悉国家能源开发策略和有关的技术规范、规定、导则等。

3、掌握发电厂(或变电所)电气部分设计的基本方法和内容。

4、学习工程设计说明书的撰写。

5、培养学生独立分析问题、解决问题的工作能力和实际工程设计的基本技能。

三、设计的原则

电气主接线的设计是发电厂或变电站电气设计的主体。电气主接线设计的基本原则是以设计任务书问为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,以保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便、尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。

四、设计的要求

1、分析原始资料

2、设计主接线

3、计算短路电流

4、电气设备选择

五、主接线设计的依据

1、发电厂、变电所在电力系统中的地位和作用

2、发电厂、变电所的分期和最终建设规模

3、负荷大小和重要性

4、系统备用容量大小

5、系统专业对电气主接线提供的具体资料

六、对电气主接线的基本要求

可靠性、经济性、灵活性

原始资料的分析

一、本工程情况:从原始资料分析,所要求设计的发电厂类型为大中容量火电厂,总装机容量为300MW,单机容量为100MW。

二、电力系统情况:一次设计完成。系统阻抗在最大运行方式下(SJ=100MVA),与110kV系统的联系阻抗为0.012,与220kV系统的联系阻抗为0.068,两系统均视为无穷大容量系统。

三、负荷情况:有220 kV 和110kV两级电压与系统连接,220KV出线有4回,每回出线最大输送容量为50MVA;110KV出线有3回,每回出线输送容量为35MVA。本厂无6~10 kV及35 kV出线。

四、气象条件:年最高温度38℃,年最低温度-7℃。

主接线方案的确定

一、主接线方案拟定

1、变压器台数:根据原始资料,该厂除了本厂的厂用电外,其余向系统输送功率,所以不设发电机母系,发电机与变压器采用单元接线,保证了发电机电压出线的供电可靠,为了能使电源和线路功率均衡的分配 ,采用两台三绕组变压器与两种升高电压母线连接,另外一台变压器选用双绕组变压器只与220kV 母线连接。

2、变压器的容量:单元接线中的主变压器容量S N 应按发电机额定容量扣除本机组的厂用负荷后,预留10%的裕度选择,为

G

P NG N Φ

COS )

Κ-1(Ρ1.1=

S

(2.1)

NG Ρ—发电机容量;W

Μ200=ΡG

Ν

N

S —通过主变的容量

P

K

—厂用电:

%

8=K P

G

Φ

COS —发电机的额定功率,

85

.0=Φ

COS G

发电机的额定容量为200MW ,扣除厂用电后经过变压器的容量为:

MVA

06.11985

.0)

08.0-1(1001.1)

-1(1.1=?=

Φ

K P =

COS S P

e N (2.2)

由发电机参数和上述计算及变压器的选择规定,主变压器选用1台220KV 双绕组的变压器和两台220KV 三绕组的变压器。

一台220KV 的双绕组变压器选择用SFP-120000/220,两台220KV 三绕组的变压器选择用SSPSL-120000/220。 型号含义: S ——三相

F ——风冷/SP ——强迫油循环水冷 P ——无励磁调压 S ——三绕组 L ——铝芯

由文献【2】可知:

参数为:额定容量比(%):100/100/50

额定电压(kV):220/121/10.5

空载损耗(kW):123.1

短路损耗(kW):高—中510,高—低165,中—低227

阻抗电压(%):高—中24.7,高—低14.7,中—低8.8

空载电流(%):1.0

运输重量(t):106

参考价格(万元):71.7

综合投资(万元):84.6

二、主接线方案:

1、220kV电压级。出线回路数为4回,每回出线最大输送容量为50MVA。为使其出线断路器检修时不停电,应采用单母分段带旁路接线或双母线带旁路接线,以保证其供电的可靠性和灵活性。因为本厂无6~10 kV及35 kV出线,所以直接是发电机与变压器相连升压。

2、110kV电压级。出线回路数为3回,每回出线输送容量为35MVA。同样为使其出现断路器检修时不停电,应采用单母分段带旁路接线或双母线带旁路接线,这里的旁路断路器不用设专用旁路断路器,可以用分段断路器兼作旁路断路器。

根据变压器的组合方案拟定主接线的初步方案,并依据对主接线的基本要求,从技术上进行论证各方的优、缺点,淘汰了一些较差的方案,保留了两个技

术上相对较好的方案。如图(1)和(2):

三、比较主接线方案

1、技术上的比较:方案1供电可靠,检修出线断路器时不至使供电中断。方案2供电更加可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不至使供电中断;调度灵活,各个电源和各回路负荷可以任意分配到某一组母线上,能灵活地适应系统中各种运行方式调度和潮流变化的需要;扩建方便,向双母的左右任何一个方向扩建均不影响两组母线的电源和负荷均匀分配,不会

引起原有回路的停电;便于试验,而且能使电源和线路功率均衡的分配。

2、经济上的比较,由于方案1使用更多的断路器与隔离开关,以致使方案1的投资比方案2要大很多,增加了旁路间隔和旁路母线,每回间隔增加一个隔离开关,大大的增加了投资,同时方案1方案2多占用了土地,当今我国的土地资源比较缺乏。

图(1)双母带旁路接线(方案1)

图(2)单母分段带旁路接线(方案2)

四、主接线方案的确定

从技术和经济的角度论证了两个方案,方案2都要比方案1明显占优势,主要是方案2使用两种主变压器,使电源和线路功率均衡分配;使用比方案1更少的断路器,减少了经济投资。所以比较论证后确定采用方案2。

厂用电的设计

一、厂用电源选择

1、厂用电电压等级的确定:

厂用电供电电压等级是根据发电机的容量和额定电压、厂用电动机的额定电压及厂用网络的可靠、经济运行等诸方面因素,经技术、经济比较后确定。因为发电机的额定容量为100MW,由文献【1】可知;比较后确定厂用电电压等级采用6kV的等级。

2、厂用电系统接地方式:

厂用变采用不接地方式,高压低压都为三角电压。

当容量较小的电动机采用380V时,采用二次厂用变,将6kV变为380V,中性点直接接地;启备变采用中性点直接接地,高压侧为星型直接接地,低压侧为三角电压。

3、厂用工作电源引接方式:

因为发电机与主变压器采用单元接线,高压厂用工作电源由该单元主变压器低压侧引接

4、厂用备用电源和启动电源引接方式:

采用两台启备变,独立从220kV母线引至启备变,启备变采用低压侧双绕组分裂变压器。

二、厂用主变压器选择

1、厂用电主变压器选择原则:

(1)变压器、副边额定电压应分别与引接点和厂用电系统的额定电压相适应。(2)连接组别的选择,宜使同一电压级的厂用工作、备用变压器输出电压的相位一致。

(3)阻抗电压及调压型式的选择,宜使在引接点电压及厂用电负荷正常波动范围内,厂用电各级母线的电压偏移不超过额定电压的±5%。

(4)变压器的容量必须保证常用机械及设备能从电源获得足够的功率

2、确定厂用电主变压器容量:

按厂用电率确定厂用电主变压器的容量

厂用电率确定为,

选型号为:SFL-10000/10

额定容量为:10000/3×9410;电压比为:10±2×2.5%/6.3-6.3;

启备变压器的容量为厂用变压器的总和,为30MV A,选用三台10MV A的变压器,型号为:SFL-10000/110,额定容量为:10000/9410,电压比为:110±8×1.5%/6.3kV。

