微污染水源水处理技术研究进展

微污染水源水处理技术研究进展
微污染水源水处理技术研究进展

微污染水源水处理技术研究进展

蔡世军,朱亮

河海大学环境科学与工程学院,南京(210098)

E-mail:caishijun@https://www.360docs.net/doc/a64129759.html,

摘要:根据当今饮用水源污染问题日益突出,论述了水源的污染现状和主要危害,分析了国内外微污染水处理技术的现状和发展,展望了微污染水源水处理技术的发展趋势。

关键词:微污染水源水,强化常规工艺,预处理,深度处理

中图分类号:X703.1文献标识码:A

当前,我国大部分城镇饮用水源都不同程度地受到污染,致使水质较差,不仅会对人体健康造成威胁,而且水源污染加大了水源选择和处理的困难。[1]饮用水中有机物含量的增加导致了“三致”(致癌、致畸、致突变)的潜在威胁,水源微污染问题已经相当严重。因此,微污染原水饮用水处理技术的研究非常需要。

1.水源的污染现状和主要危害

近些年来,我国水源水质污染呈恶化趋势。《2006年中国环境状况公报》[2]显示,2006年,全国地表水总体水质属中度污染。在国家环境监测网(简称国控网)实际监测的745个地表水监测断面中(其中,河流断面593个,湖库点位152个),Ⅰ~Ⅲ类,Ⅳ、Ⅴ类,劣Ⅴ类水质的断面比例分别为40%、32%和28%。主要污染指标为高锰酸盐指数、氨氮和石油类等。国控网七大水系(长江、黄河、珠江、松花江、淮河、海河和辽河)的197条河流408个监测断面中,Ⅰ~Ⅲ类,Ⅳ、Ⅴ类和劣Ⅴ类水质的断面比例分别为46%、28%和26%。其中,珠江、长江水质良好,松花江、黄河、淮河为中度污染,辽河、海河为重度污染。主要污染指标为高锰酸盐指数、石油类和氨氮。七大水系监测的98个国控省界断面中,Ⅰ~Ⅲ类,Ⅳ、Ⅴ类和劣Ⅴ类水质的断面比例分别为43%、31%和26%。海河和淮河水系的省界断面水体为中度污染。163个城市的地下水水质监测结果表明,地下水水质以良好~较差为主。27个国控重点湖(库)中,满足Ⅱ类水质的湖(库)2个(占7%),Ⅲ类水质的湖(库)6个(占22%),Ⅳ类水质的湖(库)1个(占4%),Ⅴ类水质的湖(库)5个(占19%),劣Ⅴ类水质的湖(库)13个(占48%)。其中,巢湖水质为Ⅴ类,太湖和滇池为劣Ⅴ类。主要污染指标为总氮和总磷。

水源水的污染不仅给人类的健康带来了较大的危害,而且对传统净水工艺和水质的影响所造成的各种损失更是难以估量。水源水质的恶化,一方面势必额外投加大量的混凝剂,使制水成本大大增加;另一方面由于传统净水工艺对水中微量有机污染物没有明显的去除效果,相反还可能使出水氯化后的致突变活性有所增加,水质毒理学安全性下降,对人体健康造成危害。世界卫生组织(WHO)调查结果表明,在发展中国家,80%的疾病和1/3的死亡率与水污染有关。与此同时,水源水的污染还加剧了水资源的危机。

2.微污染水源水处理技术

针对微污染水源水处理问题,国内外进行了大量的研究和实践。按照处理工艺的流程,可以分为预处理、常规处理、深度处理。常规处理工艺(混凝、沉淀、过滤、消毒)不能有效去除微污染原水中的有机物、氨氮等污染物;液氯很容易与原水中的腐殖质结合产生消毒副产物(DBPs)三卤甲烷(THMs),[3-4]直接威胁饮用者的身体健康。由于传统净水工艺

已不能有效处理被污染的水源,而且限于目前的经济实力,我们无法在较短的时间内控制水源污染,改变水源水质低劣的现状,退而求其次,人们不得不采取新的方法来保证饮用水的安全和人们的健康。因此,从70年代开始,水处理研究人员开发出许多水的净化新技术,包括强化传统工艺、预处理技术和深度处理技术,这些技术中有的已经在实际中得到应用,取得了较好的效果。

2.1强化传统工艺

强化传统工艺目前主要有强化混凝和强化过滤技术,它们不增加任何新设施,只是在原有工艺基础上略做改动,是控制出厂水有机物含量最经济,最具实效的手段。

(1)强化混凝

地面水的天然有机物主要是腐殖酸和富里酸,它们与水形成大分子胶体真溶液。对于某一确定的原水,必定有一最佳混凝剂。[5]强化混凝是指提高金属盐混凝剂的投加量,调节水源水的pH值,或者同时进行两种处理,在现有工艺上改造和强化,改善絮凝条件,提高常规混凝工艺有机物去除率,达到更有效去除NOM及悬浮物的目的[6]。其机理主要包括胶体状NOM的电中和作用,腐殖酸和富里酸聚合体的沉淀作用,以及吸附于金属氢氧化物表面上的共沉作用,其去除率的大小受混凝剂的种类和性质、混凝剂的投加量以及pH值等因素的影响。美国的水处理工作者普遍认为,强化混凝是实现消毒物/消毒副产物规定的第一阶段目标的最佳途径。因此,目前国内外有很多研究学者采用强化混凝法去除有机物。[7]据有关报导,在去除天然有机物时,铁盐的混凝效果比铝盐好;阳离子高分子絮凝剂可单独作为混凝剂,但阴离子型和非离子型絮凝剂单独应用效果不佳,但当被用作助凝剂时,则可发挥其提高固液分离的功能,可有效地提高TOC的去除率。与常规处理工艺相比,强化混凝虽然提高了有机物去除率,但是需多投混凝剂或另投其他药剂,过量的混凝剂的投加有可能使水中金属离子增加,不利于居民的身体健康,而且势必会增加药剂费用与污泥处理费用。

(2)强化过滤

强化过滤是对普通滤池进行生物强化,滤料由生物滤料和石英砂滤料组合而成。据研究表明[8],通过对传统工艺中的普通滤池进行生物强化,可以使源水中的氨氮去除率由原来的30%~40%,提高到93%;亚硝酸盐氮的去除率由零提高到95%;有机物(COD Mn)的去除率由20%提高到40%左右,出水浊度保证在1NTU以下,消毒后能满足卫生学指标的要求。美国也有研究表明[9],以生物快滤池作为末级处理,能得到低浊且具有生物稳定性的出水。该工艺无须新增处理构筑物,既可以起到生物作用,又可以起到过滤作用,在经济和技术上是可行的[10],但对于其前处理的要求、运行管理的方法以及微生物的控制等各方面的特性,还需进一步研究。

2.2预处理技术

预处理通常是指在常规工艺前面,采用适当的物理、化学和生物的处理方法,对水中的污染物进行初级去除,同时可以使常规处理更好地发挥作用,减轻常规处理和深度处理的负担,改善和提高饮用水水质,主要包括吸附预处理、化学氧化预处理和生物氧化预处理技术。

(1)吸附预处理

吸附预处理是指通过直接在混合池中投加吸附剂,利用其强大的吸附性能或交换作用或改善混凝沉淀效果,达到有效去除源水中有害溶解性物质的目的,去除水中的污染物。主要吸附剂有粉末活性炭和粘土等。研究表明:这些吸附剂有较好的吸附去除作用,活性炭能减

低水的致突变活性,对TOC的去除率大约为20%~30%,但活性炭对致突变物质的吸附有一定的局限性,常受到一些外部因素的影响,如:致突变物质的种类、有机物含量、水处理工艺、运行条件和炭的类型等,而且粉末活性炭投加后无法回收再利用,作为预处理费用相对较高;粘土虽货源充足、价格便宜,但大量投加会增加沉淀池的排泥量,给生产运行带来了一定的困难。

