运动学知识点及例题(详细)

运动学知识点及例题(详细)
运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动

专题一:运动的描述

1.质点

(1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件:

1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。

(4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系

(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。

(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点:

①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。

②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。

③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系

④比较两物体运动时,要选同一参考系。 3.位置、位移和路程

(1)位置是空间某个点,在x 轴上对应的是一个点

(2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。

(3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。

4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间

时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. 时间间隔=终止时刻-开始时刻。 5、速度、平均速度和瞬时速度

(1)速度是表示物体运动快慢的物理量,它等于位移s 跟发生这段位移所用时间t 的比值。即v =s/t 。(适于一切运动)速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单

B

A

B C 图1-1

位是(m/s )米/秒。

(2)平均速度是描述作变速运动物体运动平均快慢的物理量。只能粗略描述物体运动的快慢。做变速运动的物体,通过的位移s 跟发生这段位移所用时间t 的比值。叫这段时间(或这段位移上)的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

平均速度与一段时间或一段位移相对应,故说平均速度必须指明是哪段时间或哪段位移内的平均速度 (3)瞬时速度是描述变速运动物体瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度,是矢量,方向为此时刻的运动方向。瞬时速度的大小叫瞬时速率,简称速率。是标量。 6、平均速率与瞬时速率(是标量) (1)平均速率:等于路程与时间的比值 (2)瞬时速率:瞬时速度的大小 7、匀速直线运动

(1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,则叫 (2) 特点:a =0,v=恒量. (3)位移公式:S =vt .

(4) 匀速直线运动的x —t 图象

的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条

直线。 (5)匀速直线运动的v-t 图象是一条平行于横轴(时间轴)的直线,如图2-4-1所

示。 由图可以得到速度的大小和方向,如v 1=20m/s,v 2=-10m/s,表明一个质点沿正方向以20m/s 的速度运动,另一个反方向以10m/s 速度运动。 8、加速度

(1)定义:速度的改变量跟发生这一改变量所用时间的比值 (2)定义式:a=

t v ??=0t V V t

- (3)是矢量,与速度变化(?v )的方向相同(a 与v 同向加速,a 与v 反向减速)

(4)物理意义:描述速度改变快慢的物理量

说明:

速度越大(v 越大),加速度越大------错误 速度变化越大(△V 越大),加速度越大-------错误 在相同时间(或单位时间)内速度变化越大(△V 越大),加速度越大------正确 速度变化越快,加速度越大------正确 速度变化率越大,加速度越大------正确

速度增大时,加速度一定增大(或减小或不变)-------错误 速度减小时,加速度一定增大(或减小或不变)-------错误 速度增大时,加速度可能增大(或减小或不变)-------正确 速度减小时,加速度可能增大(或减小或不变)-------正确 速度为零时,加速度一定为零-------错误

10、用电火花计时器(或电磁打点计时器)研究匀变速直线运动 1、实验步骤:

(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路 (2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码. (3)将纸带固定在小车尾部,并穿过打点计时器的限位孔

(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带. (5)断开电源,取下纸带

(6)换上新的纸带,再重复做三次

2、常见计算:

(1)2B AB BC T υ+=,2C BC CD

T υ+=

(2)2

C B C

D BC

a T T

υυ--== 11、常见题型

题型一、基本概念的理解

题型二、平均速度与瞬时速度的理解 题型三、速度与加速度的关系理解

专题二:匀变速直线运动

一、匀变速直线运动的规律

1、定义: 在相等的时间内速度的变化相等的直线运动叫做匀变速直线运动. 2.特点:a=恒量. 3.三个基本公式:

(1)速度随时间变化关系v t =v 0十at (2)位移随时间变化关系x=v 0t +2

1at 2

(3)速度与位移关系 v t 2-v 02=2ax ,以上三式知3求2 (4)x=

t v v t

2

0+. 说明:(1)以上公式只适用于匀变速直线运动.

(2)四个公式中只有两个是独立的,即由任意两式可推出另外两式.四个公式中有五个物理量,而

图2-5

两个独立方程只能解出两个未知量,所以解题时需要三个已知条件,才能有解.

(3)式中v 0、vt 、a 、s 均为矢量,方程式为矢量方程,应用时要规定正方向,凡与正方向相同者取正值,相反者取负值;所求矢量为正值者,表示与正方向相同,为负值者表示与正方向相反.通常将v 0的方向规定为正方向,以v 0的位置做初始位置. 4、推论:

(l )匀变速直线运动的物体,在任两个连续相等的时间里的位移之差是个恒量,即Δx = x n - x n-1=aT 2=恒量.X m - x n =(m-n)aT 2

(2)匀变速直线运动的物体,在某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即

2

t V =V =

2

0t

v v +.(此平均速度公式只适于匀变速直线,定义式V =x/t 适于一切运动)以上两推论在“测定匀变速直线运动的加速度”等学生实验中经常用到,要熟练掌握. (3)匀变速直线运动的物体,在某段位移的中间位移处的瞬时速度为2

2

202

t x v v v

+=

无论加速还是减速

v

x 2

>2

t V

(4)初速度为零的匀加速直线运动(设T 为等分时间间隔):

① IT 末、2T 末、3T 末……瞬时速度的比为V l ∶V 2∶V 3……∶V n =1∶2∶3∶……∶n ; ② 1T 内、2T 内、3T 内……位移的比为S l ∶S 2∶S 3∶……S n =12∶22∶32∶……∶n 2;

③ 第一个T 内,第二个T 内,第三个T 内……位移的比为S I ∶S Ⅱ∶S Ⅲ∶……∶S N =l ∶3∶5∶……∶(2n

-1);

④ 从静止开始通过x 、2x 、3x 位移……末速度比为1:2:3……n ⑤ 从静止开始通过x 、2x 、3x 位移……所用时间之比为1:2:3……n ⑥静止开始通过连续相等的位移所用时间的比t 1∶t 2∶t 3∶……t n =

()()()

123121--????--n n ::::

二、自由落体运动和竖起上抛运动 (一)自由落体运动

1、定义: 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。

2、特点:(l )只受重力;(2)初速度为零.

3、公式:(1)v t =gt ;(2)x=21gt 2;(3)v t 2=2gx ;(4)x=t v t 2

;(5)

gt t h v 2

1

==-

-;

4、重力加速度:

(1)自由落体加速度也叫重力加速度,用g 表示.

(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。 (3)通常情况下取重力加速度g =10m/s 2

(二)竖起上抛运动

1、定义:将物体沿竖直方向抛出,抛出后只在重力作用下的运动。

2、公式:(1)v t =v 0-gt ,(2)s=v 0t -2

1

gt 2 (3)v t 2

-v 02

=-2gh

3、几个特征量:最大高度h= v 02/2g ,运动时间t=2v 0/g .