短路电流计算

一、短路电流计算的目的

1、电气主接线的比选。

2、选择导体和电器。

3、确定中性点接地方式。

4、计算软导线的短路摇摆。

5、确定分裂导线间隔棒的间距。

6、验算接地装置的接触电压和跨步电压。

7、选择继电保护装置和进行整定计算。

二、短路电流计算的条件

1、基本假设

(1)正常工作时,三项系统对称运行。

(2)所有电流的电功势相位角相同。

(3)电力系统中所有电源均在额定负荷下运行。

(4)短路发生在短路电流为最大值的瞬间。

(5)不考虑短路点的衰减时间常数和低压网络的短路电流外,元件的电阻略去不计。

(6)不考虑短路点的电流阻抗和变压器的励磁电流。

(7)元件的技术参数均取额定值,不考虑参数的误差和调整范围。

(8)输电线路的电容略去不计。

2、一般规定

(1)验算导体的电器动稳定、热稳定以及电器开断电流所用的短路电流,应按本工程设计规划容量计算,并考虑电力系统远景的发展计划。

(2)选择导体和电器用的短路电流,在电器连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流影响。

(3)选择导体和电器时,对不带电抗回路的计算短路点,应选择在正常接线方式时短路电流最大地点。

(4)导体和电器的动稳定、热稳定和以及电器的开断电流,一般按三相短路计算。

三、短路电流的计算方法

对应系统最大运行方式,按无限大容量系统,进行相关短路点的三相短路电流计算,求得I”、i sh、I sh值。

I〞——三相短路电流;

i sh——三相短路冲击电流,用来校验电器和母线的动稳定。

I sh——三相短路全电流最大有效值,用来校验电器和载流导体的的热稳定。

S d——三相短路容量,用来校验断路器和遮断容量和判断容量是否超过规定值,作为选择限流电抗的依据。

注:选取基准容量为S j=100MV A U j= U av =1.05U e

——基准容量(MVA);

S

j

U

——所在线路的平均电压(kV)。

av

1、等值阻抗图

2、短路电流计算表

电气设备选择

电气设备选择的原则:

1、应满足正常运行、检修、短路和过电压情况的要求,并考虑远景发展;

2、应按当地环境条件校核;

3、应力求技术先进和经济合理;

表3 10.5kV设备明细表

110KV 侧母线上最大的持续工作电流为

I g ·max110=10.5×

e

e U

S 3=1.05×

110

310

3353

???=578.679A

220KV侧母线上的最大工作电流为

I g ·max220=10.5×

e

e U

S 3=1.05×

220

310

4503

???=551.123A

设计总结

在这次课程设计的过程中,我和同组的几个同学一起查阅了相关资料,对课程设计的题目、要求和具体内容等做了讨论,并协力完成了此次设计。通过本次设计,我能够巩固所学的基本理论、专业知识,并综合运用所学知识来解决实际的工程问题,学习工程设计的基本技能和基本方法。

采用的电气主接线具有供电可靠、调度灵活、运行检修方便且具有经济性和可扩建发展的可能性等特点。选择的电气设备提高了运行的可靠性,节约运行成本。

总之,此次课程设计,使我能把在课堂上学习的理论知识应用到实践中,更好的发现了自己在学习中的不足之处。在设计中,通过查阅资料,解决了在设计中所遇到的一些简单的问题。通过此次课程设计,我受益匪浅,学到了很多东西。

参考文献

1、西北电力设计院.电力工程设计手册.中国电力出版社

2、熊信银.发电厂电气部分. 中国电力出版社

3、黄纯华.发电厂电气部分课程设计参考资料. 中国电力出版社

4、李光琦.电力系统暂态分析(第三版).中国电力出版社

附录B 短路电流计算

对应系统最大运行方式,按无限大容量系统,进行相关短路点的三相短路电流计算,求得I ”、i sh 、I sh 值。 I 〞——三相短路电流;

i sh ——三相短路冲击电流,用来校验电器和母线的动稳定。

I sh ——三相短路全电流最大有效值,用来校验电器和载流导体的的热稳定。 S d ——三相短路容量,用来校验断路器和遮断容量和判断容量是否超过规定值,

作为选择限流电抗的依据。 一、电抗计算

选取基准容量为S j =100MV A U j = U av =1.05U e S j ——基准容量(MVA ); U av ——所在线路的平均电压(kV )。

以下各式中 U k %——变压器短路电压的百分数(%); S e ——最大容量绕组的额定容量(MVA ); S j ——基准容量(MVA )。 均采用标幺值计算方法,省去“*”。

图1 电抗图

1、对于QFN-100-2发电机电抗: X 7=X 8=X 12=X d 〞

e

j S

S =0.183×

85

.0/100100=0.156

2、SFPZ7-12000/220型双绕组变压器的电抗:

3 2

1

X 11=

100

%

k

U

e

j

S S

=

100

12×

120

100=0.1

3、SFPSZ7-12000/220型三绕组变压器高压、中压、低压的电抗值: X 9=X 10=

2001(U d(1-2)%+U d(1-3)%-U d(2-3)%)

e

j

S S

=

200

1(14+23-7.0)

120

100=0.125

X 3=X 4=2001 (U d(1-2)%+ U d(2-3)%-U d(1-3)%)

e

j

S S

=

200

1(14+7-23)×

120

100=-0.008

X 6=X 5=200

1( U d(1-3)%+ U d(2-3)%-U d(1-2)%)

e

j

S S

=

200

1(23+7-14) 120

100=0.067

4、线路阻抗 X 1=0.12 X 2=0.068 二、110KV 母线发生短路时(即d 1点)的短路计算: 对电抗图进行化简并计算: X 22=X 2+X 16+

13

16

2

X X

X

=0.068+0.063+

256

.0063

.0068.0?=0.145

X 23=X 13+X 16+

2

16

13

X

X

X

=0.256+0.063+

068

.0063

.0256.0?=0.556

X 24=X 23∥X 14=556

.0112.0556.0112.0+?=0.093

X 25=X 15+X 24+

22

24

15

X

X

X =-0.004+0.093+

145

.0093

.0004.0?-=0.086

X 26= X 15+X 22+

24

22

15

X

X

X

=-0.004+0.145+

93

.0145

.0004.0?-=0.135

X 27= X 26∥X 1=

135

.012.0135.012.0+?=0.064

短路点短路电流的计算:

系统是在最大运行方式下进行短路计算,而且系统为无穷大容量系统

对于无限大容量系统:I j =

j

j

U

S

3 (基准电流) E ∑=1

I *〞= I *z = I *∞=

*

1X

I *z ——短路电流周期分量的标幺值;

I *〞——0秒短路电流周期分量的标幺值;

X *∑——电源对短路点的等值电抗标幺值; I *∞——时间为∞短路电流周期分量的标幺值。

图6 图7

图8 图9 图10

对于无限大系统提供的短路电流: I 1〞=I z =I ∞=

27

1X

I j1=

27

1X

1

3j j

U

S

=

064

.01×

115

3100?=7.840(kA )

其中:I j1=I *z I j

火电厂的总容量为S e ∑=3×85

.0100=352.941(MV A )

计算电抗:X j1=X 25

j

e S

S =0.086×

100

941.352=0.304

086

.0

064

.027

查汽轮机运算曲线得(0s 、2s 、4s 时):

I *·0=3.50; I *·2=2.70; I *·4=2.65;I z ·0=3.50×

115

3941.352?=5.670(kA )

同理可得:I z ·2=4.164(kA ) I z ·4=3.721 (kA ) 短路容量:S d ·t =3

U av1 I z ·t

S d ·0=

3

×115×5.670=1129.414(MV A )

同理可得:S d ·2 =829.414 (MV A ) S d ·4=741.178 (MV A )