(2)化学氧化预处理

化学氧化预处理技术是指依靠氧化剂的氧化能力,分解破坏水中污染物的结构,达到转化或分解污染物的目的。目前采用的氧化剂有氯气、高锰酸钾、高铁酸钾、紫外光和臭氧等。这些氧化剂投加到水中,能够使一小部分有机物被彻底氧化为水和二氧化碳,大部分有机物转化为中间产物,如芳香族化合物的苯环被打开,长链大分子化合物被氧化成短链的小分子物质或分子的某些基团被改变,从而有效去除水中有机污染物的数量,并使有机物的可生化性提高。化学预氧化处理方法对微污染水源水有一定处理效果,能改善水质,但额外投加药剂会使处理成本增大,同时也可能使出水氯化后的致突变性或多或少地增加,产生一些致突变性及致癌的副产物,而且这些卤代有机物难以有效地在后续工艺中被去除[11-13,14]。

(3)生物氧化预处理

生物氧化预处理是指在常规净水工艺之前,增设生物处理工艺,借助于微生物群体的新陈代谢活动,去除水中的污染物。

自70年代以来,生物法被移植到微污染水源给水处理中是饮用水技术领域的一个重大进展,在欧洲应用较普遍,我国目前正处于推广应用阶段,采用的反应器基本上全是生物膜型的,主要有生物滤池、生物转盘、生物塔滤、生物接触氧化、生物流化床等[15]。其处理对象就是那些常规处理方法不能有效去除的污染物,如可生物降解的有机物,人工合成的有机物和氨氮、亚硝酸盐氮、铁、锰等[16,17]。

生物预处理的优点是对污染物的去除经济有效,不产生“三致”物质,减少混凝剂和消毒剂的用量,在降低制水成本的同时还改进水质,且该技术适宜于自来水厂的改造。该工艺的不足之处主要是运行效果受到诸多因素的影响,尤其是原水水质、水温、操作管理水平高低的影响,而且与常规工艺相比,启动时间稍长,需要一定的成熟期[18]。

2.3 深度处理技术

深度处理技术是指在常规处理之后,用于将常规处理工艺不能有效去除的污染物或消毒副产物的前体物加以去除,以提高和保证饮用水质的处理技术。[19]应用较为广泛的深度处理技术有:臭氧氧化、活性炭吸附、生物活性炭法、臭氧—活性炭吸附联用、臭氧—生物活性炭技术、膜过滤、光催化氧化等技术。

2.3.1臭氧氧化技术

臭氧作为一种强氧化剂,不仅可用于预处理中,而且在深度处理中有更长的应用历史。最初臭氧被用来作为消毒剂,控制水的色度或嗅味,又可用来去除水中有机物。[20]受投放量的限制,臭氧不能将水中有机物全部无机化,但可将大分子有机物分解成分子较小的中间产物。臭氧预处理的水再经氯化消毒,水中“三致”物质可能低于未预处理的水,也可能更高,其效果视水质而定,这是因为臭氧副产物如醛、酮、醇、过氧化物等氯化会产生三卤甲烷(THMs)。

2.3.2活性炭吸附

活性炭是一种由大孔、中孔、微孔组成的多孔性物质,对有机物的去除主要靠其巨大的比表面积和发达的空隙吸附,其中主要是中孔和微孔的吸附作用。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性炭(BAC)三大类。活性炭对水量、水质、水温变化的适应性强,可经济有效地去除污水中的臭味、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等,其对分子量在500-3000的有机物具有十分明显的去除效果,去除率一般为70.0%-86.7%。在各种改善水质处理效果的深度处理技术中,活性炭吸附是完善常规处理工艺的去除水中有机污染物最成熟有效的方法之一。因此活性炭吸附法是一种具有广阔应用前景的深度处理技术。

2.3.3生物活性炭技术

活性炭是微生物生长的良好载体,只要合理运作,活性炭上的微生物对提高水处理效果,特别是延长活性炭使用周期都会起到积极的作用。所以,活性炭用于水处理不单纯是作为吸附剂,还可利用活性炭吸附与微生物降解的协同作用,以取得经济上的良好效果,这种协同技术被称为生物活性炭技术(BAC)。[21]该技术利用微生物的氧化作用来增加水中溶解性有机物的去除效率,延长活性炭的再生周期,减少运行费用,同时水中的氨氮可以被生物转化为硝酸盐,从而减少了氯化的投氯量,降低了三卤甲烷的生成量。有资料表明,活性炭附着的硝化菌还可以转化水中的氨氮化合物,降低水中的NH3-N的浓度,NH3-N去除率可达75%-96.7%。[22]生物活性炭通过有效的去除水中有机物和嗅味,从而提高饮用水化学、微生物安全性,是自来水深度净化的一个重要途径。

2.3.4臭氧—活性炭联用法

臭氧—活性炭联用法采取先臭氧氧化后活性炭吸附,在活性炭吸附中又继续氧化的工艺过程,这样可以扬长避短,使活性炭的吸附作用发挥得更好。[23]目前国内水处理使用的活性炭能比较有效地去除小分子有机物,但难以去除大分子有机物,而水中大分子有机物较多,所以活性炭孔的表面面积将得不到充分利用,势必将加速饱和,缩短产水周期,但在炭前或炭层中投加臭氧后,一方面可使水中大分子转化为小分子,改变其分子结构形态,给有机物提供进入较小孔隙的可能性;另一方面可使大孔内与炭表面的有机物得到氧化分解,减轻了活性炭的负担,使活性炭能充分吸附未被氧化的有机物,从而达到水质深度净化的目的。该方法能充分发挥两者的优势,已经在国内外得到应用。

2.3.5臭氧—生物活性炭技术

臭氧—生物活性炭技术是采用活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒四种技术合为一体。该技术能够有效去除水中的有机物和氨氮,对水中的无机还原性物质、色度、浊度也有很好的去除效果,并且能有效降低出水致突变活性,保证饮用水的安全。臭氧—生物活性炭第一次联合使用是1961年德国Dusseldoif市Amstaad水厂。从20世纪60年代以后,臭氧—生物活性炭技术己被欧洲、美国、加拿大、日本等发达国家广泛的应用到污染水的深度处理中,对净化饮用水水中各种污染物取得良好的效果。[24]随着饮用水源污染的日益加剧和饮用水质标准的提高,作为一种先进的优水质、低能耗、无污染的绿色工业水处理技术,臭氧—生物活性炭技术在处理微污染的原水中有着其它处理方法无法相比的优越性,即有效地控制和消除水中微量有机物的污染和危害,延长活性炭的使用寿命,出水水质全面提高,而且稳定、易管理;而如何利用其优越性,促进其工程实践

的广泛应用,提高其设计和运行控制水平,使其工艺设计更趋于最佳状态,还有待于今后进行深入的研究。[22]

2.3.6膜过滤技术

该技术是新兴的高效分离、浓缩、提纯、净化技术,[25]是采用高分子膜作介质,以附加能量作推动力,对双组分或多组分溶液进行表而过滤分离的物理处理方法。20世纪80年代后期,该技术在欧美和澳大利亚开始进入实用阶段,是深度处理的一种高效手段,反渗透(RO)、超滤(UF)、微滤(MF)、纳滤(NF)均能有效去除水中嗅味、色度、消毒副产物前体及其他有机物和微生物。近年来,该技术在美国受到高度重视,被EPA推荐为控制消毒副产物的最佳工艺之一。[26]

目前常见的膜法有:微滤、超滤、纳滤、反渗透、电渗析、渗透蒸发、液膜及刚出现的毫微滤技术等。从膜滤法的功能上看,反渗透能有效的去除水中的农药、表面活性剂、消毒副产物、THMs、腐殖酸和色度等。纳滤膜用于分子量在300-1000范围内的有机物质的去除。而超滤和微滤膜可去除腐殖酸等大分子量(大于1000)的有机物。因此,膜滤技术是解决目前饮用水水质不佳的有效途径。膜法能去除水中胶体、微粒、细菌和腐殖酸等大分子有机物,但对低分子量含氧有机物如丙酮、酚类、酸、丙酸几乎无效。把膜工艺进一步应用到给水处理中的障碍是:基建投资和运转费用高,易发生堵塞,需要高水平的预处理和定期的化学清洗,还存在浓缩物处置的问题。然而,随着清洗方式的改进,膜堵塞和膜污染问题的改善以及各种膜价格的降低,相信在不久的将来,膜法一定会在给排水领域得到较广泛的应用。