4、两种处理办法:

(1)分段法:上升阶段看做末速度为零,加速度大小为g 的匀减速直线运动,下降阶段为自由落体运动. (2)整体法:从整体看来,运动的全过程加速度大小恒定且方向与初速度v 0方向始终相反,因此可以把竖直上抛运动看作是一个统一的减速直线运动。这时取抛出点为坐标原点,初速度v 0方向为正方向,则a=一g 。

5、上升阶段与下降阶段的特点 (l )物体从某点出发上升到最高点的时间与从最高点回落到出发点的时们相等。即 t 上=v 0/g=t 下 所以,从某点抛出后又回到同一点所用的时间为t=2v 0/g

(2)上把时的初速度v0与落回出发点的速度V 等值反向,大小均为

gH

2;即 V=V0=

gH

2

注意:①以上特点适用于竖直上抛物体的运动过程中的任意一个点所时应的上升下降两阶段,因为从任意一点向上看,物体的运动都是竖直上抛运动,且下降阶段为上升阶段的逆过程.

②以上特点,对于一般的匀减速直线运动都能适用。若能灵活掌握以上特点,可使解题过程大为简化.尤其要注意竖直上抛物体运动的时称性和速度、位移的正负。 三、解题思路与步骤

1、正负号的规定,一般以初速度方向为正,其余量同向为正,反向为负。若初速度为0,则以加速度方向为正

2、解题步骤

(1)审题。明确研究对象。弄清题意和物体的运动过程。 (2)选择参考系、坐标系。规定正方向(一般取初速度为正方向)。 (3)画草图,明确已知量和待求物理量 (4)选择恰当的公式求解(知三求二)。 例如:知道a 、t 、

0v 求解末速度t v 用公式:at v v t +=0

(5)解方程。

(6)判断结果是否符合题意,根据正、负号确定所求物理量的方向。 四、题型

1、对匀变速直线运动公式的理解

物体先做匀减速直线运动,速度减为0后又反向加速的直线运动,全过程加速度不变,可全程用公式,但特别注意刹车问题中速度减为零后不能反向加速问题:要先求刹车时间 2、解匀变速直线问题的常用方法 (1)基本公式法

但对匀减速运动要注意两点,一是加速度在代入公式时一定是负值,二是题目所给的时间不一定是匀减速运动的时间,要判断是否是匀减速的时间后才能用(刹车不返回问题)。

例1、高速汽车以20m/s 的速度做匀减速运动,刹车过程中的加速度的大小为5m/s2 ,则刹车后6s 汽车的位移是多少?

分析:有的同学分析题目后,直接由公式得到s=20×6+1/2×5×62=210(m)。但本题中汽车是匀减速运动,代入公式中的加速度应为 -5m/s2 ,又若汽车静止需时为t ,则t=4s,由此可见汽车实际运动了4s 而不是6 s ,故汽车的位移应为s=20×4+1/2×(-5)×42=40(m)。 (1)平均速度法

平均速度公式V =x/t 适于一切运动,V =

2

0t

v v +,只适于匀变速直线

(2)中间时刻、中间位置速度法

例2、物体从斜面顶端由静止开始匀加速滑下,经过斜面中点时的瞬时速度是2m/s,则物体从顶端滑到最底端的过程中,平均速度是多少?

分析:设最底端速度为v t,由得v t=2(m/s)。

(m/s)。

(3)比例法

对于初速度为0的匀加速运动与末速度为0的匀减速运动用比例关系较快

例3、一物体做初速度为零的匀加速直线运动,在第三秒内通过的位移为10米,则该物体第一秒内的位移为多少?

分析:由比值关系③知:sⅠ:sⅢ=1:5,故sⅠ=2m。

例4、物体从光滑的斜面顶端由静止开始下滑经过一秒到达斜面中点,那么物体滑下的总时间是多少?

分析:由比值关系式④知t1:t2=1:,故t 总=(S)。

例5、一矿井深度为125米,在井口每隔相等时间落下一个小球,当第11个小球刚好从井口开始下落时,第1个小球恰好到达井底,此时第三个小球距井底多少米?( g=10m/s2)

分析:由比值关系式②知第三个小球下落的距离和总高度的比值s8:s10=82:102,小球下落的高度h=,所以此时小球距井底高度为125-80=45(m)。

(4)逆向思维法

把运动过程的末态作为初态的反向研究,一般用于末态已知的情况

例6、一物体竖直上抛,最后一秒的位移为最大高度的二分之一,求物体上抛的最大高度。(g=10m/s2) 分析:物体到达最高点后自由落体,该两种运动是对称的,即自由落体的第一秒和竖直上抛的最

后一秒的位移大小一样。设最大高度为H,则,即H=10(m)。

(5)图象法

例7、矿井里的升降机,从静止开始匀加速上升经时间3s速度达到3m/s,然后以这个速度匀速上升了6s,最后匀减速上升经2s到达井口正好停下来,求矿井深度。

分析:本题可用公式分段求解但比较麻烦,

若利用速度图象“面积”表示对应时间内的位

移,则简便多了。s=

如图1所示。

例8、以初速度2v0由地面竖直上抛一物A,而后又以初速度v0竖直上抛另一物B,要使两物在空中相遇,求抛出两物的时间间隔。

分析:常规解题即分别对A、B应用竖直上抛位移公式列方程,联立后得一含两未知数的二次方程,再组合为四个不等式组求出解的范围。若用图象法则比较简单。在同一坐标系中作出A的s―t图线,见图2。两物体在空中相遇即两图线相交,由图2显见只有抛出A后相隔2v0/g到4v0/g时间内抛出B,A、B 相遇。

例9(93年高考)两辆完全相同的汽车,沿水平路面一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行驶的距离为S,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为

A S

B 2S

C 3S

D 4S

分析:此题应用图象解法十分简单,介绍如下:

在同一坐标平面上作出前、后两车的v—t图象分别如图3中的实线和虚线所示。前车刹车的初速度为V0,停止时末速度为零。通过的位移S在数值上必等于ΔAOB的“面积”。后车在前车停止时开始刹车,并且刹车的加速度与前车相同,所以线段CD与AB的斜率相等,或者CD∥AB,四边形ABCD必为平行四边形,ΔCBD≌ΔAOB后车通过的总位移在数值上等于矩形AOBC与ΔCBD“面积”之和,即将2S+S=3S,要使唤两车不致相撞,它们原有的距离不得小于3S-S=2S,故B正确。

例10、物体沿一直线运动,在t时间内通过的路程为S,它在中间位置S/2处的速度为v1,在中间时刻t/2时的速度为v2则v1和v2的关系为:

A当物体作匀加速直线运动时,v1 >v2

B当物体作匀减速直线运动时,v1 >v2

C当物体作匀速直线运动时,v1 =v2

D当物体作匀速直线运动时,v1

分析:如图4所示,在v—t图象中,由于S1

时的时间大于t/2,故位移中点的速度大于时间中点的速度,即v1 >v2,所以A正

确同样可以利用v—t图象分析B、C也正确。

(6)推论法

Δx=xn-xn-1=aT2

(7)对称性分析法

例11、竖直上抛一物体,物体应在运动中两次经过A、B两点的时间分别为TA、TB,B在A的

上方,求A、B两点间的距离。

分析:匀变速直线运动的往复过程具有时间、速度及位移的对称性。将此利用于竖直上抛运动的

下落过程可得:

