天然气汽柴油换算

天然气汽柴油换算
天然气汽柴油换算

1Nm3天然气热值相当于1.17升汽油(93号),0.95升柴油。1升柴油=0.835公斤=9181大卡

1公斤汽油热值为10296大卡

1公斤柴油热值为10996大卡

1公斤液化石油气热值相当于1.15~1.22公斤的汽油热量

1公斤液化石油气热值相当于1.12~1.2公斤的柴油热量

1立方米天然气热值相当于0.845公斤或1.17升汽油热量

1立方米天然气热值相当于0.792公斤柴油热量

1升汽油=0.722-0.725公斤=7464大卡

备注:根据适用中实际情况证明,

1.1立方米天然气约等于1公斤石油液化气;

1立方米天然气相当于1.17升汽油。

1 m3液化天然气(LNG)可气化600 m3气

1 m3 LNG 的质量约为430-470 Kg

LNG的物理性质

LNG是液化天然气(liquefied natural gas)的英文缩写,主要成分是甲烷。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/625,密度约为水的45%。

●LNG密度:0.425-0.46kg/L

●沸点:-162℃

●气化后密度:0.6-0.7kg/m3

●高热值:41.5-45.3MJ/m3

●气液体积比:625:1

●辛烷值:130

●储存温度:-160~-120℃

●操作压力:0~1.0MPa

LNG计量单位换算表:

以其产生热值的角度来考虑:

1L(柴油)≈1.1?(天然气); 1.33L(柴油)≈1.47?(天然气);

1kg(LNG)≈1.47?(天然气); 1.33L(柴油)≈1kg(LNG)

1L(汽油)≈0.9?(天然气); 1.63L(汽油)≈1.47?(天然气);

1.63L(汽油)≈1kg(LNG)

天然气及各种能源换算方式

天然气及各种能源换算方式 各类能源折算标准煤的参考系数 能源名称平均低位发热量折标准煤系数 原煤 20934千焦/公斤 0.7143公斤标煤/公斤 洗精煤 26377千焦/公斤 0.9000公斤标煤/公斤 其他洗煤 8374 千焦/公斤 0.2850公斤标煤/公斤 焦炭 28470千焦/公斤 0.9714公斤标煤/公斤 原油 41868千焦/公斤 1.4286公斤标煤/公斤 燃料油 41868千焦/公斤 1.4286公斤标煤/公斤 汽油 43124千焦/公斤 1.4714公斤标煤/公斤 煤油 43124千焦/公斤 1.4714公斤标煤/公斤 柴油 42705千焦/公斤 1.4571公斤标煤/公斤 液化石油气 47472千焦/公斤 1.7143公斤标煤/公斤 炼厂干气 46055千焦/ 公斤 1.5714公斤标煤/公斤 天然气 35588千焦/立方米 12.143吨/万立方米 焦炉煤气 16746千焦/立方米 5.714吨/万立方米 其他煤气 3.5701吨/万立方米 热力 0.03412吨/百万千焦 电力 3.27吨/万千瓦时 1、热力其计算方法是根据锅炉出口蒸汽和热水的温度压力在焓熵图(表)内查得每千克的热焓减去给水(或回水)热焓,乘上锅炉实际产出的蒸汽或热水数量(流量表读出)计算。如果有些企业没有配齐

蒸汽或热水的流量表,如没有焓熵图(表),则可参下列方法估算: (1)报告期内锅炉的给水量减排污等损失量,作为蒸汽或热水的产量。 (2)热水在闭路循环供应的情况下,每千克热焓按20千卡计算,如在开路供应时,则每千克热焓按70千卡计算(均系考虑出口温度90℃,回水温度20℃)。 (3)饱和蒸汽,压力1-2.5千克/平方厘米,温度127℃以上的热焓按620千卡,压力3-7千克/平方厘米,温度135℃-165℃的热焓按630千卡。压力8千克/平方厘米,温度170℃以上每千克蒸汽按640千卡计算。 (4)过热蒸汽,压力150千克/平方厘米,每千克热焓:200℃以下按650千卡计算,220℃-260℃按680千卡计算,280℃-320℃按700千卡,350℃-500℃按700千卡计算。按4.1868焦耳折算成焦耳。 2.热力单位“千卡”与标准煤“吨”的折算能源折算系数中“蒸汽”和“热水”的计算单位为“千卡”,但“基本情况表”中(能源消耗量中)“蒸汽”计算单位为“蒸吨”,在其它能源消耗量(折标煤)其中的“热水”计算单位为“吨”,因此需要进一步折算,才能适合“基本情况表”的填报要求,按国家标准每吨7000千卡折1千克标准煤计算: 3.电力的热值一般有两种计算方法:一种是按理论热值计算,另一种是按火力发电煤耗计算。每种方法各有各的用途。理论热值是按每度电本身的热功当量860大卡即0.1229千克标准煤计算的。按