2.3.7光催化氧化

自1976年J.H.Cary报道了在紫外光照射下,TiO2可使难于化学降解的有机化合物多氯联苯脱氯[27],之后,纳米TiO2光催化法作为一种水处理技术就引起了各国众多研究者的广泛重视。

光催化氧化是以化学稳定性和催化活性很好的TiO2为代表的n型半导体为敏化剂的一种光敏化氧化,利用光源的能量氧化水中的有机物(包括细菌等)的方法。其特点是氧化能力极强,对水中多种微量有机物,自来水中常见的多种氯化有机物,包括难被臭氧氧化的“六六六”、六氯苯等均有良好的去除效果。经光催化氧化处理后,有机氯化物已大量脱氢,毒性大大降低,使水质大为提高。光催化氧化最终产物是CO2和H2O等无机物。因此该技术作为一种低能耗、无二次污染、氧化能力强的水处理新技术,日益受到人们的重视。

2.3.8紫外光和臭氧联用技术

紫外光和臭氧(UV/O3)结合的方法是基于光激发氧化法,产生的氧化能力极强的自由基(OH自由基)可以氧化臭氧所不能氧化的微污染水中的有机物,有效去除饮用水中的三氯甲烷、六氯苯、四氯化碳、苯等有机物,降低水中的致突变物活性。刘长安[28]等人的研究表明,UV/O3工艺对自来水中的微污染物有较好的去除效果。在O3投加浓度为2.6mg/L的情况下,当水力停留时间为120min时对UV254的去除率可达100%;反应时间为60min时对三氯甲烷和四氯化碳的去除率分别可达65%和89%。紫外光和臭氧联用技术具有设备简单、投资和运行费用低、对有机污染物去除效率高等优点,非常适合饮用水的深度净化处理。

3. 小结和展望

通过对微污染水源水处理技术的国内外研究与发展现状分析可以看出,水源水受到有机

污染己是不争的事实,常规制水工艺己经很难达到饮用水水质卫生规范的标准,加强微污染

水源水处理势在必行,微污染原水饮用水处理技术的研究非常需要。从我国目前的实际情况

出发,微污染水源水处理要综合考虑社会、经济环境,在现有处理设施的基础上,应强化常

规处理,改善氧化和消毒,开发新的预处理和深度处理技术,对组合工艺进一步深化,采用

新型组合工艺处理技术,同时应加大排泥水和处理和污泥处置力度,走可持续发展的路。随

着新的处理技术的开发以及多种处理技术的联用,微污染水源水处理技术将得到广泛发展。

参考文献

[1]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999

[2]国家环保总局.2006中国环境状况公报(EB/OL)https://www.360docs.net/doc/a64129759.html,,2007-06-05

[3]Watt B E. Malcolm R L,et al.Chemistry and Poteneial mutagenicity of humic substances in water from

different watersheds in Britain and Ireland [J].Wat.Res.,1996,30(6):1502-1516.

[4]Hintelmann H,Welbourn P M, Evanas R D Measurement of complexation of methlmercurn (Ⅱ) compounds

by freshwater humic substances using equilibrium dialysis [J]. Environ.Sci.Technol.,1997,31(2): 485-489.

[5]岳禹峰,黄仕元,庞朝晖,张勇明.微污染水源水处理技术发展与探讨[J]. 工业水处理,2006,26(9):14-17.

[6]浣晓丹,罗岳平编译.通过强化混凝去除颗粒物和THM前驱物[J].净水技术.1999,17(2):41-48

[7]Karen R. Easing the Pain of Meeting the D/DBP Rule with Enhanced Coagulation[J]. Water Engineering &

Management,1999,46(1):22-25.

[8]李德生,黄晓东,王占生.微污染源水净化新工艺—生物强化过滤研究[J].中国给水排水.2000,16(10):18-20

[9]Rittann, B.E. et al, Achieving Biologically Stable Drinking Water[J].JAWWA, 1984,76(10):106

[10]何元春,余健,刘小静.生物过滤在微污染水处理中的应用[J].净水技术.2002,21(1):13-15

[11]李德生,张金萍.微污染水源水中污染物质的控制和净化技术[J].甘肃环境研究与监测.2000,13(3):165-168

[12]Ritchelita P. Galapate et al. Transformation of dissolved organic matter during ozonation: effects on

trihalomethane formation potential[J].Wat. Res.,2001,35(9):2201-2206

[13]许国仁,李圭白.高锰酸钾复合药剂对水中微量有机污染物去除效能的研究[J].给水排

水.1999,25(7):14-18

[14]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理.2006,26(6):6-10

[15]张燕,王志奇,陈英旭.微污染水源水的控制技术[J].环境污染于防治.2001,23(2):69-71

[16]陈汉辉,孙国胜.生物接触氧化法处理微污染源水的研究进展与应用[J].环境污染治理技术与设备.

2000,1(3):55-60

[17]许建华,万英等.微污染原水的生物接触氧化预处理技术研究[J].同济大学学报.1995,23(4):376-379

[18]李伟英.给水生物预处理工艺中生物相变迁规律及作用[J].环境与开发.2000,15(2):5-8

[19]肖羽堂,许建华,王冠平,等.强化微污染原水净化效果的生产性应用研究[J].环境科学,1998,19(3):28-30.

[20]V.Camel & A.Berm and The Use of Ozone and Associated Oxidation Process In Drinking Water

Treatment[J]. Wat. Res.1998,32(11):3208-3222.

[21]吴红伟,刘文君,张淑琪,等.提供生物稳定饮用水的最佳工艺[J].环境科学,2000,21(3):64-67.

[22]于万波.臭氧—生物活性炭技术在微污染饮用水处理中的应用[J].环境技术,2003,(2):11-14.

[23]Yasushi Takeuchietal removal of organic substances from water by ozone treatment followed by biological

activated carborn treatment[J].Wat Sci Tech,1997,35(7):171-178.

[24]胡静,张林生.生物活性炭技术在欧洲水处理中的应用研究与发展[J].环境技术,2000,(2):33-37.

[25]陈一鸣,刘玉荣.膜分离技术在我国水处理领域的应用实例[J].化工装备技术,2000,21(1):33-34.

[26]贾瑞宝,文闵英.饮用水源微污染现状及其深度处理技术[J].山东环境,1999,(5):42- 43.

[27]Fujishima A,Honda K. Electrochermical Photoanalysis of water at semiconductor

electrode[J].Nature,1976,238:38.

[28]刘长安,孙德智.UV/O3反应器去除自来水中微污染物[J].中国给水排水,2003,19(6):49-50.

Research Progress on Micro-polluted Source Water

Treatment Technology

Cai Shijun,Zhu Liang

College of Environmental Science and Engineering,Hohai University,Nanjing (210098)

Abstract

According to the current drinking water source pollution problems have become increasingly prominent, discusses the recent polluted status of water sources and main harms, has analyzed pollution of water treatment technology present situation and the development at home and abroad, and looks forward to the developing trends of the micro-polluted source water treatment technology. Keywords:micro-polluted source water,enhancing conventional treatment process,pretreatment,advanced treatment

作者简介:

蔡世军(1980-),男,甘肃白银市人,现为河海大学环境科学与工程学院市政工程专业2006级硕士研究生。研究方向为水污染控制理论与技术;

朱亮(1963-),男,江苏姜堰人,博士,现为河海大学环境科学与工程学院教授,硕士生导师。研究方向为水污染控制理论与应用。

微污染水源水的处理综述

《水的特种处理》 学习报告 姓名: 学号: 班级: 时间: 2013-5-27

微污染水源水的处理综述 摘要 我国大部分城镇饮用水源目前已受到不同程度污染,给人们的饮用水安全问题带来了巨大威胁,也给常规给水处理工艺提出了新的挑战。根据我国微污染水源水的特点,结合最近几年微污染水源水处理技术工艺的研究和发展以及在微污染水源水处理中的研究和实践,研究、分析与讨论我国微污染水源水处理对策和措施。 同时我们展开介绍强化常规处理工艺、氧化预处理工艺、深度处理工艺及新型微污染水源水处理工艺等工艺的特点,分析评述微污染水源水处理工艺技术的发展方向。 关键词:微污染水源水强化常规处理预处理深度处理