专题三:运动图象追及与相遇问题

一、物理图象的识图方法:一轴、二线、三斜率、四面积、五截距、六交点(或特殊点

1、“轴”:确定图象的意义

横、纵轴所代表的物理量,即图象是描述哪两个物理量间的关系,是位移和时间关系,还是速度和时间关系?同时还要注意单位和标度。

2、“点”“线”:确定物体的运动性质

“线”上的点反映两个量的瞬时对应关系,如x-t图的点对应某一时刻的位移,v-t图的点对应某一时刻的瞬时速度;

“线”上的一段对应一个物理过程,如x-t图象中图线若为倾斜的直线,表示质点做匀速直线运动,v-t图象中图线若为倾斜直线,则表示物体做匀变速直线运动。

3、“斜率”:表示横、纵坐标轴上两物理量的比值,常有一个重要的物理量与之对应,用于求解定量计算中对应物理量的大小和定性分析中对应物理量变化快慢的问题。如x-t图象的斜率表示速度大小,v-t图象的斜率表示加速度大小。

4、“面积”:图线和坐标轴所围成的面积也往往表示一个物理量,这要看两轴所代表的物理量的乘积有无实际意义。这可以通过物理公式来分析,也可以从单位的角度分析。如x和t乘积无实际意义,我们在分析x-t 图象时就不用考虑“面积”;而v和t的乘积vt=x,所以v-t图象中的“面积”就表示位移。

5、“截距”:表示横、纵坐标轴上两物理量在“初始”(或“边界”)条件下的物理量的大小,由此往往能得到一个很有意义的物理量。

6、“特殊点”:如交点,拐点(转折点)等。如x-t图象的交点表示两质点相遇,而v-t图象的交点表示两质点速度相等。

二、直线运动的x—t图象

1、图象的意义:反映位移随时间变化的规律

2、运动性质的确定:

图象是平行t轴的直线表示物体静止

图象是倾斜直线表示物体匀速直线运动

图象是曲线表示物体做变速直线运动

3、图象有关物理量的意义

点:表示某时刻物体所在的位置,两图线的交点表示两物体地该时刻相遇

斜率:表示物体运动的速度大小和方向

截距:表示初始位移和初始时刻

图9

三、直线运动的v-t 图象

1、图象的意义:反映速度随时间变化的规律

2、运动性质的确定:

图象是平行t 轴的直线表示物体做匀速直线运动(v 不变) 图象是倾斜直线表示物体匀变速直线运动(a 不变) 图象是曲线表示物体做非匀变速直线运动(a 变) 3、图象有关物理量的意义

点:表示某时刻物体的速度,两图线的交点表示两物体地该时刻速度相等 斜率:表示物体的加速度大小和方向 截距:表示初始速度和初始时刻

面积:表示物体的位移(t 轴之上为正,之下为负)

1.如图所示,A 、B 、C 三物体从同一地点、同时出发沿x 轴方向做直线运动的位移一时间图象,在0—t

时间内 ( ) A.平均速度

B .平均速率

C .A 一直在B 、C 的前面

D .A 的速度一直比B 、C 的速度大

2求下图2车什么时间相遇?

3.如图5所示,a 、b 两斜线分别表示从同一地点沿同一方向的两物体做直线运动时的 速度图象,下列说法正确的是( )

A .前10s 内b 的位移比较大

B .10s 时a 、b 两物体相遇

C .10s 末a 、b 两物体速度相等

D .a 的加速度比b 的加速度大 4某质点的v -t 图象如图9所示,则下列说法中正确的是 ( )

A .第3末质点离出发点最远

B .第2s 末质点运动方向改变

C .第3s 内和第4s 内质点的加速度方向相反

D .前3s 内质点的位移大小为6m

5下图是A 。B 两物体的运动图像,什么时候A.B 相遇?

四、追及和相遇问题

1.“追及”、“相遇”的问题

讨论在同一时刻两物体能否到达同一位置,关键抓住两个关系和一个条件

(1)两个关系:是时间关系和位移关系。

(2)一个条件:两物体的速度相同

是两物刚好能追上、追不上、两者最大距离、最小距离、刚好相遇”、的临界条件。

①速度小者追速度大者,追上前两个物体速度相等时,有最大距离;

②速度大者减速追赶速度小者,(或匀速的追加速的)追上前在两个物体速度相等时,有最小距离.即必

须在此之前追上,否则就不能追上.

2、追及问题的常见情况及处理方法

(1)肯定能追上的问题,求追上时的时间、速度等

直接按追上列位移关系方程,时间关系方程

(2)能否追上的临界问题

方法一:按能追上列位移方程求时间,若有解,能追上,在追上前有最大距离且出现在速度相等时,再按速度相等求最大位移。若无解,则追不上,有最小距离,出现在速度相等时,再按速度相等示最小距离方法二:按速度相等,求两者的位移来直接判断是否遇上了。

方法三:图象法

方法四:函数极值法

3、解题思路和方法

(1)根据对两物体的运动过程分析,画出物体运动示意图

(2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程

(4)联立方程求解

分析“追及”、“相遇”问题时应注意的问题

若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动,所以先要算一下它停下来所需时间

四、主要题型

1、运动图象的理解和应用:求位移、求速度、求加速度,相遇问题

2、追及和相遇问题:求相遇时的物理量,临界条件问题

专题四实验:研究匀变速直线运动

一、实验目的

1.练习使用打点计时器,学会用打上点的纸带研究物体的运动.

2.掌握判断物体是否做匀变速直线运动的方法.

3.会利用纸带测定匀变速直线运动的加速度.

二、实验原理

1.打点计时器

(1)作用:计时仪器,每隔0.02s打一次点.

(2)工作条件:

电磁打点计时器:4-6 V以下交流电源

电火花计时器:220 V交流电源

2.纸带上点的意义:

①表示和纸带相连的物体在不同时刻的位置;

②通过研究纸带上各点之间的间隔,可以判断物体的运动情况.

3.利用纸带判断物体是否做匀变速直线运动的方法

设x1、x2、x3、x4……为纸带上相邻两个计数点之间的距离,假如△x=x2-x1=x3-x2=x4-x3=……=常数,即连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体做匀变速直线运动.

4.由纸带能求的物理量物体运动速度和加速度的方法

(1)两个计数点间的时间间隔

(2)某点的瞬时速度

根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度vn=(xn+xn+1)/2T

(3)由纸带求物体运动加速度的方法

①利用△x=aT2

②利用Xm-Xn=(m-n)aT2

③利用“逐差法”求加速度. “逐差法”求加速度的目的是尽可能多地使用我们测量的数据,以减小偶然误差.设T为相邻两计数点之间的时间间隔,则:

a1=(x4-x1)/3T2 ,a2=(x5-x2)/ 3T2,a3=(x6-x3)/ 3T2

加速度的平均值为:a=(a1+a2+a3)/3

④用v-t图象求加速度:求出打各个计数点时纸带的瞬时速度,再作出v-t图象,图线的斜率即为做匀变速直线运动物体的加速度.