短路电流为:

I 1·0〞= I 1〞+ I z ·0=7.840+5.670=13.51 (kA )

同理可得:I 1·2〞=12.004 (kA ) I 1·4〞=11.562 (kA ) 短路功率: S d1=

3

U av1·I 1·0〞=

3

×115×13.51=2691.001(MV A )

t(s)时刻短路瞬间短路电流的最大值: I m1·0〞=

2

I 1·0〞=

2

×13.51=19.106 (kA )

同理可得:I m1·2〞=16.976 (kA ) I m1·4〞=16.351 (kA ) 短路冲击电流:i sh =

2

K sh ·I 1〞

① 无限大容量电源:查电力工程电气设计手册电气一次部分P 141表4-15不同短

路点的冲击系数,当短路发生在高压母线上,取K sh =1.85 由此可知i shC1=

2

×1.85×7.840=20.512 (kA )

① 火电厂:取K sh =1.90 由此可知i shG1=

2

×1.90×I z ·0s =

2

×1.90×5.670=15.235 (kA )

所以短路冲击电流i sh1= i shC1+ i shG1=20.512+15.235=35.747 (kA )

短路全电流最大有效值: I sh =I 〞·

2

)

1(21-+sh

K

I shC1= I 1〞·

2

)

185.1(21-+=4.736×

2

85

.021?+=12.259 (kA )

I shG1= I z ·0·2

)190.1(21-+=5.670×

2

90

.021?+=9.178 (kA )

I sh1= I shC1+ I shG1=12.259 + 9.178=21.437 (kA ) 三、220KV 母线上发生短路时(d 2点)的计算 将系统电抗图简化并计算: X 13=X 11+X 12=0.1+0.156=0.256 X 14=21

(X 5+X 7) =

2

1(X 6+X 8)=

2

1(0.156+0.067)=0.112

X 15=2

1X 3=2

1

(-0.008)= -0.004

X 16=2

1

X 9=2

1

×0.125=0.063 X 17=X 1+X 15=0.12+(-0.004)=0.116 X 18=X 17+X 16+

14

16

17

X X

X

=0.116+0.063+

112.0063

.0116.0?=0.244

X 19=X 16+X 14+

17

14

16

X

X

X

=0.112+0.063+116

.0063

.0112.0?=0.236

X 20=X 2∥X 18=

244.0068.0244.0068.0+?=0.053 X 21=X 13∥X 19=

236

.0256.0236.0256.0+?=0.123

短路点短路电流的计算:

图3

20

123

.0 2

C

图5

220KV 系统

220KV 系统

110KV 系统

图4

系统是在最大运行方式下进行短路计算,而且系统为110KV 和220KV 系统为无穷大容量系统:

因此对于无限大容量系统:I j =

j

j

U

S

3 (基准电流) E ∑=1

I *〞= I *z = I *∞=

X

*1

I *z ——短路电流周期分量的标幺值;

I *〞——0秒短路电流周期分量的标幺值; X *∑——电源对短路点的等值电抗标幺值; I *∞——时间为∞短路电流周期分量的标幺值。 I 2〞=I z =I ∞=

20

1X

I j2(=I *z I j )=

20

1X

2

3j j

U

S

=

053

.01×

230

3100?=4.736(kA)

其中I j2=I *z I j

X js ——额定容量下的计算电抗;

S *∑——各电源合并后总的额定容量(MV A )。

I z ·t ——t(s)时刻短路电流周期分量的有效值(kA )。 查汽轮机运算曲线得(0s 、2s 、4s 时):

I *·0=2.35; I *·2=2.05; I *·4=2.30 ∴I z ·0= I *·0·I ez = 2.35×

230

3941.352?=2.336 (kA)

同理可得:I z ·2=1.728 (kA) I z ·4=1.524 (kA) 短路容量:S d ·t =3

U av2 I z ·t

S d ·0=

3

×230×2.336=930.596 (MV A)

同理可得:S d ·2=688.386 (MV A) S d ·4 =608.314 (MV A)

短路电流为:

I 2·0〞= I 2〞+ I z ·0=4.736+2.336=7.072 (kA)

同理可得:I 2·2〞=6.464 (kA) I 2·4〞= 6.26 (kA) 短路功率: S d2=

3

U p2·I 2·0〞=

3

×230×7.072=2817.285 (MV A)

t(s)时刻短路瞬间短路电流的最大值: I m2·0〞=

2

I 2·0〞=

2

×7.072=10.001 (kA)

同理可得:I m2·2〞=9.141 (kA) I m2·4〞=8.85 (kA) 短路冲击电流:i sh =

2

K sh ·I 2〞

发电厂电气部分课程设计题目

发电厂电气部分课程设计题目 题目: 300MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机四台,容量2 x 100MW ,2x50MW, 发电机额定电压10.5KV ,功率因数分别为cos φ=0.85,cos φ=0.8,机组年利用小时数4800h ,厂用电率7%,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 (1)、 10.5KV 电压等级最大负荷10MW ,最小负荷8MW ,cos φ=0.8,架空线路6回,二级负荷。通过发电机出口断路器的最大短路电流:''40.2I KA = 238.6S I KA = 438.1S I KA = (2)、 剩余功率送入220KV 电力系统,,架空线路4回,系统容量1800MW ,通过并网断路器的最大短路电流:''17.6I KA = 216.5S I KA = 416.1S I KA = , 题目:400MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机两台,容量2x200MW ,发电机额定电压15.75KV ,cos φ=0.85,机组年利用小时数5500h ,厂用电率5.5% ,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 发电厂除厂用电外, 剩余功率送入220V 电力系统,架空线路4回,系统容量2500MW ,通过并网断路器的最大短路电流:''26.5I KA = 229.1S I KA = 429.3S I KA = 3、厂用电采用6kv 及380/220三级电压

题目: 500MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机四台,容量2 x 50MW ,2x200MW ,发电机额定电压分别为10.5KV 、15.75KV ,功率因数分别为cos φ=0.8,cos φ=0.85,机组年利用小时数5800h ,厂用电率6% 发电机主保护时间0.05s ,后备保护时间3,8s ,环境条件可不考虑。 2. 接入电力系统情况 (1) 10.5kv 电压等级最大负荷12MW, 最小负荷10MW ,cos φ=0.8,电缆馈线4回,二级 负荷。 通过发电机出口断路器的最大短路电流:''39.1I KA = 236.5S I KA = 435.8S I KA = ( 2) 剩余功率送入220KV 电力系统,架空线路4回,系统容量3500MW ,通过并网断路器的最大短路电流:''21.3I KA = 219.8S I KA = 418.5S I KA = 3、厂用电采用6kv 及380/220三级电压 题目:600MW 火力发电厂电气部分设计 原始资料: 1. 发电厂情况 装机两台,容量2 x 300MW ,发电机额定电压20KV ,cos φ=0.85,机组年利用小时数6000h ,厂用电率5%,发电机主保护时间0.05s ,后备保护时间3.9s ,环境条件可不考虑。 2. 接入电力系统情况 发电厂除厂用电外,全部送入220KV 电力系统,,架空线路4回,系统容量4000MW , 通过并网断路器的最大短路电流:''31.2I KA = 229.1S I KA = 428.2KA S I = 3、厂用电采用6kv 及380/220三级电压

电气工程课程设计任务书答案

电气工程基础课程设计题目发电厂主接线及线路电流保护设计 学生姓名秦鹏 学号20081340219 学院信息与控制学院 专业08电气6班 指导教师刘玉娟 二O一O年十二月十六日