前言:近年来,随着工业的发展、城市化进程的加快及农用化学品种类和 数量的增加,我国大部分城镇饮用水源已受到不同程度的污染。据相关报道,我国七大水系中 I 到 III 类水体占 45.1%,IV 类和 V 类水体占22.9%,劣 V 类水体占 32.0% ,水源污染加大了水源选择和处理的困难。饮用水水源中含有的有机污染物导致了“三致物”(致癌、致畸、致突变)的潜在威胁加大,水源水的污染问题日益严重,饮用水的安全问题得到了广泛关注和重视。 随着人民生活质量的不断提高, 检测分析手段的进步, 人们对饮用水水质的要求将更加严格, 相应供水水质标准也要不断提高。因此, 对于微污染原水的净化处理已成为一项非常重要和迫切的新课题。 一、微污染水源水概述 目前,微污染水主要是指受有机物污染的水源水,有机污染物一部分来源于生活性有机污染,其主要污染指标为高锰酸盐指数和氨氮。另一部分来源于工业性有机污染,其主要污染指标为人工合成有机物( SOC) ,SOC 种类繁多,对饮用水水质和人体健康危害较大。不同的水源所含污染源种类和数量各不相同,即使同一水源其杂质成分与含量也会随时间和空间变化而发生变化。基于目前微污染水源现状,我们主要讨论以高锰酸盐指数和氨氮污染为主的微污染水,分析该种微污染水源水质特点,寻求适宜的饮用水处理工艺。 二、处理对策 根据水源水水质和出水水质要求,针对微污染水源水的现状,主要可行的处理对策有: (1)强化传统水处理工艺的处理效果,如强化混凝、强化沉淀、强化过 等 (2)在原有常规处理工艺前增加预处理工艺; (3)在原有常规处理工艺后增加深度处理工艺; (4)寻求新型微污染水源水处理工艺等。 目前,依据原水水质特征,将各种预处理技术、深度处理技术与现有传统处理工艺集成联用,是当前受污染微污染水源水净化的基本技术对策;同时随着水处理技术的发展,寻求新型高效的微污染水源水的处理工艺也是研究和实践的热点。 下面我们对上述四点讨论工艺的选择。 2.1 强化传统水处理工艺 2.1.1 强化混凝工艺(EC) 强化混凝技术主要是通过改善混凝剂性能和优化混凝工艺条件,提高混凝沉淀工艺对有机污染物的去除效果。 强化混凝主要方式有: (1)提高混凝剂投加量使水中胶体脱稳、凝聚沉降; (2)增加投设絮凝剂或助凝剂,增强吸附和架桥作用,使有机物絮凝下沉;

微污染水

随着我国工业化的迅速发展,城市化规模的不断扩大,人们在生活和生产过程中排放出来的污染物对源水水质的污染已经愈演愈剧,水中的有机污染物不断增多,源水受污染的程度越来越严重。上世纪60年代以来,不少地区饮用水水源水质日益恶化,出现水质性缺水的严重局面。同时,随着水质分析技术的逐渐进步,水源和饮用水中能够测得的微量污染物质的种类也不断增加。微污染饮用水给人们的生产和生活带来极其严重的危害。针对源水中出现的微污染问题,70年代以后,人们就开始着手对微污染水质的净化新技术进行了大量的研究,并且已经有很多技术在实际生产中应用,取得了较好的效果。 发达国家的微污染水处理的中心问题是去除可固化有机碳和氨氮为主的微污染物以获得饮用水的生物稳定性。我国的微污染水源,其污染物浓度比发达国家微污染物的浓度高得多,就我国近几年有关污染水处理研究的水质来看,COD mn平均为10mgL/左右,氮氧平均为3.3mg/L左右。 1微污染水的特点 “微污染”是我国近十年来才出现的给水处理术语,微污染水源是指水的物理、化学和微生物指标已不能达到《地面水环境质量标准》中作为生活饮用水源水的水质要求,水体污染物单向指标,如浑浊度、色度、臭味、硫化物、臭氧化物、有毒有害物质、病原微生物等有超标现象,但多数情况下是受有机物微量污染的水源。 饮用水中常规污染物主要包括感官性污染物(如色度、浊度、臭和味及泡状物等)、一般性化学污染物(如总硬度、各种阴离子)。 新兴污染物指的是目前确已存在但尚无环保法律法规予以规定或规定不完善的,危害生活和生态环境的所有生产建设或者其他活动中产生的污染物。新兴污染物主要包括消毒副产物、环境激素、药品与个人护理用品、藻毒素以及新型致病微生物等[1]。 2微污染水处理技术 20世纪60年代以来,不少地区饮用水水源水质日益恶化,人们在引用水的水质净化中碰到了新问题。针对源水中出现的新问题,人们就开始着手对水质净化的新技术进行了研究。针对不同的污染类型,人们在饮用水常规处理工艺的基础上研究开发了很多新的工艺和技术,但归结起来主要有3个方向:①强化常规

深度处理工艺对微污染水中天然有机物(NOM)的

深度处理工艺对微污染水中天然有机物(NOM)的去除机理及协同作用 程学营安毅王启山吴立波 (南开大学环境科学与工程学院 300071) E-mail:xueyingc@https://www.360docs.net/doc/a64129759.html, 摘要:从天然有机物分子量水平、分子极性角度介绍了几种饮用水深度处理工艺对NOM 的 去除原理及效果。探讨了不同工艺的去除效果与NOM 种类的关系及组合工艺去除NOM 的协 同作用。 关键词:天然有机物深度处理给水 1. 原水中天然有机物特征 1.1 原水中天然有机物种类及危害 原水中大量存在的 NOM 是引起水体色度的主要物质,也是最基本的消毒副产物(DBPs) 先质,而DBPs 是导致饮用水致突变性增加的主要原因;在水处理过程中NOM 还可能降低混凝工艺的处理效果、增加投药量;残留的NOM 进入管网后可能引起细菌滋长,从而腐蚀管壁,降低饮用水的生物稳定性。因此,在微污染水净化过程中,NOM 的去除对于提高饮用水水质、保障用水安全有重要意义。 NOM 主要包括腐殖质、亲水酸类、蛋白质、类脂、碳水化合物、羧酸、氨基酸等物质, 其分子量一般为2×102~1×105,分子直径在0.5~400nm 之间,多数NOM 分子直径≤5nm [1]。腐殖质(腐殖酸、富里酸)是主要部分,约占天然水体中溶解性有机碳(DOC)总量的40~60﹪,分子量一般在5×102~2×103 之间。NOM 中非腐殖质部分,以前被认为对出水水质没有影响,但是近年的研究表明,消毒副产物的前体物有将近一半(DOC 计)来自NOM 中的非腐殖质部分,并且这部分有机物是NOM 中主要的可生物降解部分,具有较强的亲水性和较低的芳香度。 1.2 评价指标 目前完全区分不同种类 NOM 还不可能、也没有必要。因此在水处理中一般以水中总有机 碳(TOC)或COD Mn 作为总有机物的替代参数,以溶解态有机碳(DOC)代表水中溶解性有机物的含量,DOC 中可被细菌利用的部分为可生物降解性有机碳(BDOC),而BDOC 中能被细菌直接合成细胞的部分称为可同化有机碳(AOC)。BDOC 和AOC 主要由易溶于水的小分子、极性有机物构成,用来表示水中可生物降解有机物,还可表示出水的生物稳定性。UV254 表 ?国家863 项目:北方地区安全饮用水保障技术(2002AA601140) https://www.360docs.net/doc/a64129759.html, 2 示水中溶解的非饱和构造的有机污染物(如带双键或芳香族的有机物)的总量,这些物质恰恰是天然有机物的主要部分,卤代活性较高,所以有学者用UV254/DOC 值来评价消毒副产物形成潜力(DBPFP)的大小。 2. 深度处理工艺对天然有机物的去除机制和效果 通过对水处理单元的研究[2、3、4]表明,分子量为0~500 的有机物由于难于吸附和凝聚, 主要在生物处理单元降解,去除率约为60%,活性炭吸附也有一定的去除能力,但效果不 如生物处理;分子量为500~3,000 的有机物可通过活性炭吸附有效去除,去除率可达70~90%,生物处理也有一定效果但不明显,一般只有20%左右;分子量在3,000~100,000 的有