三、实验器材

电火花计时器或电磁打点计时器、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸.

四、实验步骤

1. 把带有滑轮的长木板平放在实验桌上,把滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,并把打点计时器连接在电源上。

2. 把一条细绳拴在小车上,细绳跨过定滑轮,下边挂上合适的钩码。把纸带穿过打点计时器的复写纸下,并把它的一端固定在小车的后面。

3. 把小车停止靠近打点计时器处,接通电源等打点计时器计时稳定后,放开小车。换上新纸带,重复实验3次

五、数据处理(纸带问题分析)

1. 从三条纸带中选择一条比较理想的,舍掉开头一些比较密集的点子,在后边便于测量的地方找一个开始点。为了测量方便和减小误差,通常不用每打一次点的时间作为时间的单位,而用每打五次点的时间作为时间的单位,就是T=0.02×5=0.1s。在选好的开始点下面标明A,在第六点下面标明B,在第十一点下面标明C,在第十六点下面标明D,……,点A、B、C、D……叫做计数点,如图所示。两个相邻计数点间的距离分别是x1、x2、x3……

x1x2 x3

A B C D

2. 测出六段位移x1、x2、x3、x4、x5、x6的长度,把测量结果填入下表1中。

3、求被测物体在任一计数点对应时刻的瞬时速度v :应用做匀变速直线运动的物体某段时间内的平均速度等于该段时间中间时刻的瞬时速度.如T

x

x v c 23

2+=

4、判断物体运动的性质:

方法一:利用x 1、x 2、x 3 …可以计算相邻相等时间内的位移差x 2-x 1、x 3- x 2、x 4- x 3…,如果各Δx 的差值不等于零且在5%以内,可认为它们是相等的,则可以判定被测物体的运动是匀变速直线运动. 5、由实验数据做v-t 图

(1):根据表格中的v-t 数据,在直角坐标系中描点,(2)做一条直线,使同一次实验得到的各点尽量落到这条直线上,落不到直线上的各点应均匀分布在直线的两侧,这条直线就是本次实验的v-t 图,若是一条倾斜的直线如图,

6、求被测物体的加速度有3种方法:

方法1:“逐差法”.从纸带上得到6个相邻相等时间内的位移,则()()2

3216549T s s s s s s a ++-++=

.

方法2:利用任意两段相邻记数点间的位移求加速度,最后取平均值.如

六、注意事项

1.交流电源的电压和频率要符合要求

2、实验前要检查打点的稳定性和清晰程度,必要时要调节振针的高度和更换复写纸 3.释放物体前,应使物体停在靠近打点计时器的位置.

图1-5-2 s

4、使用打点计时器打点时,应先接通电源,待打点计时器稳定工作后,再释放纸带.

5、要防止钩码落地和小车跟滑轮相接,在小车到达滑轮前及时接住它。

6.小车另一端挂的钩码个数要适当,避免速度过大而使纸带上打的点太少,或者速度太小,使纸带上打的点过于密集.控制在50cm的纸带上清晰的取六、七个计数点为宜。

7.要区别计时器打出的点与人为选取的计数点,一般在纸带上每隔四个点取一个计数点,即T=0.1s。

8、要多测几组数据,尽量减小误差;计算a时要注意用逐差法,以减小误差.

9、坐标轴单位选取要合适

七、误差分析

1. 本实验参与计算的量有x和T,因此误差来源于x和T.由于相邻两计数点之间的距离x测量有误差而使a的测量结果产生误差.

2.由于电源的频率不稳定而使T不稳定产生误差.

………………

八、主要题型

题型一:实验数据处理

.基础知识理解、纸带问题、图象处理、测重力加速度

题型二:实验原理和误差分析

1..基础知识理解

(1)“研究匀变速直线运动”的实验中,使用电磁打点计时器(所用交流电的频率为50 Hz),得到如图所示的纸带.图中的点为计数点,相邻两计数点间还有四个点未画出来,下列表述正确的是()

A.实验时应先放开纸带再接通电源

B.(s6-s1)等于(s2-s1)的6倍

C.从纸带可求出计数点B对应的速率

D.相邻两个计数点间的时间间隔为0.02 s

【答案】 C

(2)在一次实验中,如果某同学不知道实验所使用的交流电电源的实际频率已超过50 Hz,那么他计算出来的平均速度值与真实值相比是()

A.偏大B.偏小C.相等D.不能确定

【答案】 B

2 纸带问题的分析

(1)判断物体的运动性质

根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。由匀变速

直线运动的推论

2

aT

x=

?,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说

明物体做匀变速直线运动。(2)求某点速度

(3)求加速度

方法一:逐差法

()()

2

1234569T x x x x x x a ++-++=

方法二:v —t 图象法

利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v —t 图象),然后进行描点连线,求出图线的斜率k=a. 方法三:利用任意两段相邻记数点间的位移求加速度,最后取平均值.如

(1)某学生用打点计时器研究小车的匀变速直线运动.他将打点计时器接到频率为50 Hz 的交流电源上,实验时得到一条纸带如图1-5-15所示.他在纸带上便于测量的地方选取第一个计时点,在这点下标明A ,第六个点下标明B ,第十一个点下标明C ,第十六个点下标明D ,第二十一个点下标明E .测量时发现B 点已模糊不清,于是他测得AC 长为14.56 cm ,CD 长为11.15 cm ,DE 长为13.73 cm ,则打C 点时小车的瞬时速度大小为

m/s ,小车运动的加速度大小为

m/s2,AB 的距离应为

cm .(保留三位有效数字)

【解析】某时刻的瞬时速度等于一段时间内的平均速度:

小车的加速度:

由于,

所以

【答案】 0.986,2.58,5.99

(2)如图所示,物体从光滑斜面上的A 点由静止开始下滑,经过B 点后进入水平面(设经过B 点前后速度大小不变),最后停在C 点.每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据.(重力加速度g =10 m/s2),求:

⑴斜面的倾角α;

⑵物体与水平面之间的动摩擦因数μ; ⑶t =0.6 s 时的瞬时速度v .

【解析】⑴由前三列数据可知物体在斜面上匀加速下滑时的加速度为

mg sin α=ma1 可得:α=30?,

⑵由后二列数据可知物体在水平面上匀减速滑行时的加速度大小为

μmg=ma2 可得:μ=0.2,

⑶由2+5t=1.1+2(0.8-t),解得t=0.1 s

即物体在斜面上下滑的时间为0.5 s

则:t=0.6 s时物体在水平面上,其速度为v=v1.2+a2t=2.3 m/s

【答案】⑴α=30?;⑵μ=0.2;(3)2.3 m/s

如图所示,某同学在做“研究匀变速直线运动”实验中,由打点计时器得到表示小车运动过程的一条清晰纸带,纸带上两相邻计数点的时间间隔为T=0.10s,其中S1=7.05cm、S2=7.68cm、S3=8.33cm、

S4=8.95cm、S5=9.61cm、S6=10.26cm,则A点处瞬时速度的大小是_______m/s,小车运动的加速度计算表达式为________________,加速度的大小是_______m/s2(计算结果保留两位有效数字).