目录 绪论———————————————————————————--3 设计题目及原始材料——————————————————————-4设计计算书——————————————————————————--5 原始材料分析————————————————————————-5 计算过程——————————————————————————-7 设计说明书——————————————————————————--9 主接线图——————————————-———————————-9 继电保护的原理接线图——————————————-—————--10 展开接线图————————————————————————--11 方案可行性评估————————————————————————-13 结论—————————————————————————————-14 参考文献———————————————————————————-14

绪论 一、设计的目的 通过这个具体的课题,综合运用所学知识,解决具体工程实际问题,学习工程设计的基本技能,基本程序和基本方法,培养自己的科学研究和设计计算方面的能力,培养自己关于工业建设中的政策观念和经济技术观念,扩大知识领域,提高学自己分析问题和解决问题的能力。 二、设计内容: 1.发电厂主接线方案的选择和主变型式的确定。 2.继电保护方式选择和整定的计算。 3.绘图 4.整理说明书及计算书

[百度文库]发电厂电气部分课程设计

西藏农牧学院发电厂电气部分课程设计 某小型水电站电气初步设计 姓名:潘涛 班级: 2014级电自一班学号: 2014601106 院系:电气工程学院 指导教师:李萍老师

摘要 本篇课程设计主要是对某水电站电气部分的设计,包括主接线方案的设计,发电机出口断路器选择,短路电流计算,母线型号、规格的确定。通过对水电站的主接线设计,主接线方案论证,短路电流计算,电气设备选择校验,母线型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于本次课程设计的具体要求和时间限制,对其他方面的分析较少,这有待于在今后的学习和工作中继续进行研究。通过本次课程设计,我们小组也做出了自己的总结,以便于更好的完成接下来的学业任务。 关键字:电气主接线,短路电流计算,电气设备选择校验。

目录 第一章设计任务书--------------------------------------------------------------------------------- 2 一、设计题目 ----------------------------------------------------------------------------------- 2 二、设计原始材料----------------------------------------------------------------------------- 2 三、设计内容: -------------------------------------------------------------------------------- 2 四、设计要求: -------------------------------------------------------------------------------- 2 第二章主接线方案确定 -------------------------------------------------------------------------- 3 一、电气主接线 -------------------------------------------------------------------------------- 3 二、拟定主接线方案-------------------------------------------------------------------------- 4 三、确定主接线方案 ------------------------------------------------------------------------ 6 第三章短路电流计算------------------------------------------------------------------------------ 9 一、短路计算目的 --------------------------------------------------------------------------- 9 二、短路计算概述 --------------------------------------------------------------------------- 9 三、短路计算的一般规定 --------------------------------------------------------------- 10 四、短路计算-------------------------------------------------------------------------------- 11 第四章发电机出口端断路器选择 ----------------------------------------------------------- 15 一、断路器的选择 ------------------------------------------------------------------------- 15 第五章母线型号、规格的确定--------------------------------------------------------------- 19 一、6.3KV母线的选择 --------------------------------------------------------------------- 19 二、10KV母线的选择----------------------------------------------------------------------- 21 三、母线选择结果 ------------------------------------------------------------------------- 22 第六章结束语 ------------------------------------------------------------------------------------- 24 一、水电站电气部分设计结论----------------------------------------------------------- 24 二、设计要点及总结------------------------------------------------------------------------ 24 三、心得与收获 ------------------------------------------------------------------------------ 25

发电厂电气部分课程设计

目录摘要……………………………………………...................... 第1章设计任务……………………………..................... 第2章电气主接线图………………………........................ 2.1 电气主接线的叙述…………………………….. 2.2 电气主接线方案的拟定..................................... 2.3 电气主接线的评定.................................................. 第3章短路电流计算………………………..................... 3.1 概述.................................................................. 3.2 系统电气设备电抗标要值的计算................. 3.3 短路电流计算.................................................. 第4章电气设备选择………………………..................... 4.1电气设备选择的一般规则………………………. 4.2 电气选择的技术条件……………………………. 4.2.1 按正常情况选择电器………………………....... 4.2.2 按短路情况校验……………………………........ 4.3 电气设备的选择…………………………………. 4.3.1 断路器的选择………………………………. 4.3.2 隔离开关的选择……………………………. 第5章设计体会及以后改进意见…………........................ 参考文献………………………………………....................... 摘要

电气安全工程课程设计.

浙江工业大学 电气安全工程 课 程 设 计 设计课题电气安全技术 所属专业安全工程 设计者周海龙 指导教师周一飞、阮继锋 完成时间2013年6月10日

目录 1、概述 (2) 1.1 电气安全课程设计的目的 (2) 1.2 课程设计的组成部分 (2) 2、电气安全课程设计的内容 (2) 2.1建筑物及施工现场的电气安全设计 (2) 2.1.1三相五线制系统的组成及特点 (2) 2.1.2工地临时用电的安全技术措施 (3) 2.1.3建筑物的防雷系统 (4) 2.1.4建筑物的等电位 (5) 2.1.5施工工地的用电安全管理措施 (5) 2.2机械厂的电气安全设计 (6) 2.2.1TN和TT系统 (6) 2.2.2典型电路——三相异步电动机控制电路设计 (9) 2.2.3电动机的绝缘性能的判别 (11) 2.2.4安全管理制度的设计 (12) 3、总结 (14) 3.1所遇到的问题,你是怎样解决的? (14) 3.2收获体会及建议 (14) 3.3参考资料 (14)

1、概述 1.1 电气安全课程设计的目的 本次课程设计按照项目教学法的思路,通过对二个教学项目的实施,使得学生对《电气安全技术》的内容有更深入的理解和巩固,具体如下: ●了解施工现场的临时供电系统 ●施工现场用电注意事项 ●了解建筑物采用等电位联接的原理和方法 ●建筑物的防雷 ●《电气安全技术》介绍的高、低电压电器实物认知 ●绝缘垫、绝缘毯、遮拦、指示牌、安全牌的认知 ●工厂安全用电的注意事项 ●了解电动机的安全性能 ●了解三相异步电动机的直接起动控制线路原理及其电路保护 1.2 课程设计的组成部分 ●已学知识的复习巩固 ●电路和系统的设计 ●安全管理制度的设计 ●实训 2、电气安全课程设计的内容 2.1建筑物及施工现场的电气安全设计 2.1.1三相五线制系统的组成及特点 在三相四线制制供电系统中,把零线的两个作用分开,即一根线做工作零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式。三相五线制包括三根相线、一根工作零线、一根保护零线。三相五线制的接线方式如图2—1所示。

发电厂电气部分初步设计

发电厂电气部分初步设计

188发电厂电气部分初步设计任务书 一、毕业设计的目的 电能有许多的优点,随着电力工业和国民经济的可持续发展,电力已成为国民经济建设中不可缺少的动力,并广泛应用于一切生产和日常生活方面。而电力的安全运行则是电力生产过程中的重中之重,本次设计主要考察学生对电站方面的认识,通过对可能问题的分析来加深学生对电站的理解和应用以及其在电力系统中的作用。 二、主要设计内容 1.电气主接线及高压厂用电接线设计; 2.短路电流计算及主要电气设备选择; 3.配电装置设计; 4.发电机、变压器、输电线路的保护配置设计; 5.发电机保护设计; 6.发电机保护整定计算。 三、重点研究问题 1、电气主接线及高压厂用电接线设计; 2、短路电流计算及主要电气设备选择; 3、配电装置设计。 四、主要技术指标或主要设计参数 本电厂拟采用1条110KV输电线路(厂系线)直接与系统联系;另一条110KV输电线路(厂甲线)经过变电站甲与系统构成环网。该电厂还以双回110KV线路(厂乙线I、厂乙线II)向变电站乙供电。甲、乙变电站的主要用户是煤矿、化肥厂、钢铁厂及一些乡镇工业、农副产品加工业、农业、居民生活用电等。