微污染水源处理技术

微污染水源处理技术 摘要:由于工业的高速发展和城市化建设的加快,饮用水遭到有机物的污染的现象日益严重。传统的水处理工艺已经难以满足人们对饮用水质量的要求。综述了目前我国给水生物预处理和深度处理工艺技术特点以及对污染物的去除机理等。 关键词:微污染水源;预处理;深度处理 近年来,随着我国工业的发展和农用化学品的增加,饮用水源受到严重污染,并呈发展趋势。水源水的污染不仅给人类的健康带来了较大的危害,而且对传统净水工艺和水质造成很大影响。因此,对于微污染原水的净化处理已成为一项非常重要和迫切的新课题。 1 微污染水源水生物预处理法 生物预处理是指在常规净水工艺之前增设生物处理工艺,借助于微生物群体的新陈代谢活动,去除水中的污染物。目前饮用水中采用的生物反应器大多数是生物膜类型的,其形式大致可归纳为以下几种类型:生物接触氧化、淹没式生物滤池,生物塔滤,生物流化床和生物转盘等。 1.1 生物接触氧化法 生物接触氧化法又叫做浸没式生物膜法,即是在池内设置人工合成填料,经过充氧的水以一定的速度流经填料,使填料上长满生物膜,水体与生物膜接触过程中,通过生物净化的作用使水中污染物质得到降解与去除。 生物接触氧化法的主要优点是处理能力大,对冲击负荷有较强的适应性,污泥生成量少;缺点是填料间水流缓慢,水力冲刷小,生物膜更新速度慢,某些填料价格贵,且易引起堵塞,布水布气不易达到均匀。 1.2 淹没式生物滤池 生物滤池是目前生产上常用的生物处理方法,有淹没式生物滤池、煤/砂生物过滤及慢滤池等。常用的生物填料有卵石、砂、无烟煤、活性炭、陶粒等。滤池中装有比表面积较大的颗粒填料,填料表面形成固定生物膜,水流经生物膜的不断接触过程中使水中有机物、氨氮等营养物质被生物膜吸收利用而去除,同时颗粒填料滤层还发挥着物理筛滤截留作用。该工艺的特点是运行费用低,处理效果稳定,污染物去除效果好,污泥产量少,且受外界环境变化的影响较小,能全面净化、改善水质,降低后续传统处理的混凝剂与消毒剂氯的投加量。但运行一定时间的生物滤池易出现填料堵塞、曝气不均匀的现象,需要进行周期性的反

微污染水源强化混凝水处理技术研究进展(新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 微污染水源强化混凝水处理技 术研究进展(新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

微污染水源强化混凝水处理技术研究进展 (新版) 摘要:对微污染水源的强化混凝水处理技术进行系统的介绍。详细阐述强化混凝的主要影响因素,如混凝剂种类及投加量、pH值、温度、碱度和原水水质等,同时介绍了几种常用的强化混凝方法,并对该技术在微污染水源水处理中的应用予以展望和提出建议。 关键词:微污染;强化混凝;粉末活性炭(PAC);高锰酸钾复合药剂(PPC) 水源地饮用水污染对给水工程造成了各种损失,给传统净水工艺提出了挑战。微污染水源指的是水体的物理、化学或微生物指标已不能达到《地表水环境质量标准》中作为生活饮用水源水的水质要求,但通过特殊工艺处理后尚可使用的原水。水源水质的恶化,一方面势必额外地投加大量的混凝剂,使制水成本大大增加;另一

方面水中藻类过避繁殖,使给水产生一定的色度和臭味,水源水的污染加剧了水资源的危机。此外,由于水源中污染物质的存在,对人类的健康有很大的影响,而靠国内目前普遍使用的常规净化工艺又很难去除掉,尤其是有机物,结果致使城市居民不得不长期饮用这种不安全的水,因而选择一种适合的微污染水源水处理技术方案引起人们的高度重视。 1强化混凝内涵 强化混凝是给水常规处理中非常关键的环节,通过强化混凝,可去除原水中绝大部分的浊度、色度,提高常规混凝法处理中天然有机物(NOM)去除效果,最大限度地去除消毒副产物前驱物(DBPFP)等有机物。它是为提高常规混凝效果,通过增加混凝剂的投加量、改变混凝剂的匹配或调整pH值,保证浊度去除率的同时提高水中有机物去除率所采取的措施。广义上说,可通过改善混凝条件提高出水水质。一般认为,混凝过程是混凝剂水解产物对水中胶体进行压缩双电层和吸附电中和使其脱稳,从而形成细小的颗粒,继而絮凝为大而密实的矾花,并通过吸附架桥或网捕作用使脱稳的胶体生成

微污染水处理工艺探析

微污染水处理工艺探析 微污染水是指受到有机物污染, 部分水质指标超过《地表水环境质量标准》( GB3838-2002) Ⅲ类水体标准的水体。微污染水一般是由于工业、农业和生活等方面产生的污水未经适当处理,直接排入供水水源导致的, 其成分主要包括有机物(天然有机物(NOM)和人工合成有机物(SOC))、氨(水体中常以有机氮、氨、亚硝酸盐和硝酸盐形式存在)、嗅味、三致物质、铁锰等。微污染水主要包括石油烃、挥发酚、氯氮、农药、COD、重金属、砷、氰化物等,这些污染物种类较多,性质较复杂,但浓度比较低微,尤其是那些难于降解、易于生物积累和具有三致作用的优先控制有毒有机污染物,对人体健康毒害很大。这些有害污染物,常规水处理工艺(混凝→沉淀→过滤→消毒)不能有效去除微污染水源水中的有机物、氨氮等污染物,同时液氯很容易与原水中的腐殖质结合产生消毒副产物(DBPs),直接威胁饮用者的身体健康,无法满足人们对饮用水安全性的需要。随着工业的迅速发展, 微污染水源水污染日益严重,有害物质逐年增多, 尤其是近年来水源水体的富营养化现象不断加重, 水体中有机物种类和数量激增以及藻类大量繁殖, 现有常规处理工艺已不能有效保证水厂出水中有机物的去除效果, 无法满足人们对饮用水安全性的需要;同时, 随着水质分析技术的不断提高, 我国《生活饮用水水质指标》标准逐步提高。但是在当前水资源严重短缺的形势下,微污染水源水仍将是重要水源,根据微污染水的水质特点及供水水质的要求, 选择适合我国国情的微污染水源水处理技术方案已经引起了人们的高度重视。许多学者提出了各种微污染水源水的给水处理工艺,主要包括强化常规处理、预处理和深度处理技术。 一、强化常规处理 根据目前的原水水质状况,改进和强化传统净水工艺是改善出厂水水质最经济最有效的手段。对传统净化工艺进行改造、强化.可以降低出水浊度,提高有机物的去除率,全面提高水质。强化常规处理不仅可以降低出水浊度,同时也降低了出厂水中的细菌、大肠菌、病毒、贾第鞭毛虫、隐孢子虫、铁、锰等的浓度,使形成氯消毒副产物的母体——挥发性有机物、致突变活性有机物也有所降低。 强化处理是针对当前不断提高的水质标准,在现有的工艺基础上经过改进、优化和新增以去除浊度、病毒微生物、有机污染物以及有机污染物引起的色度、嗅味、藻类、藻毒素、卤仿前质、致突变物质等为主要目标的,使之达到不断提高的水质标准的水处理工艺均为水的强化处理工艺。