【解析】某时刻的瞬时速度等于一段时间内的平

均速度:

(考虑两位有效数字)

用逐差法来计算加速度:

【答案】0.86,,0.64

3. 图象处理

(1)某同学用如图所示的实验装置研究小车在斜面上的运动.实验步骤如下:

a.安装好实验器材.

b.接通电源后,让拖着纸带的小车沿平板斜面向下运动,重复几次.选出一条点迹比较清晰的纸带,舍去开始密集的点迹,从便于测量的点开始,每两个打点间隔取一个计数点,如图1中0、1、2……6点所示.

c.测量1、2、3......6计数点到0计数点的距离,分别记作:S1、S2、S3 (6)

d.通过测量和计算,该同学判断出小车沿平板做匀速直线运动.

e.分别计算出S1、S2、S3……S6与对应时间的比值.

f.以为纵坐标、t为横坐标,标出与对应时间t的坐标点,划出—t图线。

结合上述实验步骤,请你完成下列任务:

①实验中,除打点及时器(含纸带、复写纸)、小车、平板、铁架台、导线及开关外,在下面的仪器和器材中,必须使用的有和.(填选项代号)

A.电压合适的50 Hz交流电源B.电压可调的直流电源

C.刻度尺D.秒表E.天平F.重锤

②将最小刻度为1 mm的刻度尺的0刻线与0计数点对齐,0、1、2、5计数点所在位置如图2所示,则S2=cm,S5=cm.

③该同学在图3中已标出1、3、4、6计数点对应的坐标,请你在该图中标出与2、5两个计数点对应的

坐标点,并画出—t图.

④根据—t图线判断,在打0计数点时,小车的速度v0=m/s;它在斜面上运动的加速度a=m/s2.

【解析】①打点计时器使用的电源为交流电源,利用刻度尺测量各点之间的距离.

②由刻度尺的最小刻度为mm,故要估读到0.1mm,即要读到0.01cm位.

③因为cm/s,cm/s,描出对应的两点,再连线即可得S/t-t图线.

④由图线在纵轴上的截距可求得初速度,图线的斜率则表示加速度.

【答案】①A,C;②(2.97~2.99),(13.19~13.21);③图略;④(0.16~0.20),(4.50~5.10)

4. 测重力加速度

(1)如图所示,将打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置可以测定重力加速度.

(1)所需器材有打点计时器(带导线)、纸带、复

写纸、带铁夹的铁架台和带夹子的重物,此外

还需________(填字母代号)中的器材.

A.直流电源、天平及砝码B.直流电源、毫米刻度尺

C.交流电源、天平及砝码D.交流电源、毫米刻度尺

(2)通过作图象的方法可以剔除偶然误差较大的数据,提高实验的准确程

度.为使图线的斜率等于重力加速度,除作v-t图象外,还可作

____________图象,其纵轴表示的是________,横轴表示的是

________.

【解析】本题考查了利用验证机械能守恒定律的实验装置测定重力加速度,意在考查考生的知识迁移能力和利用图象处理实验数据的能力.

(1)本实验不需要测量重物的质量,直接通过处理纸带,利用匀变速直线运动的规律即可求得,缺少低压交流电源和刻度尺,故D正确;

(2)由匀变速直线运动的规律2gh=v2可得:=gh,当纵轴表示,横轴表示重物下落高度h时,则图象的斜率即为重力加速度.

【答案】(1)D(2) -h,速度平方的二分之一,重物下落高度h

(2)某同学用如下图所示装置测量重力加速度g,所用交流电频率为50

Hz,在所选纸带上取某点为0号计数点,然后每隔2个计时点取一个计

数点,所有测量数据及其标记符号如下图所示.

该同学用两种方法处理数据(T为相邻两计数点的时间间隔):

从数据处理方法看,在s1、s2、s3、s4、s5、s6中,对实验结果起作用的:方法A中有________;方法B中有________.因此,选择方法________(A或B)更合理,这样可以减少实验的________(系统或偶然)误差.本实验误差的主要来源有________________(试举出两条).

圆周运动知识点及题型--简单--已整理

描述圆周运动的物理量及相互关系 匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。 2、分类: ⑴匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,就叫做匀速圆周运动。 物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。 ⑵变速圆周运动: 如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直. 3、描述匀速圆周运动的物理量 (1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。 (2)线速度(v ): ①定义:质点沿圆周运动,质点通过的弧长S 和所用时间t 的比值,叫做匀速圆周运动的线速度。 ②定义式:t s v = ③线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。 (3)角速度(ω,又称为圆频率): ①定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。N ②大小:T t π? ω2= = (φ是t 时间半径转过的圆心角) ③单位:弧度每秒(rad/s ) ④物理意义:描述质点绕圆心转动的快慢 (4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。 (5)频率(f ,或转速n ):物体在单位时间完成的圆周运动的次数。 各物理量之间的关系: r t r v f T t rf T r t s v ωθππθωππ== ??? ??? ??====== 2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。

高一年级物理运动学知识点总结

高一年级物理运动学知识点总结 【一】 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN 6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。 7.质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动 8.动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。 9.质点动力学有两类基本问题:一是已知质点的运动,求作用于质点上的力;二是已知作用于质点上的力,求质点的运动。 【二】 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的

描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示. (3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. 【三】 6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直

运动与能量知识点总结

第二章运动与能量 一、运动得描述 1、物理学就是研究自然界得物质结构、相互作用与运动规律得自然科学. 2、物质由分子组成,分子由原子组成,原子由原子核与核外电子组成,原子核由质子与中子组成。 3、机械运动 (1)定义:物理学里把物体位置变化叫做机械运动。 (2)特点:机械运动就是宇宙中最普遍得现象。 (3)机械运动:(三种运动:分子运动、机械运动、天体运动) (4)分类:(根据运动路线)①曲线运动②直线运动 4、参照物 (1)定义:判断物体就是否运动与如何运动,要选择另一个物体作为标准,这个被选作标准得物体叫参照物。 (2)参照物选取得原则: ①假定性:参照物就是假定不动得 ②任意性:参照物得选取就是任意得 ③不唯一性:可以选择不同得物体作为参照物 ④排己性:一般不取自身为参照物 ⑤方便性:生活中大部分时候都选择地面为参照物 5、运动与静止得相对性 (1)总结:同一个物体选取得参照物不同,运动状态不同。 (2)例如:坐在行驶汽车中得乘客,以司机为参照物,乘客就是静止得;以地面为参照物,乘客就是运动得。 (3)练习 ①诗句“满眼风光多闪烁,瞧山恰似走来迎,仔细瞧山山不动,就是船行”其中“瞧山 恰似走来迎”与“就是船行”所选得参照物分别就是船与山。 ②坐在向东行使得甲汽车里得乘客,瞧到路旁得树木向后退去,同时又瞧到乙汽车也 从甲汽车旁向后退去,试说明乙汽车得运动情况。 分三种情况:①乙汽车没动②乙汽车向东运动,但速度没甲快③乙汽车向西运动。 ③解释毛泽东《送瘟神》中得诗句“坐地日行八万里,巡天遥瞧一千河" 第一句:以地心为参照物,地面绕地心转八万里。 第二句:以月亮或其她天体为参照物在那可瞧到地球上许多河流. 二、运动得速度 1、比较物体运动快慢得方法: I、观众法:相同时间比路程,路程越长,运动越快。(同时启程得步行人与骑车人快慢) II、裁判方法:相同路程比时间,时间越短,运动越快(百米运动员快慢) III、综合法:时间、路程都不同,比单位时间内通过得路程。 (百米赛跑运动员同万米运动员比较快慢)