《车用汽油》国家标准标准

《车用汽油》国家标准 征求意见稿编制说明 1任务来源 依据国家标准化管理委员会下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责对修订《车用汽油》国家标准。项目编号:20120002-Q-469。 2目的和意义 近年来,国民经济的高速发展带动了国内汽车工业的发展。根据资料显示,2010年我国汽车的产量达到1826万辆,占到世界汽车总产量的23.5%。汽车的大量使用,在给人们的出行带来便捷的同时,也给大气质量造成一定的影响,汽车排放的污染物分担率不断上升,为此,为了降低机动车的排放污染物数量,改善大气环境,中国目前正在制定我国未来第V阶段的汽车排放法规。为了满足这一更加严格的排放要求,需要高质量的车用汽油与之相配套。 本标准在GB 17930-2011《车用汽油》附录A的基础上,参考了2012年北京市制定第V阶段地方标准时所做的一些研究工作,对某些指标进行适当的调整。 3 标准的编制过程及强制理由 本标准依据国家标准化管理委员会2012年4月27日下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责修订GB 17930-2011《车用汽油》国家标准。 2012年5-6月,接到任务后,课题组首先对国内相关标准的变化情况和国外标准的现状以及目前国内炼厂的状况开展调研。由于本次标准制定的时间要求非常急迫,难于遵循过去在GB 17930-2006和GB 17930-2011起草中所采用的研究方法,为此经课题组研究,本标准在GB 17930-2011《车用汽油》附录A的基础上,参考北京地方标准研究的相关数据。编写《车用汽油》国家标准的征求意见稿及编制说明,并向全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会的委员及有关单位发送标准征求意见稿,进行意见征集工作。

汽柴油调和知识

一、什么是调合技术 调合技术就是用炼厂生产的一些国标或非标油品,油田生产中产生的轻烃(凝析油)及化工产品经过精制装置精制处理后,辅以一些添加剂,调合成符合客户要求的国标汽、柴油,以达到最大程度降低成本,节约石油资源的一门应用技术。 汽柴油的调合技术在国外油品的贸易领域已十分成熟,如可利用抗爆剂,将90#汽油调成93#、97#油,将-5#、0#柴油调合成-10#油出售。 在我国,每年都有生产几百吨石脑油产品,由于石脑油辛烷值低,RON只有40—60左右,除小部分进入重整装置生产高辛烷值汽油组份外,大部分石脑油只能以乙烯裂解原料出售,价格低且不稳定,如果我们采取调合技术,将石脑油通过精制脱去硫,并与高辛烷值组份混合,再加入抗爆剂,就可调合出90#和93#汽油,这就可以为国家节约数量可观的石油资源。 由此可看出,汽柴油调合技术是有效节约成本,有效利用现有石油资源的有效途径的一门应用技术,应在国内大力推广说到这里,可能就有人问,调合油能用吗?质量可靠吗,要回答这问题,就要从炼厂生产的工艺谈起。 二、炼油厂汽柴油的生产方法 我国现在使用的汽、柴油,都是从石油中提炼出来的,未经炼制的石油,通常称为原油,用原油炼制汽柴油要经过以下基本过程: 1、先将原油脱盐脱水,然后进行常压蒸馏,分割出适宜作为汽、柴油的馏分,这种馏叫做直馏馏分,如石脑油、常一、常二线柴油等。 2、再以炼制过程中产生的常、减压重油等为原料,用热裂化、催化裂化、加氢裂化和延迟焦化等二次加工方法,将高沸点馏份裂解为适宜作燃料的低分子烃,经过分馏得到汽、柴油的热裂化,催化裂化和焦化组份。如果生产高辛烷值汽油,还需要采用催化重整和烷基化等方法,制得重整汽油组份和轻烷基化油。 3、将直馏馏份油和二次加工方法得到的馏分油分别进行电化学精制、加氢精制、脱硫醇和脱蜡,除去其中的有害物质,提高油品质量。 4、最后根据不同牌号汽、柴油的质量要求,以上述各种馏份油为组份,按所需的比例并加入适量的各种添加剂进行调和,即得到质量符合国家标准的汽、柴油。