微污染水源强化混凝水处理技术研究进展

微污染水源强化混凝水处理技术研究进展 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

微污染水源强化混凝水处理技术研究进展摘要:对微污染水源的强化混凝水处理技术进行系统的介绍。详细阐述 强化混凝的主要影响因素,如混凝剂种类及投加量、pH值、温度、碱度 和原水水质等,同时介绍了几种常用的强化混凝方法,并对该技术在微 污染水源水处理中的应用予以展望和提出建议。 关键词:微污染;强化混凝;粉末活性炭(PAC);高锰酸钾复合药剂(PPC) 水源地饮用水污染对给水工程造成了各种损失,给传统净水工艺提出了 挑战。微污染水源指的是水体的物理、化学或微生物指标已不能达到 《地表水环境质量标准》中作为生活饮用水源水的水质要求,但通过特 殊工艺处理后尚可使用的原水。水源水质的恶化,一方面势必额外地投 加大量的混凝剂,使制水成本大大增加;另一方面水中藻类过避繁殖, 使给水产生一定的色度和臭味,水源水的污染加剧了水资源的危机。此外,由于水源中污染物质的存在,对人类的健康有很大的影响,而靠国 内目前普遍使用的常规净化工艺又很难去除掉,尤其是有机物,结果致 使城市居民不得不长期饮用这种不安全的水,因而选择一种适合的微污 染水源水处理技术方案引起人们的高度重视。 1强化混凝内涵

强化混凝是给水常规处理中非常关键的环节,通过强化混凝,可去除原 水中绝大部分的浊度、色度,提高常规混凝法处理中天然有机物(NOM)去除效果,最大限度地去除消毒副产物前驱物(DBPFP)等有机物。它是为提高常规混凝效果,通过增加混凝剂的投加量、改变混凝剂的匹配或调整pH值,保证浊度去除率的同时提高水中有机物去除率所采取的措施。广 义上说,可通过改善混凝条件提高出水水质。一般认为,混凝过程是混 凝剂水解产物对水中胶体进行压缩双电层和吸附电中和使其脱稳,从而 形成细小的颗粒,继而絮凝为大而密实的矾花,并通过吸附架桥或网捕 作用使脱稳的胶体生成粒度较大的絮凝体,再通过沉淀和过滤进行分离 去除。而水中分子质量较小、溶解度较大的有机物在一般混凝条件下去 除率很低,主要原因是由于其具有良好的亲水性而不易被混凝剂的水解 产物--金属氢氧化物所吸附,有机物不fEl增加r胶体表面电荷,而且 造成空间位阻效应。但是,如果通过改善混凝处理条件,即在低pH值、高混凝剂用量的强化混凝条件下形成大量金属氢氧化物,改善混凝剂水 解产物的形态且使其正电荷密度上升,同时低pH值条件会影响有机物离解度和改变水中有机物存在形态,有机物质子化程度提高,电荷密度降低,进而降低起溶解度及亲水性,成为较易被吸附的形态。 Randtke认为强化混凝去除有机物的机理主要包括胶体状天然有机物(NOM)的电中和作用,腐殖酸和富里酸聚合体的沉淀作用,以及吸附于金属氢 氧化物表面上的共沉淀作用。水中溶解性的有机物而言,依靠后一种作 用即吸附于混凝剂的金属沉淀物上而去除。美国环保局认为,强化混凝

微污染水源水处理技术的现状与发展

微污染水源水处理技术的现状与发展 摘要:水环境污染造成的饮用水源水水质下降及传统给水处理工艺的缺陷导致饮用水中含有THMs,MX等致癌物及其它有机物,严重威胁人体健康。水处理工作者对传统工艺进行了诸多改进,并开发了种类繁多的新型物理、化学技术及生物预处理技术。本文对三者进行了系统的总结,认为:生物预处理技术在成本上能够为我国大部分地区所接受,毒理学安全,见效快,它与改进后的传统工艺的联用应成为国内水厂改善出水水质的首选方法。 关键词:饮用水微污染水生物预处理 Present Situation and Development of Micro-polluted Water Treatment Xiao Hua Zhou Rongfeng National Engineering Research Center for Urban Pollution Control,Tongji University,Shanghai,200092 Abstract:The deterioration of raw water quality caused by water pollution and the deficiency of conventional water treatment technique results in the drinking water containing THMs,MX and other organic pollutants which seriously threaten human health.Scientists and engineers have improved the conventional technique in several aspects,developed many physical,chemical techniques and biological pretreatment processes.This article systematically analyses these three techniques.It is concluded that biological pretreatment can be accepted by most areas of China in cost,and this process is also eco-toxicologically safe,the combination of it and improved conventional technique should be the top priority for China‘s water treatment plants to better the drinking water quality. Key Words:Drinking water,micro-polluted water,biological pretreatment. 水是人类的生存与发展,社会的文明与进步的基本保障。饮用水更是与我们每个人的日常生活息息相关。由于近几十年工业化的迅速发展,城市化规模的不断扩大,人们在生活和生产过程中排放出来的污染物对源水水质的污染已经愈演愈剧,源水受污染的程度越来越严重,水中有机物质逐渐增多。从20世纪60年代以来,不少地区饮用水水源水质日益恶化;同时,随着水质分析技术逐渐改进,水源和饮用水中能够测得的微量污染物质的种类也不断增加,人们在饮用水的水质净化中又碰到了新问题。针对源水中出现的新污染问题,进入20世纪70年代以后,人们就

深度处理工艺对微污染水中天然有机物(NOM)的去除机理及协同作用

深度处理工艺对微污染水中天然有机物(NOM)的 去除机理及协同作用 程学营安毅王启山吴立波 (南开大学环境科学与工程学院 300071) E-mail:xueyingc@https://www.360docs.net/doc/a64129759.html, 摘要:从天然有机物分子量水平、分子极性角度介绍了几种饮用水深度处理工艺对NOM的去除原理及效果。探讨了不同工艺的去除效果与NOM种类的关系及组合工艺去除NOM的协同作用。 关键词:天然有机物 深度处理 给水 1.原水中天然有机物特征 1.1 原水中天然有机物种类及危害 原水中大量存在的NOM是引起水体色度的主要物质,也是最基本的消毒副产物(DBPs)先质,而DBPs是导致饮用水致突变性增加的主要原因;在水处理过程中NOM还可能降低混凝工艺的处理效果、增加投药量;残留的NOM进入管网后可能引起细菌滋长,从而腐蚀管壁,降低饮用水的生物稳定性。因此,在微污染水净化过程中,NOM的去除对于提高饮用水水质、保障用水安全有重要意义。 NOM主要包括腐殖质、亲水酸类、蛋白质、类脂、碳水化合物、羧酸、氨基酸等物质,其分子量一般为2×102~1×105,分子直径在0.5~400nm之间,多数NOM分子直径≤5nm [1]。 腐殖质(腐殖酸、富里酸)是主要部分,约占天然水体中溶解性有机碳(DOC)总量的40~60﹪,分子量一般在5×102~2×103之间。NOM中非腐殖质部分,以前被认为对出水水质没有影响,但是近年的研究表明,消毒副产物的前体物有将近一半(DOC 计)来自NOM中的非腐殖质部分,并且这部分有机物是NOM中主要的可生物降解部分,具有较强的亲水性和较低的芳香度。 1.2 评价指标 目前完全区分不同种类NOM还不可能、也没有必要。因此在水处理中一般以水中总有机碳(TOC)或COD Mn作为总有机物的替代参数,以溶解态有机碳(DOC)代表水中溶解性有机物的含量,DOC中可被细菌利用的部分为可生物降解性有机碳(BDOC),而BDOC中能被细菌直接合成细胞的部分称为可同化有机碳(AOC)。BDOC和AOC主要由易溶于水的小分子、极性有机物构成,用来表示水中可生物降解有机物,还可表示出水的生物稳定性。UV254表 ?国家863项目:北方地区安全饮用水保障技术(2002AA601140) 1