圆周运动知识点与例题

匀速圆周运动知识点及例题 二、匀速圆周运动的描述 1.线速度、角速度、周期和频率的概念 (1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T r t s v π2= =; 其方向沿轨迹切线,国际单位制中单位符号是m/s ; (2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为T t πφ ω2= =; 在国际单位制中单位符号是rad /s ; (3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ; (4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 三、向心力和向心加速度 1.向心力 (1)向心力是改变物体运动方向,产生向心加速度的原因. (2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度 (1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量. (2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为

2222 4T r r r v a n πω=== 公式: 1.线速度V =s/t =2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a =V 2/r =ω2r =(2π/T)2r 4.向心力F 心=mV 2/r =mω2r =mr(2π/T)2=mωv=F 合 5.周期与频率:T =1/f 6.角速度与线速度的关系:V =ωr 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。 二、向心力和加速度 1、大小F =m ω2 r r v m F 2 = 向心加速度a :(1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 三、应用举例 (临界或动态分析问题) 提供的向心力 需要的向心力 r v m 2

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

运动学知识点整理

运动学知识点与公式整理 一、速度、时间、加速度 1、平均速度定义式:t x ??=/υ ① 当式中t ?取无限小时,υ就相当于瞬时速度。 ② 如果是求平均速率,应该是路程除以时间。请注意平均速率是 标量;平均速度是矢量。 2、两种平均速率表达式(以下两个表达式在计算题中不可直接应用) ① 如果物体在前一半时间内的平均速率为1υ,后一半时间内的平均 速率为2υ,则整个过程中的平均速率为22 1υυυ+= ② 如果物体在前一半路程内的平均速率为1υ,后一半路程内的平均 速率为2υ,则整个过程中的平均速率为2 1212υυυυυ+= 3、加速度的定义式:t a ??=/υ ● 在物理学中,变化量一般是用变化后的物理量减去变化前的物理量。 ● 应用该式时尤其要注意初速度与末速度方向的关系。 ● a 与υ同向,表明物体做加速运动;a 与υ反向,表明物体做减速运动。 ● a 与υ没有必然的大小关系。 匀变速直线运动 1、匀变速直线运动的三个基本关系式 ① 速度与时间的关系at +=0υυ ② 位移与时间的关系202 1at t x +=υ (涉及时间优先选择,必须注意对于匀减速问题中给出的时间不一定就是公式中的时间,首先运用at +=0υυ,判断出物体真正的运动时间) ③ 位移与速度的关系ax t 2202=-υυ (不涉及时间,而涉及速度) 一般规定0v 为正,a 与v 0同向,a >0(取正);a 与v 0反向,a <0 (取负) 同时注意位移的矢量性,抓住初、末位置,由初指向末,涉及到x 的正负问题。 注意运用逆向思维: 当物体做匀减速直线运动至停止,可等效认为反方向初速为零的

圆周运动知识点总结

圆周运动知识点总结 1.描述圆周运动的物理量 圆周运动的定义:物体的运动轨迹是圆的运动叫做圆周运动。 (1)线速度 ①定义:质点沿圆周运动所通过的弧长Δl 与所需时间Δt 的比值,即单位时间所通过的弧长,叫做线速度。 ②物理意义:描述质点沿圆周运动的快慢。 ③定义式:v =Δl /Δt ④单位:在国际单位制中,线速度的单位是米每秒,符号是m /s 如果Δt 取得很小,v 就为瞬时线速度,此时的Δs 方向就与半径垂直,即沿该点的切线方向。 (2)角速度 ①定义:做圆周运动的质点,连接质点和圆心的半径所转过的角度与所用时间的比值,即单位时间所转过的角度就是质点的角速度。 ②物理意义:描述质点绕圆心转动的快慢。 ③定义式:ω=Δθ/Δt ④单位:在国际单位制中,角速度的单位是弧度每秒,符号是rad/s (3)周期T ,频率f 和转速n 周期:做圆周运动的物体运动一周所用的时间,用符号T 表示,在国际单位制中,周期的单位是秒(s )。 频率:做圆周运动的物体在1秒内沿圆周绕圆心转过的圈数,用符号f 表示,在国际单位制中,频率的单位是赫兹(Hz ) 转速:做圆周运动的物体在单位时间内所转过的圈数,用符号n 表示,单位有转每秒(r/s )或转每分(r/min ),其国际单位制单位为弧度每秒。当单位时间取1秒时,f =n (4)线速度、角速度、周期、转速之间的关系: ①线速度与角速度的关系: R v ω= ②角速度与周期的关系: T πω2= ③线速度与周期的关系: T R v π2= ④周期和转速的关系: n T 1= ⑤角速度与转速的关系: n πω2=

(5)向心加速度 ①定义:做匀速圆周运动的物体的加速度总指向圆心,这种加速度称为向心加速度。 ②物理意义:描述线速度方向改变的快慢。 ③大小: ④方向:总是沿着圆周运动的半径指向圆心, (6)向心力 ①定义:做匀速圆周运动的物体受到的合力方向总是指向圆心的,这个合力叫做向心力。 ②大小:R m R mv F 22 ω== ③方向:总是沿着半径指向圆心,方向时刻改变,所以向心力是变力。 对向心力的理解 (1)向心力是按力的作用效果来命名的力。它不是具有确定性质的某种力,相反,任何性质力都可以作为向心力。 (2)向心力的作用效果是改变线速度的方向。做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的。 对于线速度大小变化的非匀速圆周运动的舞台,其所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度。 (3)向心力可以是某几个力的合力,也可以是某个力的分力。 2.匀速圆周运动 (1)物体沿着圆周运动,并且线速度大小处处相等的运动。 (2)特点:线速度的大小不变,方向时刻改变;角速度、周期、频率都是恒定不变,向心加速度和向心力大小都恒定不变,但方向时刻改变。 (3)性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变而方向时刻变化的变加速曲线运动。 (4)加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度。因此向心力就是做匀速圆周运动的物体所受的合外力。 (5)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直并指向圆心。 3.变速圆周运动 物体运动的轨迹仍然为圆周,但速度的大小有变化,向心力和向心加速度的大小也随着变化。 匀速圆周运动的公式对变速圆周运动仍然适用,只是利用公式求圆周上某一点的向心力和向心加速度的大小时,必须用该点的瞬时速度值。 22222222444v R a R n R f R v R T πωππω======