电厂装机容量 2×65MW+2×75MW,其中:QF 2 -65-2-10.5型2台,QFQ-75-2-10.5型2台。厂用电率:65MW机组取8%,75MW机组取8%。 五、设计成果要求 1. 完成电站电气主接线方案设计,并确定主变压器的台数和型号; 2. 根据设计资料计算短路电流; 3. 选择设计站110KV高压电气设备并进行动、热稳定计算; 4. 主变压器保护的配置; 5. 设计说明书、计算书一份;5. CAD绘制电气主接线图、开关站平面布置图、发电机保护原理接线图及展开图、10KV配电室平面布置图。 六、其他 负荷资料表 电压线路名称最大功率cosφ距离(km)Tmax(h/y) 其它 110KV 厂系线100 联络线厂甲线35MW 0.8 20 5100 东北方厂乙线40MW 0.8 90 5100 西方 10KV 棉I厂线2400KW 0.8 2 5500 棉II厂线2250KW 0.8 2 5500 钢铁厂线2230KW 0.8 4 4000 印染厂I线6100KW 0.8 3 52300 印染厂II 线 5150KW 0.8 3 5230 市区I线7500KW 0.8 4 4300 市区II线7340KW 0.8 8 4300 市区III线8370KW 0.8 10 3500 市区IV线6820KW 0.8 10 3500 备用I线6250KW

电气传动技术应用报告

2009秋机电一体化(工业控制PLC)专科 《电气传动技术及应用》 课程设计任务书 姓名:xxx 学号:xxxxxxxx 校区:南汇分校 上海电视大学 2011年12月

一、课程设计概述 电气传动技术课程是本专业的一门专业课,主要讲述交、直流电动机原理及其应用,是一门实践性很强的课程,通过电气传动技术的课程设计,掌握在工厂设备中电动机的选择、校验和计算。 课程设计模拟工厂常用的生产流水线,设计一条电动机驱动的输送带,根据加工工艺要求,在输送带上的工件大小和重量是变化的,输送的位置和距离根据不同的要求,有所变化,要求正确的选择电动机的额定功率、转速、工作制以及考虑生产现场的实际条件,需要采取的措施。 二、课程设计任务 有一条生产流水线的输送带如下图所示,在装料点0,按生产节拍依次装上各种电动机的零配件:A转子、B定子、C前端盖、D后端盖、E底座。分别要求送到工位1、工位2、工位3、工位4、工位5进行加工装配。输送带采取带上无零配件的空载启动,在传送中,自动控制系统使输送带上始终只有一个零配件,而且两个零配件传送过程中无间隔、停顿。各种零配件依次送完后,再重复循环传送,…。传动系统设计参数: 空载负载力矩T L0 = 400N·m 输送带的输送速度ν= 12m/min; 输送带的加速度dv/dt = s2; 电源供电电压3相380V、变压器容量20Kva 电压波动安全系数。

传动系统的减速装置第一级减速采用皮带轮,第二和第三级采用齿轮减速箱,参数见表1: 工艺要求送料的次序和位置见表2: 假设四极交流电动机转速1470 r/min、六极970 r/min,功率以分档,Tst/T N=,Tmax/T N=2,电源电压波动安全系数。(计算中保留两位小数点)

130449649460562396发电厂电气部分课程设计

《发电厂电气部分课程设计》任务书 一、课题名称及原始资料 课题名称:某火力发电厂主接线的初步设计 原始资料如下: 1.火电厂的规模 1)装机容量 装机2台,容量分别为 2×300MW, U N =15.75kV cos ?=0.85 0.185d x =(以额定容量为基准的标幺值) 2)机组年利用小时 取h T 6000max =; 3)厂用电率按6%考虑。 2.电力负荷及电力系统连接情况 1)220kV 电压等级 架空线5回,最大负荷为250MW ,最小负荷为200MW ,cos ?=0.85, T max =4500h ; 2)500kV 电压等级 架空线4回,备用线1回,500kV 与电力系统连接,接受该发电厂的剩余功率。电力系统容量为3500MW ,系统等值电抗0.03(基准容量100MVA )。 3.其他的环境条件均处在额定环境下。 二、课程设计内容要求: 1. 对原始资料进行分析,初选两套主接线方案; 2. 定性的对两套主接线的可靠性和经济性进行分析,确定最终的主接线方案; 3. 选择主变压器及联络变压器的容量和型号; 4. 进行短路电流计算; 5. 选择主变压器后的断路器、隔离开关(后备保护动作时间为2.4s ,主保护的动作时间为 0.05s ),并进行校验。 三、课程设计任务要求: 1. 编写设计说明书,包括设计所需要的基本知识,对原始资料的分析、主接线方案的确定 依据以及主要电气设备的选择等。 2. 编写设计计算书,包括需要的各点的短路电流的计算过程。

3.绘图:拟定的主接线图。 四、变压器型号如下表: 其它变压器型号可在百度中输入GBT6451查询

电气工程及其自动化课程设计

本科课程设计说明书 某塑料制品厂全厂总配变电所及配电系统设计 学院(部):电气与信息工程学院 专业班级:电气08-5 学生姓名:XXX,XXX,XXX 指导教师:XX老师 2011年6月29日 某塑料制品厂全厂总配变电所及配电系统设计 摘要 本厂是35kV变电站的设计,本设计首先根据厂方给定的全厂各车间电气设备及车间变电所负荷计算表进行电力负荷计算,然后根据对计算负荷的分析选定主变压器和各车间变电所的变压器型号,变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。在经济角度上要考虑周全,尽量以最少的投资获得最佳的方案。选好变压器和主接线后进行短路电流计算,对变电站系统中的各个电压等级下的母线发生三相短路时,所流过的短路电流进行了分别计算。在设计过程中根据电力部门对工厂功率因数的要求计算出需要补偿的无功功率并以此选择相应的补偿电容器。然后对线路设定短路点进行短路电流的计算作为各设备的选型依据。对电气设备进行选择,电气设备的选择条件包括两大部分:一是电气设备所需要满足的基本条件,即按正常工作条件选择,并按短路状态校验动、热稳定;二是根据不同电气设备的特点而提出的选择和校验项目。考虑到对变压器的保护在设计中对主变压器设置了以下继电保护:瓦斯保护、过电流保护和电流速断保护。 通过本次课程设计,旨在熟悉变电所中供电系统的负荷计算,掌握变电所中二次回路的基本原理,在次基础上对供电系统中的变电所二次接线进行了设计和保护,最后根据具体环境条件对电气设备进行校验,使本次设计的内容更加完善。 关键词:电力负荷计算,变压器选择,短路电流计算,继电保护

发电厂电气部分课程设计

《发电厂电气部分》课程设计100MW火力发电厂电气部分 学院:交通学院 姓名:高广胜 学号:1214010004 专业:13能源与动力工程 指导老师:马万伟 时间:2015年12月