微污染水源水处理技术研究进展

微污染水源水处理技术研究进展 蔡世军,朱亮 河海大学环境科学与工程学院,南京(210098) E-mail:caishijun@https://www.360docs.net/doc/a64129759.html, 摘要:根据当今饮用水源污染问题日益突出,论述了水源的污染现状和主要危害,分析了国内外微污染水处理技术的现状和发展,展望了微污染水源水处理技术的发展趋势。 关键词:微污染水源水,强化常规工艺,预处理,深度处理 中图分类号:X703.1文献标识码:A 当前,我国大部分城镇饮用水源都不同程度地受到污染,致使水质较差,不仅会对人体健康造成威胁,而且水源污染加大了水源选择和处理的困难。[1]饮用水中有机物含量的增加导致了“三致”(致癌、致畸、致突变)的潜在威胁,水源微污染问题已经相当严重。因此,微污染原水饮用水处理技术的研究非常需要。 1.水源的污染现状和主要危害 近些年来,我国水源水质污染呈恶化趋势。《2006年中国环境状况公报》[2]显示,2006年,全国地表水总体水质属中度污染。在国家环境监测网(简称国控网)实际监测的745个地表水监测断面中(其中,河流断面593个,湖库点位152个),Ⅰ~Ⅲ类,Ⅳ、Ⅴ类,劣Ⅴ类水质的断面比例分别为40%、32%和28%。主要污染指标为高锰酸盐指数、氨氮和石油类等。国控网七大水系(长江、黄河、珠江、松花江、淮河、海河和辽河)的197条河流408个监测断面中,Ⅰ~Ⅲ类,Ⅳ、Ⅴ类和劣Ⅴ类水质的断面比例分别为46%、28%和26%。其中,珠江、长江水质良好,松花江、黄河、淮河为中度污染,辽河、海河为重度污染。主要污染指标为高锰酸盐指数、石油类和氨氮。七大水系监测的98个国控省界断面中,Ⅰ~Ⅲ类,Ⅳ、Ⅴ类和劣Ⅴ类水质的断面比例分别为43%、31%和26%。海河和淮河水系的省界断面水体为中度污染。163个城市的地下水水质监测结果表明,地下水水质以良好~较差为主。27个国控重点湖(库)中,满足Ⅱ类水质的湖(库)2个(占7%),Ⅲ类水质的湖(库)6个(占22%),Ⅳ类水质的湖(库)1个(占4%),Ⅴ类水质的湖(库)5个(占19%),劣Ⅴ类水质的湖(库)13个(占48%)。其中,巢湖水质为Ⅴ类,太湖和滇池为劣Ⅴ类。主要污染指标为总氮和总磷。 水源水的污染不仅给人类的健康带来了较大的危害,而且对传统净水工艺和水质的影响所造成的各种损失更是难以估量。水源水质的恶化,一方面势必额外投加大量的混凝剂,使制水成本大大增加;另一方面由于传统净水工艺对水中微量有机污染物没有明显的去除效果,相反还可能使出水氯化后的致突变活性有所增加,水质毒理学安全性下降,对人体健康造成危害。世界卫生组织(WHO)调查结果表明,在发展中国家,80%的疾病和1/3的死亡率与水污染有关。与此同时,水源水的污染还加剧了水资源的危机。 2.微污染水源水处理技术 针对微污染水源水处理问题,国内外进行了大量的研究和实践。按照处理工艺的流程,可以分为预处理、常规处理、深度处理。常规处理工艺(混凝、沉淀、过滤、消毒)不能有效去除微污染原水中的有机物、氨氮等污染物;液氯很容易与原水中的腐殖质结合产生消毒副产物(DBPs)三卤甲烷(THMs),[3-4]直接威胁饮用者的身体健康。由于传统净水工艺

微污染水源水处理技术及工程应用

微污染水源水处理技术及工程应用 发表时间:2016-08-17T15:21:56.280Z 来源:《低碳地产》2015年第17期作者:向伟 [导读] 微污染水源水一般是指水体受到有机物污染,部分水质指标超过GB 3838—2002《地表水环境质量标准》Ⅲ类标准的水体。 向伟 辽宁大唐国际阜新煤制天然气有限责任公司辽宁省阜新市 123000 【摘要】本文针对当前微污染水源水处理技术研究现状进行了分析,分别阐述了深度处理技术、新型处理技术的研究与发展现状,在此基础上,对未来这一技术领域的研究与发展方向进行了展望,进而为实现对微污染水源的高效处理奠定基础。只有不断的加大该研究领域的研究力度,才能够为实现对水资源的净化奠定基础,进而确保饮用水的安全性,并实现对自然环境的进一步保护。 【关键词】水污染;节能;环保;进展对策 一、微污染水源水质特点 微污染水源水一般是指水体受到有机物污染,部分水质指标超过GB 3838—2002《地表水环境质量标准》Ⅲ类标准的水体。微污染水源水的污染指标以高锰酸盐指数(COD Mn)和NH 3-N为主,具有有机物综合指标值(以COD Mn表示)较高、NH 3-N浓度较高、嗅和味明显等特点。常规工艺处理后的出水水质难以达到饮用水水质标准,其水质问题主要有:①嗅阈值较高。色、嗅、味等感官性状有待提高。②常规处理工艺对NH 3-N、COD Mn去除能力有限。当原水NH 3-N、COD Mn较高时,出水中的NH 3-N、COD Mn等指标无法满足现有的生活饮用水卫生标准。③药耗、氯耗量较高。药耗量增大,在混凝工艺过程中可能产生铝和丙烯酰胺等副产物。此外,水厂加氯消毒的氯单耗长期居高不下,而微污染水中的有机物浓度较高,使得出厂水中产生消毒副产物的风险加大。 二、当前中国微污染水源水处理技术的研究现状 1、深度处理技术的研究现状 1.1膜过滤技术 膜技术的基本原理是在某种推动力作用下,利用原水中的水分子可以透过分离膜的能力,将水中色度、臭味、消毒副产物前体物质及其它有机物和微生物等去除,从而得到可以饮用的水。常用的膜技术包括微滤、超滤、纳滤和反渗透。刘婷等[24]采用臭氧预氧化-膜生物反应器工艺处理微污染水,对浊度、COD Mn、DOC和UV 254的平均去除率分别为99.3%、32.6%、18.7%、30.1%,整个系统对AOC的去除率为13.4%。吴启龙等[25]研究了新型陶瓷膜在不同孔径和操作压力下对藻细胞及叶绿素a的去除效果。结果表明,藻细胞都能得到完全去除,对叶绿素a的平均去除率约为96%,出水浊度稳定在0.12 NTU以下,对COD Mn的去除率为10%~20%。膜技术作为新的水处理技术越来越受到人们的重视,在微污染水处理中具有广阔的应用前景。 1.2臭氧-生物活性炭技术 臭氧-生物活性炭技术是将臭氧化学氧化、臭氧消毒、活性炭物理化学吸附、生物降解技术合为一体,也是当今国内外饮用水深度处理的主流工艺。采用臭氧-生物活性炭技术深度处理松花江微污染水源水。中试研究结果表明,臭氧预氧化具有助凝作用,从而节省混凝剂用量;同时臭氧氧化工艺的设置可以提高后续活性炭滤池的净水效果。研究了臭氧-生物活性炭给水中试装置深度处理南方某市Ⅲ~Ⅴ类微污染水源水。结果表明,臭氧-生物活性炭深度处理工艺出水中的营养性指标(NH 3-N、TP、铁、锰、AOC),较常规处理工艺出水有了大幅度地降低,从而增强了饮用水的生物稳定性和安全性。近些年,臭氧-生物活性炭组合工艺在城市深度水厂中的应用较为广泛,并且对于饮用水水质的改善发挥了良好的作用。 1.3光催化氧化技术 这一技术是以太阳光线中的紫外线来实现对污染水源的净化处理,在此过程中,其能够将水中有毒害的物质转化成水等物质。当前,这一技术在国内尚处于研究阶段,并没有得到实践应用。其研究与发展的趋势为:(1)要实现对光催化剂的合理选用,进而在规避这一技术应用风险的基础上,提高其反应的效率;(2)要结合水体的实际状况来明确相应的处理方式,并进一步加大对反应器的研发,进而为实现这一技术的落实奠定基础;(3)要实现相关技术的进一步优化组合,以确保提高这一深度处理技术具备较高的应用价值。 2、新型处理技术 2.1生物预处理 生物预处理是在常规工艺之前对水中NH 3-N和有机物预去除或转化的一种有效方法。目前研究应用的生物预处理工艺主要有生物接触氧化、生物膨胀床与流化床、生物转盘、生物流化床等。采用接触氧化-生物过滤组合工艺对微污染高浊度水源水进行预处理,组合工艺对COD Mn和UV 254的平均去除率分别为33.3%和23.4%。对生物滤池处理微污染水源水的处理性能进行了试验研究,试验结果表明:生物滤池对COD Mn、UV 254、NH 3-N、TP和叶绿素a的平均去除率分别为18.77%、16.44%、11.94%、20.27%、38.74%。利用生物转盘和生物流化床等生物膜工艺对微污染水源水进行预处理,发现对藻类的去除率可达到50%~80%。通过生物预处理可降解有机物质,减少前体物质在水中的浓度。但是,生物预处理技术仍存在一次性投资成本高、占地面积大及微生物新陈代谢容易受温度的影响等缺点。生物预处理技术具有良好的处理效果,在微污染水源水预处理方面将会得到广泛应用。 2.2膜到生物反应器 这一处理技术将膜分离技术和生物处理单元相融合,进而以膜分离的形式来取代传统的固液态形式下的分离装置。使用这一技术能够将微污染水源中所含有的微生物进行隔离处置,这样就将水流进行了颗粒物除污处理,且这一技术不仅能够实现高效的处理,还能够降低占地面积,进而在提高水质的基础上,为实现这一技术的推广性使用奠定了基础。从目前这一技术的实践看,其已经被应用在水库等污水处理技术上。 2.3其他技术 当前,伴随着生物技术的不断发展,以固定化微生物技术来实现对微污染水源的处理已成为最新的发展趋势,同时国内在该技术上的研究实现了进一步的深入,很多新型的处理技术也相继的诞生,并为实现对微污染水源水的有效处理奠定了基础。 2.4化学氧化预处理 化学氧化预处理技术的原理是利用氧化作用,使得物质的结构遭到破坏,从而可以转化或者分解该物质,降低目标物浓度及其毒性,同时减轻后续处理工艺负荷的方法。常用的氧化剂有氯气、二氧化氯、次氯酸钠、臭氧、高锰酸钾等。有学者研究发现二氧化氯、次氯酸