圆周运动知识点及例题

圆周运动知识点及例题

匀速圆周运动知识点及例题 、匀速圆周运动的描述 1.线速度、角速度、周期和频率的概念 (1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T t s v π2== 方向沿轨迹切线,国际单位制中单位符号是m/s ; (2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为T t π φ ω2= = ; 国际单位制中单位符号是rad /s ; (3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ; (4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,v π 2=f π2=。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 、向心力和向心加速度 向心力 )向心力是改变物体运动方向,产生向心加速度的原因. )向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 向心加速度 )向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量. )向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为 2222 4T r r r v πω=== 式: 线速度V =s/t =2πr/T 角速度ω=Φ/t =2π/T =2πf 向心加速度a =V 2/r =ω2r =(2π/T)2r 向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合 周期与频率:T =1/f 角速度与线速度的关系:V =ωr 角速度与转速的关系ω=2πn(此处频率与转速意义相同) 主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。 、向心力和加速度

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

圆周运动知识点及习题

1.描述圆周运动的物理量 1)线速度:是描述质点绕圆周运动快慢的物理量,某点线速度的方向即为该点切线方向,其大小的定义式为:. 2)角速度: 是描述质点绕圆心圆周运动快慢的物理量,其定义式为:,国际单位为rad/s. 3)周期和频率:周期和频率都是描述圆周运动快慢的物理量,用周期和频率计算线速度的公式为, 用周期和频率计算角速度的公式为. 4)向心加速度: 是描述质点线速度方向变化快慢的物理量, 向心加速度的方向指向圆心,其大小的定义式为或. 5)向心力: 向心力是物体做圆周运动时受到的总指向圆心的力,其作用效果是使物体获得向心加速度(由此而得名),其作用效果是只改变线速度的方向,而不改变线速度的大小,其大小可表示为或.方向时刻与运动的方向垂直.它是根据效果命名的力. 说明:向心力,可以是几个力的合力,也可以是某个力的一个分力;既可能是重力、弹力、摩擦力,也可能是电场力、磁场力或其他性质的力.如果物体作匀速圆周运动,则所受合力一定全部用来提供向心力.2.匀速圆周运动 1)定义:做圆周运动的物体,在相同的时间内通过的弧长都相等.在相同的时间物体与圆心的连线转过的角度都相等. 2)特点:在匀速圆周运动中, 线速度的大小不变, 线速度的方向时刻改变. 所以匀速圆周运动是一种变速运动.做匀速圆周运动的物体向心力就是由物体受到的合外力提供的. 3.离心运动: 1)定义:做匀速圆周运动的物体,当其所受向心力突然消失或不足以提供向心力时而产生的物体逐渐远离圆心的运动,叫离心运动. 2)特点:(1)当F合=的情况,即物体所受力等于所需向心力时,物体做圆周运动. (2)当F合<的情况,即物体所受力小于所需向心力时,物体沿曲线逐渐远离圆心做离心运动. 了解离心现象的特点,不要以为离心运动就是沿半径方向远离圆心的运动. (3)当F合>的情况,即物体所受力大于所需向心力时,表现为向心运动的趋势 竖直平面内的圆周运动中的临界问题)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动。小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即,这时的速度是做圆周运动的最小速

(精编!)高一物理《运动学知识点归纳》

运动学知识点归纳(必修一第一、二章) 【考试说明】 【知识网络】 【考试说明解读】 1.参考系 *⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵运动学中的同一公式中涉及的各物理量必须选择同一参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 *⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 物体可视为质点的主要三种情形: ①物体只作平动时; *②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。 ⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)

相对应。 4.位移和路程 *⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置指向末位置的 有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 *⑵路程:路程等于实际运动轨迹的长度,是一个标量。 *只有在单方向的直线运动中,位移的大小才等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移 所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速 度,即 t s v = ,平均速度是矢量,其方向就是相应位移的方向。 *公式V =(V 0+V t )/2只对匀变速直线运动适用。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有 一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度, 即t v v t v a t 0 -=??= ⑶速度、速度变化、加速度的关系: *①方向关系:加速度的方向与速度变化的方向一定相同,加速度方向和速度方向没有必 然的联系。 *②大小关系:V 、△V 、a (F 合)无必然的大小决定关系!! *③*只要a 与v 方向相同,无论加速度在减少还是在增大,物体的速度一定增大,若加速 度减小,速度增大得越来越慢(仍然增大)!! *只要a 与v 方向相反,物体的速度一定减小!! *7、运动图象:s —t 图象与v —t 图象的比较 (深刻把握!!) 下图和下表是形状一样的图线在s —t 图象与v —t 图象中的比较. s — t 图 v —t 图 图A-2-6-1

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是

物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向

运动学知识点总结

运动学知识点总结 一,质点、参考系、坐标系 1,机械运动:物体相对于其它物体位置发生变化,称为机械运动,简称运动 2,运动是绝对的,静止是相对的 3,质点:用来代替物体的有质量、无大小的点(理想化模型,为简化问题研究方便而引入)物体看成质点的条件:物体本身形状大小相对于研究问题是次要的,可忽略。 (物体本身大小远小于研究距离) 4,参考系:为研究物体运动而选为标准的物体(就是假设不动的物体) 参考系可任意选取,应尽量使得研究问题简化 5,坐标系:为定量描述质点位置的变化而建立的坐标 轴 二,时间和位移 1,时刻:对应某一位置,某一瞬间,是一个点 时间间隔,简称时间:对应一段位移、一段过程 时间轴:(要能看懂,哪个是时间?哪个是时刻?) 2,标量和矢量 标量:只有大小没有方向的量。如“路程、速率、时间” 矢量:既有大小又有方向的量。如“位移、速度、加速度” 3,路程:通过路径的长度。标量,可以是直线、也可以是曲线。只能粗略反映物体的运动 4,位移:表示物体位置变化的物理量。是从初位置指向末位置的有向线段。能精确反映物体运动矢量,线段长度表示位移大小,箭头表示位移方向 5,路程位移关系:路程和位移是两个不同类型的物理量,绝不能说“位移等于路程”! 单向的直线运动:“位移大小”才等于路程。 其它运动中,“位移大小”小于路程 三,速度:是描述物体运动快慢的物理量 1,定义式:(发生位移与所用时间的比值) 比值定义:V等于位移与时间的比值,和单独的位移或时间没有关系的! 2,矢量:速度方向就是运动方向 3,分类:平均速度:一段时间内的速度,只能粗略反映运动快慢 瞬时速度:某一时刻、某一位置的速度,能精确反映物体运动 4,瞬时速率:瞬时速度的大小,简称“速率” 平均速率:路程与所用时间的比值 5注意:平均速度、瞬时速度都是矢量, 瞬时速率、平均速率都是标量 平均速率不是平均速度的大小! 匀速直线运动中,平均速度等于瞬时速度