课程设计任务书 一、设计题目 100MW火力发电厂电气部分设计 二.设计内容 1. 对发电厂在系统中的地位和作用及所供用户的分析; 2. 选择发电厂主变压器的台数、容量、型式; 3. 分析确定各电压侧主接线形式; 4. 分析确定厂用电接线形式; 5. 进行选择设备和导体所必须的载流导体的选择; 6. 选择变压器高、中、低压侧的断路器、隔离开关; 7. 选择配电装置型式及设计; 8. 用AutoCAD绘制发电厂电气主接线图。 三、课程设计的要求与数据 1、根据电力系统的发展规划,拟在某地区新建一座装机容量为100MW的凝汽式火力发电厂,发电厂安装1台100MW机组,发电机端电压为10.5kV。电厂建成后以10kV电压供给本地区负荷,其中有钢厂、毛纺厂等,最大负荷为68MW,最小负荷为34MW,最大负荷利用小时数为4200小时,全部用电缆供电,每回负荷不等,但平均在4MW左右,送电距离为3~6km。并以35kV电压供给附近的水泥厂用电,其最大负荷为58MW,最小负荷为32MW,最大负荷利用小时数为4500小时。负荷中I类负荷比例为30%,II类负荷为40%,III类负荷为30%。 2、计划安装两台100MW的汽轮发电机组,功率因数为0.85,厂用电率为6%,机组年利用小时Tmax=5800小时。 5、气象条件:绝对最高温度为35℃;最高月平均温度为25℃;年平均温度为12.7℃;风向以西北风为主. =165kA2s,未知系数0.8-1.2., 6、以100MVA为基准值,母线上阻抗为1.95,Q k 三相短路电流=4.5kA,短路电压=6KV,Sj=100MV.A,Uj=10.5kv. 四、课程设计应完成的工作 1、设计说明书、计算书一份; 2、主接线图一张;

2×100MW发电厂电气部分设计毕业设计

2×100MW发电厂电气部分设计毕业设计 引言 随着高速发展的现代社会,电力工业在国民经济中的作用已为人所共知,它不仅全面的影响国民经济其他部门的发展,同时也极大的影响人民的物质与文化水平的提高,影响整个社会的进步,其中发电厂在电力系统中起着重要的作用.我国正在飞速发展,经济快速的增长使得对电能的需求量在不断提高,各类发电厂的数量随之而增加,特别是火力发电厂依然十分重要。 我本次设计的题目为“2 100MW发电厂电气部分设计”,设计的主要内容为:确定电气主接线图;选择主变压器的型号;对主接线上的短路点进行短路电流计算;设备选型及校验;发电机保护整定计算;防雷接地计算;屋外配置设计。 在佈仁图老师的认真辅导下使我在此次的毕业设计中对发电厂等方面的知识有了更多的了解,真是受益匪浅.

第一章绪论 随着我国经济发展速度的不断加快,特别是伴随西部大开发和振兴东北老工业基地的力度加大,我国的电力需求猛增。为了提高国家电力工业的效益,促进相关工业的技术水平的提高,增加新的经济增长点。近期的重点是:发展大容量、高效低污染的常规火电机组,积极开发洁净煤发电新技术,解决提高燃煤发电机组的效率和改善环境污染两大关键问题;开发水电站老机组的改造技术,提高机组效益和对水利资源的的效利用;加强电网关键技术的开发研究,积极推进跨大区电网互联,优化资源配置,建立有效电力市场体系;大力开发和推广节能降耗技术,加速对中小机组、老机组、城市和农村电网的技术改造,降低损耗,提高效益。 我国电力的发展将朝向“大机组、超高压、大电网、新能源”方向发展。 火力发电中的主要环节是热能的传递和转换,将初参数提高到超临界状态,提高了可用能的品位。使热能转换效率提高,这是大容量火电机组提高效率的主要方向。与同容量亚临界火电机组比较,超临界机组可提高效率2-2.5%,超临界机组可提高效率约5%。大型超临界机组的开发与应用,可以有效的改变我国电力工业目前能耗高和环境污染及依赖进口设备的局面,具有现实的经济、社会效益。 由于空冷电站的耗水量仅为湿冷电站的1/3,适合于我国富煤缺水的“三北”地区建设大型坑口电站,变输煤为输电。对减轻铁路运煤压力、促进“三北”及相邻地区的经济发展具有非常重要的现实意义。 设计为(2 100)MW发电厂电气部分设计,要任务是电气主接线,厂用电设计、短路计算、主要设备的选择和校验、防雷与接地装置设计、发电机保护的整定计算、配电装置设计。技术要求主接线可靠、灵活、经济、便于扩建。所有设计过程均需要考虑国家电力部门的技术规程和规范。

电气传动课程设计报告-

电气传动课程设计 班级:06111102 姓名:古海君 学号:1120111573 其它小组成员: 余德本 梁泽鹏 王鹏宇 2014.10.2

摘要 本次课程设计要求设计并调试出直流双闭环调速系统。通过搭建电流环(内环)和转速环(外环)使系统稳态无静差,动态时电流超调量小于5%,并且空载启动到额定转速时的转速超调量小于10%。系统的驱动装置选用晶闸管,执行机构为直流伺服电动机。 本文首先明确了课程设计任务书,对其中的相关概念进行分析。之后对课题的发展状况进行调研,了解双闭环调速系统在现代工业中的应用意义和价值。然后对实验条件作了详细介绍,包括实验台各个组成部分以及实验设备的选型和工作原理。以上内容均为课程设计准备工作,之后重点记录了实验的测试、仿真和调试过程。其中,测试部分详细介绍了各个电机参数和系统参数测试方法和数据结果,并利用这些数据计算调节器的参数;仿真部分利用matlab软件通过已经求得的参数得出计算机仿真结果,并观察是否满足任务书要求;调试部分是核心,给出了现场调试全部过程并配以图片加以说明。文章最后给出测试结果从而

得出结论,并论述了实验注意事项并加以总结。 转速电流双闭环直流调速系统是性能优良,应用广泛的直流调速系统,,它可以在保证系统稳定性的基础上实现转速无静差,并且具有调速范围广、精度高、动态性能好和易于控制等优点。转速电流双闭环直流调速系统的控制规律、性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础,值得更加深入的学习研究。

目录 一、课程设计任务书 (1) 二、课题的发展状况研究意义 (1) 三、设备选型 (2) 四、实验台简介 (4) 五、参数测试 (7) 六、参数设计 (15) 七、系统调试 (18) 八、系统测试结果 (26) 九、实验室安全及实验过程注意事项 (27) 十、总结和心得体会 (28) 参考文献 (28) 附1:实验过程中遇到问题及解决方法 (29) 附2:小组分工,个人主要工作及完成情况 (30)

发电厂电气部分课程设计剖析

1 火力发电厂电气部分设计 1.1设计的原始资料 凝汽式发电厂: (1)凝汽式发电组3台:3*125MW,出口电压:15.75KV,发电厂次暂态电抗:0.12;额定功率因数:0.8 (2)机组年利用小时: T=6000小时;厂用电率:8%。发电机主保护动 max 作时间0.1秒,环境温度40度,年平均气温为20度。 电力负荷: 送入220KV系统容量260MW,剩余容量送入110KV系统。 发电厂出线: 220KV出线4回; 110KV出线4回(10KM),无近区负荷。 电力系统情况: 220KV系统的容量为无穷大,选基准容量100MVA归算到发电厂220KV 母线短路容量为3400MVA,110KV系统容量为500MVA。 1.2设计的任务与要求 (1)发电机和变压器的选择 表1.1 汽轮发电机的规格参数 型号额定电压额定容量功率因数接线方式次暂态电抗QFS-125-2 15.75KV 125MW 0.8 YY 0.12 注:发电及参数如上表,要求选择发电厂的主变,联络110KV和220KV的联络变压器的型号。 (2) 电气主接线选择 注:火力发电厂的发电机-变压器接线方式通常采用单元接线的方式,注意主变容量应与发电机容量相配套。110KV和220KV电压级用自耦变压器联接,相互交换功率,我们的两电压等级母线选用的接线方式为:220KV采用双母三分段接线,110KV采用双母线接线。 (3) 短路电流的计算 在满足工程要求的前提下,为了简化计算,对短路电流进行近似计算法。 结合电气设备选择选择短路电流计算点求出各电源提供的起始次暂态电流