污染水源水处理方法

微污染水源水的水质特征主要表现为:氨氮、亚硝酸盐、生化需氧量(BOD5)、高锰酸钾指数(CODMn)等项目超标;溶解性有机污染物、有机卤化物等有害物质综合反映为Ames (补充扩展名)试验呈阳性;水体中存在病原微生物包括细菌、病毒、原生动物、肠虫和变异的微生物因子[33]。消除水库水源水中微污染物质,减轻对饮用水产生的不良影响,需要从根本上改善水源水水质,这就需要对水源水及其流域进行综合治理。目前,针对水库微污染水源,国内外采用的主要处理方法是:预处理+常规处理+深度处理[34]。常规处理工艺包括混凝、沉淀或澄清、过滤和消毒。这种常规处理工艺长期以来被世界上大多数国家所采用,是目前饮用水处理的主要工艺。对于水库微污染水源而言,常规处理工艺已显得力不从心,常规处理工艺不但去除水中溶解性有机物效率低,而且氯化过程本身还导致了水中对人体健康危害更大的有机卤化物的形成,因此,需要开发新的水处理技术[35]。 预处理通常是指在常规处理工艺前面,采用适当的物理、化学和生物的处理方法,对水中的污染物进行初级去除,同时可以使常规处理更好的发挥作用,减轻常规处理和深度处理的负担,发挥水处理工艺的整体作用,提高对污染物的去除效果[36]。由于各种物理化学预处理方法成本较高,在推广使用中存在局限性,而生物预处理以其良好的处理效果和经济性越来越受到人们的关注。生物预处理技术在欧洲一些国家发展较快,也较为普及。最近几年,中国和日本等亚洲国家也相继开展了生物预处理的各种研究,目前生物预处理方法主要包括如下几种类型:生物过滤反应器、生物转盘反应器、生物塔滤、生物接触氧化、生物流化床以及土地处理系统[37]。

微污染水处理

浅述——微污染水处理技术方法 摘要:改革开放以来,随着经济社会的快速发展,流域内人口急剧增加,工农业生产和生活废污水排放与日俱增,造成河道水质污染日趋严重,水质指标远远超过地表水V类水体标准,水资源和水环境的价值与生态景观功能日渐丧失。因此,河流水体功能恢复与水生态环境改善,其迫切性和重要性不言而喻。 关键词:微污染水源水处理新型处理技术 一、给水处理过程中的微污染水处理技术 随着社会的发展和科技的进步,导致城市的日益扩大和工农业的迅猛发展,大量的生活污水和工农业废水被排放到江河湖泊中,使城市周围地表水体的污染不断呈加重趋势,造成人工合成有机物、农药、重金属离子、氨氮及放射性物质等有害污染物,通过工农业使用和生活等人类活动而进入水体。而这种现象在我国普遍存在,这也就是说我国大部分取水水源都不同程度上被污染。其中大量水源又属于微污染水,在微污染水源水中,一般含有少量的有机物、氨氮和农药等有害物质,经常规的处理工艺处理后,很多情况下处理后的水质难以满足国家的饮用水标准。所以,对于原有的饮用水处理工艺进行改进和强化是目前微污染水源水处理中经常使用的手段。 针对微污染水源水的处理问题,在饮用水常规处理工艺的基础上,国内外进行了大量的研究和实践。归纳起来主要是强化处理技术、预处理技术以及深度处理技术。 1、强化处理 强化处理是针对当前不断提高的水质标准,在现有的工艺基础上经过改进、优化和新增以去除浊度、病毒微生物、有机污染物以及有机污染物引起的色度、嗅味、藻类、藻毒素、卤仿前质、致突变物质等为主要目标的,使之达到不断提高的水质标准的水处理工艺均为水的强化处理工艺,其中最重要的工艺环节是强化混凝和过滤工艺,强化沉淀技术。 2、预处理技术 在传统工艺之前设置预处理工艺,对水中的污染物进行初步去除,可使传统工艺更好地发挥作用,减轻传统工艺与深度处理工艺的负担,发挥水处理工艺的整体作用,最大限度地提高对污染物的去除能力。 吸附预处理技术,其主要是利用吸附剂所具备的吸附特性来去除微污染水源水中的少量有机污染物,在这个过程中,使用比较多的吸附剂是活性炭、沸石、粘土及硅藻土。而目前该技术存在的主要问题是吸附剂难以回收利用,这使得该方法的运行费用偏高化学氧化预处理技术就是依靠投加的化学氧化剂,分解破坏水中有机污染物,再利用混凝剂脱除胶体悬浮物,使水质达到处理要求。目前采用的氧化剂有氯气、高锰酸钾、高铁酸钾、臭氧等。 生物预处理是指在常规净水工艺之前,增设生物处理工艺,借助于微生物群体的新陈代谢活动,去除水中可生化有机物特别是低分子可溶性有机物、氨氮、亚硝酸盐、铁、锰等污染物,并有效改善混凝沉淀性能、减少混凝剂用量,同时还能去除常规处理工艺不能去除的污染物,利于后续处理工艺的运行。 3、深度处理技术 深度处理技术是指通过常规的处理方法处理以后的水源,仍然存在微污染物质,此时再采用合理的、适当的方法对水源进行处理,提高水的质量,使其满足人们的使用标准。一般来说,常用的方法有臭氧氧化法光催化氧化法、活性炭吸附法、膜技术、臭氧活性炭法等等,这些方法都能在很大程度上有效去除水中微污染物质 臭氧一活性炭联用工艺先进行臭氧氧化再进行活性炭吸附,能够同时发挥臭氧、活性炭

国内外水处理技术的现状 发展趋势

国内外相关技术的现状发展趋势世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 ?根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 ?目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模

的工厂,大型反渗透海水淡化厂已是司空见惯。? 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污水量仅仅达到的设计负荷的64%,主要的原因在于运营费用过高。在这种情况下,中国的污水处理行业将需要更多的投资和更先进的技术。在第11个5年计划之间(2006年至2010年),政府预

相关文档
最新文档