圆周运动知识点与习题

教师:______ 学生:______ 时间:_____年___月____日 段 一、授课目的与考点分析: 掌握:1、平抛运动的解题技巧 2、圆周运动的基本知识点和认识圆周运动 考点:1、圆周运动在生活中的运用2、曲线运动的计算 二、授课内容: 圆周运动 一、匀速圆周运动 1. 匀速圆周运动:相等的时间内通过的圆弧长度都相等的圆周运动。 2. 描述圆周运动的物理量: (1)线速度的定义:线速度的大小(即线速率)为做圆周运动的物体通过的弧长跟所用时间的比 值,物体在圆弧上各个点处线速度的方向为圆弧上该点的切线方向。 (2)讨论: a :分析:物体在做匀速圆周运动时,运动的时间t 增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s 与t 的比值越大,物体运动得越快。 b :线速度 1)线速度是物体做匀速圆周运动的瞬时速度。 2)线速度是矢量,它既有大小,也有方向。 3)线速度的大小 。 4)线速度的方向 在圆周各点的切线方向上。 结论:匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。 龙文学校个性化辅导教案提纲ggggggggggggangganggang

(3)角速度ω的定义: 做圆周运动的物体与圆心的连线(即半径)转过的圆心角角度跟所用时间的比值。 (4)讨论: 1)角速度是表示角度改变快慢的物理量 2)角速度计算公式为:ω=φ/t 3)角速度的单位是 rad/s 4)对某一确定的匀速圆周运动而言,角速度是恒定的 (5)周期、频率和转速 1)周期T:沿圆周运动一周所用的时间。 2)频率f:单位时间内运动重复的次数。 3)转速:单位时间内转动的圈数。 (6)几个物理量间的关系 1)当v一定时,与r成反比 2)当一定时,v与r成正比 3)当r一定时,v与成正比 二、向心力向心加速度 1. 向心力概念的建立 引例:在光滑水平桌面上,做演示实验 一个小球,拴住绳的一端,绳的另一端固定于桌上,原来细绳处于松驰状态,现在用手轻击小球,使小球做匀速圆周运动。试讨论:绳绷紧后,小球为何做匀速圆周运动?小球此时受到哪些力的作用?合外力是哪个力?这个力的方向有什么特点?这个力起什么作用? 结论:

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

大学物理(上)知识点整理

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了惯性系。 牛顿第二定律: 普遍形式:;

经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第3章机械能和功 一、功 1、功能的定义式: 恒力的功: 变力的功: 2、保守力 若某力所作的功仅取决于始末位置而与经历的路径无关,则该力称保守力。或满足下述关

高中物理圆周运动知识点复习过程

1.匀速圆周运动 1.线速度:质点通过的圆弧长跟所用时间的比值。 222s v r r fr nr t T πωππ?=====? 单位:米/秒,m/s 2.角速度:质点所在的半径转过的角度跟所用时间的比值。 222f n t T ?πωππ?====? 单位:弧度/秒,rad/s 3.周期:物体做匀速圆周运动一周所用的时间。 22r T v ππω= = 单位:秒,s 4.频率:单位时间内完成圆周运动的圈数。 1f T = 单位:赫兹,Hz 5.转速:单位时间内转过的圈数。 N n t = 单位:转/秒,r/s n f = (条件是转速n 的单位必须为转/秒) 6.向心加速度:22222()(2)v a r v r f r r T πωωπ===== 7.向心力:22222()(2)v F ma m m r m v m r m f r r T πωωπ====== 三种转动方式 绳模型

2.竖直平面的圆周运动 1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。 (注意:绳对小球只能产生拉力) (1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用 mg =2 v m R ? v 临界=Rg (2)小球能过最高点条件:v ≥ Rg (当v >Rg 时,绳对球产生拉力,轨道对球产生压力) (3)不能过最高点条件:v F>0(F 为支持力) (3)当v =Rg 时, F =0 (4)当v >Rg 时,F 随v 增大而增大,且F>0(F 为拉力) 3.万有引力定律 1.开普勒第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。 3 2 r k T = (K 值只与中心天体的质量有关) 2.万有引力定律: 122m r F G m =? 万 (1)赤道上万有引力:F mg F mg ma =+=+引向向 (g a 向和是两个不同的物理量,) (2)两极上的万有引力:F mg =引 3.忽略地球自转,地球上的物体受到的重力等于万有引力。 22GMm mg GM gR R =?=(黄金代换) 4.距离地球表面高为h 的重力加速度:()()()222GMm GM mg GM g R h g R h R h '''=?=+?=++ 5.卫星绕地球做匀速圆周运动:万有引力提供向心力 2G M m F F r ==万向

圆周运动知识点

圆周运动: 1、线速度: (1)物理意义:描述质点沿运动的; (2)定义:质点沿圆周运动通过的与所用的比值叫做线速度; (3)大小:,国际单位制中单位符号; (4)方向:质点在圆周某点的线速度方向沿圆周上该点的方向。 2、角速度: (1)物理意义:描述质点转过的。 (2)定义:连接运动质点和圆心的半径转过的跟所用比值,就是质点运动的角速度。 (3)大小:,国际单位制中单位符号是 (4)匀速圆周运动是不变的圆周运动。 3、匀速圆周运动 (1)定义:质点沿圆周运动,并且线速度大小处处的运动叫匀速圆周运动 (2)因线速度方向不断发生变化,故匀速圆周运动是一种运动,这里的匀速是指不变。 (3)匀速圆周运动的特点: ①轨迹是圆; ②线速度、向心加速度、向心力均大小不变,方向不断改变,故属于加速度改变的变速曲线运动; 角速度、周期、频率、转速不变的运动, (4)匀速圆周运动的性质: ①线速度仅大小不变而方向时刻改变,是 ②向心加速度仅大小恒定而方向时刻改变,是非匀变速曲线运动;. 4、周期T、频率f 和转速n (1)物理意义:周期、频率和转速都是描述物体做圆周运动快慢的物理量。 (2)周期T:是质点沿圆周运动一周所用,用T表示,在国际单位制中单位符号是 (3)频率f:是质点在单位时间内完成一个完整圆运动的,用f表示,在国际单位制中单位符号是1Hz=1s-1(4)转速n:是质点在单位时间内沿圆周绕圆心转过的,用n表示,单位符号为,以及 5、描述圆周运动各物理量的关系 (1)线速度与角速度的关系: (2)线速度与周期的关系:(3)角速度与周期的关系:(4)考虑频率f则有:(5)f与n、T的关系: 以上各物理量的关系: 2 22 r v r rf nr T π ωππ ==== 1

相关文档
最新文档