''I,冲击电流 I,及计算短路电流热效应所需不同时刻的电流。 sh (4) 主要电气设备的选择 要求选择:110KV侧出线断路器、隔离开关、电流互感器。

电气工程基础课程设计

电气工程基础课程设计题目:110kV降压变电站电气系统初步设计 学生姓名:林俊杰 专业:电气工程及其自动化 班级:电气0906班 学号:4 指导教师:罗毅

目录 变电站电气系统课程设计说明书 一、概述 1、设计目的———————————————————————————— 2、设计内容 3、设计要求 二、设计基础资料 1、待建变电站的建设规模 2、电力系统与待建变电站的连接情况 3、待建变电站负荷 三、主变压器与主接线设计 1、各电压等级的合计负载及类型 2、主变压器的选择 四、短路电流计算 1、基准值的选择 2、

一、概述 1、设计目的 (1)复习和巩固《电气工程基础》课程所学知识。 (2)培养和分析解决电力系统问题的能力。 (3)学习和掌握变电所电气部分设计的基本原理和设计方法。 2、设计内容 本课程设计只作电气系统的初步设计,不作施工设计和土建设计。 (1)主变压器选择:根据负荷主变压器的容量、型式、电压等级等。 (2)电气主接线设计:可靠性、经济性和灵活性。 (3)短路电流计算:电力系统侧按无限大容量系统供电处理; 用于设备选择时,按变电所最终规模考虑;用于保护整定计算时,按本期工程考虑;举例列出某点短路电流的详细计算过程,列表给出各点的短路电流计算 结果S k 、I”、I ∞ 、I sh 、T eq (其余点的详细计算过程在附录中列出)。 (4)选择主要电气设备:断路器、隔离开关、母线及支撑绝缘子、限流电抗器、电流互感器、电压互感器、高压熔断器、消弧线圈。每类设备举例列出一种设备的详细选择过程,列表对比给出选出的所有设备的参数及使用条件。 (5)编写“××变电所电气部分设计”说明书,绘制电气主接线图(#2图纸)3、设计要求 (1)通过经济技术比较,确定电气主接线; (2)短路电流计算; (3)主变压器选择; (4)断路器和隔离开关选择; (5)导线(母线及出线)选择; (6)限流电抗器的选择(必要时)。 (7)完成上述设计的最低要求; (8)选择电压互感器; (9)选择电流互感器; (10)选择高压熔断器(必要时); (11)选择支持绝缘子和穿墙套管; (12)选择消弧线圈(必要时); (13)选择避雷器。 二、设计基础资料 1、待建变电站的建设规模 ⑴变电站类型: 110 kV降压变电站 ⑵三个电压等级: 110 kV、 35 kV、 10 kV ⑶ 110 kV:近期线路2回;远期线路 3回 35 kV:近期线路2回;远期线路4 回

火电厂电气部分设计

发电厂电气部分课程设计 设计题目火力发电厂电气主接线设计 指导教师 院(系、部) 专业班级 学号 姓名 日期

课程设计标准评分模板课程设计成绩评定表

发电厂电气部分 课程设计任务书 一、设计题目 火力发电厂电气主接线设计 二、设计任务 根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务: 1. 对原始资料的分析 2. 主接线方案的拟定 3. 方案的经济比较 4. 主接线最终方案的确定 三、设计计划 本课程设计时间为一周,具体安排如下: 第1天:查阅相关材料,熟悉设计任务 第2 ~ 3天:分析原始资料,拟定主接线方案 第4天:方案的经济比较 第5 ~ 6天:绘制主接线方案图,整理设计说明书 第7天:答辩 四、设计要求 1. 设计必须按照设计计划按时完成 2. 设计成果包括设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张 3. 答辩时本人务必到场 指导教师: 教研室主任: 时间:2013年1月13日

设计原始数据及主要内容 一、原始数据 某火力发电厂原始资料如下:装机4台,分别为供热式机组2 ? 50MW(U N = 10.5kV),凝汽式机组2 ? 300MW(U N = 15.75kV),厂用电率6%,机组年利用小时T max = 6500h。 系统规划部门提供的电力负荷及与电力系统连接情况资料如下: (1) 10.5kV电压级最大负荷23.93MW,最小负荷18.93MW,cos?= 0.8,电缆馈线10回; (2) 220kV电压级最大负荷253.93MW,最小负荷203.93MW,cos?= 0.85,架空线5回; (3) 500kV电压级与容量为3500MW的电力系统连接,系统归算到本电厂500kV母线上的电抗标么值x S* = 0.021(基准容量为100MV A),500kV架空线4回,备用线1回。 二、主要内容 1. 对原始资料的分析 2. 主接线方案的拟定 (1) 10kV电压级 (2) 220kV电压级 (3) 500kV电压级 3. 方案的经济比较 (1) 计算一次投资 (2) 计算年运行费 4. 主接线最终方案的确定

电气传动课程设计

电气传动课程设计 目录 第一章:电气传动课程设计任务书 第二章直流调速系统参数测试 第三章转速调节器和电流调节器的设计 第四章:直流调速系统的调试 第五章:直流调速系统的仿真 第六章:结论及分析 第七章:实验注意事项

第一章:电气传动课程设计任务书 1.实验对象和操作台 受控对象为直流电动机——发电机组,控制系统操作台为DS-II型电气控制系统综合试验台 2.设计指标要求 针对享有平台,设计内环为电流环、外环为转速环的双闭环结构调节器的调速系统。稳态指标为无静差;动态指标要求,在启动时电流超调小于5%;空载启动到额定转速时的转速超调小于10%。系统有良好的抗干扰性能。 3.课程设计工作时间安排 第一阶段:了解课程设计的任务,了解控制对象和整体试验台,进行小组分工,明确任务。 第二阶段:测试电机组各项参数和控制台整流放大倍数,转速反馈系数、电动机——发电机组电阻、电感等参数。 第三阶段:根据测量的各项参数进行理论推导和仿真,计算出电流环和转速环校正参数。 第四阶段:在实验控制操作台做实际调试,先调试内环,再调试外环,直到达到指标要求。 第五阶段:分析理论推算的结果、仿真结果和实际调试结果之间的误差,并提出解决的办法。 第六段:整体测试 第七段:分析实验结果,撰写实验报告。 第二章直流调速系统参数测试

双闭环调速系统动态结构如图1所示,要想得到系统的结构模型就必须对直流调速系统的各个参数进行测试。本章主要测试电枢回路电阻、机电时间常数、电磁时间常数、电势常数、转矩常数以及触发—晶闸管放大倍数、电流反馈系数和转速反馈系数。 图1 一、 电枢回路电阻的测定 电枢回路总电阻R=R a +R L +R n +R c ,其中R a 为电枢电阻、R L 为平波电抗器的直流电阻、R n 为整流装置的内阻、R c 为电枢回路的附加电阻、线路电阻(无附加电阻时取R c =0)。本次设计采用伏安比较法实验测定,电路按下图2接线。 图2 ~ I 将U ct 固定为某一值,改变可调电阻器的阻值两次,与此对应,测得两组可调电阻器的端电压及电枢回路的电流,利用这两组数据联立方程即可测得一个电枢回路总电阻R 的间接测量值。再将U ct 分别固定在另外几个值,仿照上述方法,又可以得到几个R 的测量值。取其平均值即可作为R 的较为合理的近似值。 电阻可由式(2-1)计算: R=(U d1 -U d2)/(I d2 -I d1)(2-1)

发电厂电气部分课程设计报告

《发电厂电气部分》课程设计报告凝气式火力发电厂一次部分设计 班级: 学号: 姓名:

1 引言 近年来,随着国家电网的迅速发展,国内外火电机组的容量也越来越多。人民用电量的日益增加促使发电量的不断增加。在世界的能源不断消耗,促进了新能源的发展,但是目前新能源还不能完全代替传统一次能源的发电,在我国火力发电任然占据主导地位。 火力发电厂简称火电厂,是利用煤炭、石油或天然气作为燃料生产电能的工厂,其能量的转换过程是由燃料的化学能到热能再到机械能最后转换为电能。本设计是凝气式火电厂一次部分的设计。通过对电气主接线的设计和短路电流的计算。更加经济可靠的选用相关的一次设备,做到更好利用一次能源,与故障时对电力系统的保护。

2 主接线方案设计 2.1 原始资料分析 2.1.1 原始资料 发电机组4100?,85.0cos =?,U=10.5KV ,次暂态电抗为0.12,年利用率为5000小时以上,厂用电率6%,高压侧为220kv 、110KV ,其中110V 出线短有5回出线与系统相连接输送的功率为120MW ,220KV 的出线有5回与系统相连接输送的功率为200MW 。中压侧35KV,3回出线将功率送至5KM 内的用户综合负荷40MW ,。发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。系统容量取3500MVA 。 2.1.2资料分析 根据设计任务书所提供的资料可知,该火电厂为中型火电站,由于其年利用率在5000小时以上,所以该发电厂一般给I ,II 类负荷供电,必须采用供电较为可靠的接线形式。其地形条件限制不严格,但从节省用地考虑,尽可能使其布置紧凑,便于运行管理。发电厂的总容量与系统容量之比相对较小,所以对于35KV 及110KV 可以采取相对简单的接线方式。 2.2 电气主接线设计的依据 电气主接线设计是火电厂电气设计的主体。它与电力系统、枢纽条件、电站动能参数以及电站运行的可靠性、经济性等密切相关,并对电气布置、设备选择、继电保护和控制方式等都有较大的影响,必须紧密结合所在电力系统和电站的具体情况,全面地分析有关影响因素,正确处理它们之间的关系,通过技术经济比较,合理地选定接线方案。 电气主接线的主要要求为: 1、可靠性:衡量可靠性的指标,一般是根据主接线型式及主要设备操作的可能方式,按一定的规律计算出“不允许”事件的规律,停运的持续时间期望值等指标,对几种接线形式的择优。 2、灵活性:投切发电机、变压器、线路断路器的操作要可靠方便、调度灵活。 3、经济性:通过优化比选,工程设计应尽力做到投资省、占地面积小、电能损耗小。 2.3主接线的方案拟定 方案一:根据对原始资料的分析可知系统有4个电压等级分别是发电厂到母线的10KV 电压和经过升压给周边用户使用的35KV 的电压以及提供给系统的110KV 和

电气工程课程设计

电气工程课程设计 要求: 针对某一较复杂的电网进行电力系统三相短路起始次暂态电流的计算,短路后指定时刻短路电流周期分量的计算;不对称短路时短路点故障相电流和非故障相电压的计算,对称和不对称短路后任意支路故障电流和节点电压的计算 一、电力系统三相短路起始次暂态电流的计算,短路后指定时刻短路电流周期分量的计算 电力系统发生三相短路故障造成的危害性是最大的。作为电力系统三大计算之一,分析与计算三相短路故障的参数更为重要。设计示例是通过两种不同的方法进行分析与计算三相短路故障的各参数,进一步提高短路故障分析与计算的精度和速度,为电力系统的规划设计、安全运行、设备选择、继电保护等提供重要依据。 一、基础资料 1.电力系统简单结构图 电力系统简单结构图如图1所示。 M T1 T2T2 G2G2 G1 6kV 2000kW cos 0.86 N ?=起动系数为6.5用电负载(电动机) (3) K LGJ-185 100km 100km LGJ-15025MW cos 0.8N ?=cos 0.85 N ?=''0.13 d X =火电厂 110MW 100km LGJ-120110kV 负载 图1 电力系统简单结构图 '' 0.264 d X =86j MV A +?T3 2.电力系统参数

如图1所示的系统中K (3)点发生三相短路故障,分析与计算产生最大可能的故障电流和功率。 (1)发电机参数如下: 发电机G1:额定的有功功率110MW ,额定电压N U =10.5kV ;次暂态电抗标幺值''d X =0.264,功率因数N ?cos =0.85 。 发电机G2:火电厂共两台机组,每台机组参数为额定的有功功率25MW ;额定电压U N =10.5kV ;次暂态电抗标幺值''d X =0.130;额定功率因数N ?cos =0.80。 (2)变压器铭牌参数由参考文献《新编工厂电气设备手册》中查得。 变压器T1:型号SF7-10/110-59-16.5-10.5-1.0,变压器额定容量10MV ·A ,一次电压110kV ,短路损耗59kW ,空载损耗16.5kW ,阻抗电压百分值U K %=10.5,空载电流百分值I 0%=1.0。 变压器T2:型号SFL7-31.5/110-148-38.5-10.5-0.8,变压器额定容量31.5MV ·A ,一次电压110kV ,短路损耗148kW ,空载损耗38.5kW ,阻抗电压百分值U K %=10.5,空载电流百分值I 0%=0.8。 变压器T3:型号SFL7-16/110-86-23.5-10.5-0.9,变压器额定容量16MV ·A ,一次电压110kV ,短路损耗86kW ,空载损耗23.5kW ,阻抗电压百分值U K %=10.5,空载电流百分值I 0%=0.9。 (3)线路参数由参考文献《新编工厂电气设备手册》中查得。 线路1:钢芯铝绞线LGJ-120,截面积120㎜2,长度为100㎞,每条线路单位长度的正序电抗X 0(1)=0.408Ω/㎞;每条线路单位长度的对地电容b 0(1)=2.79×10﹣6S /㎞。 对下标的说明 X 0(1)=X 单位长度(正序);X 0(2)=X 单位长度(负序)。 线路2:钢芯铝绞线LGJ-150,截面积150㎜2,长度为100㎞,每条线路单位长度的正序电抗X 0(1)=0.401Ω/㎞;每条线路单位长度的对地电容b 0(1)=2.85×10﹣6S /㎞。 线路3:钢芯铝绞线LGJ-185,截面积185㎜2,长度为100㎞,每条线路单位长度的正序电抗X 0(1)=0.394Ω/㎞;每条线路单位长度的对地电容b 0(1)=2.90×10﹣6S /㎞。 (4)负载L :容量为8+j6(MV ·A ),负载的电抗标幺值为=* L X ** 22 *L L Q S U ;电动机为2MW ,起动系数为6.5,额定功率因数为0.86。 3.参数数据 设基准容量S B =100MV ·A ;基准电压U B =U av kV 。 (1)S B 的选取是为了计算元件参数标幺值计算方便,取S B -100MV ·A ,可任意设值但必须唯一值进行分析与计算。 (2)U B 的选取是根据所设计的题目可知系统电压有110kV 、6kV 、10kV ,而平均额定电压分别为115、6.3、10.5kV 。平均电压U av 与线路额定电压相差5%的原则,故取U B =U av 。

相关文档
最新文档