最全天然气常识及单位换算

天然气是指埋藏在地下的可燃气体,主要成分为甲烷(CH4)。天然气形式主要有四种: 气田气 由气井采出的可燃气体称为纯天然气或气田气。它的主要成分是甲烷(CH4),约占90%以上,此外还含有少量的乙烷(C2H6),丙烷(C3H8),硫化氢(H2S),一氧化碳(CO),二氧化碳(CO2)等,热值约为38MJ/Nm3。 凝析气田气 凝析气田气是指在开采过程中有较多C5及C5以上的石油轻烃馏分可凝析出来,但是没有较重的原油同时采出的天然气。其主要成分除含有大量的甲烷(CH4)外,还含有2%-5%的C5及C5以上碳氢化合物,热值约46MJ/Nm3。 石油伴生气 石油伴生气是指在开采过程中与液体石油一起开采出来的天然气,是采油时的副产品。它的主要成分也是甲烷,约占70%-80%左右,还含有一些其它烷烃类,以及CO2,H2,N2等。热值约为42MJ/Nm3。煤矿矿井气 煤矿矿井气是指从井下煤层中抽出的煤矿矿井气,是采煤的副产品。实际上它是煤层气与空气的混合气。其主要成分是甲烷(CH4)和氮气(N2),此外还含有O2和CO等。值得注意的是,矿井气只有当CH4含量在40%以上才能作为燃气供应,CH4体积组分在40%—50%时,矿井气热值约为17MJ/Nm3。另外,天然气除了常规的气态形式存在于管道当中外,还可以经过加工,变成LNG和CNG。 LNG 当天然气在大气压下,冷却至约-162℃时,天然气由气态转变成液态,称为液化天然气(Liquefied Natural Gas,缩写为LNG)。LNG无色.无味.无毒且无腐蚀性,天然气液化是一个低温过程,在温度不超过临界温度(-82摄氏度),对气体进行加压0.1MPa以上,液化后其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右,热值为52MMBtu/t,(百万英热单位/吨)(1MMBtu=2.52×108cal)。 CNG 压缩天然气(Compressed Natural Gas,简称CNG)是天然气加压(超过3,600磅/平方英寸)到 20-25MPa,再经过高压深度脱水并以气态储存在容器中。它与管道天然气的组分相同。CNG可作为车辆燃料利用。 天然气的储存方式: (1)地下储气库是将长输管道输送来的商品天然气重新注入地下空间而形成的一种人工气田或气藏,一般建设在靠近下游天然气用户城市的附近。与地面球罐等方式相比较,地下储气库具有以下优点:储存量大,机动性强,调峰范围广;经济合理,虽然造价高,但是经久耐用,使用年限长达30~50年或更长;安全系数大,安全性远远高于地面设施。 (2)天然气储存方式主要有压缩天然气(CNG:15Pa~20MPa).液化天然气(LNG:沸点-162℃)和吸附天然气(ANG);CNG是目前车用天然气燃料的主要储存方式,缺点是储气瓶重量重.占用体积大;与液体燃料相比,天然气体积能量密度低,20MPa压力下的CNG燃料仅相当于汽油能量密度的30%。(3)国际上天然气另一储存方式是液化天然气,LNG是对地质开采的天然气通过“三脱”净化处理.实施低温液体处理而成,液化后的体积仅是原气态体积的1/625,LNG的能量密度是CNG的三倍多.能量密度大大提高,但LNG的生产成本相对较高,储存容器的绝热性要求高,这些是制约其发展的因素。

2021年国内外汽油标准对比

我国汽油标准与国外汽油标准的对 比 欧阳光明(2021.03.07) 目前国际上较为先进的汽油质量标准分为美、欧、日、《世界燃油规范》四大标准体系。其中,欧盟汽油标准和《世界燃油规范》最具影响力,被许多国家引用。 1.欧盟汽油标准 EN 228汽油质量标准是欧洲统一实施的汽油标准。EN 228标准主要由两部分组成,第一部分限定了密度、辛烷值以及硫含量、苯含量等指标的最大值。第二部分根据气候和季节将汽油的挥发性划分成不同的等级,分别执行。由于欧洲国家较多,具体情况差别较大,因此欧洲一些先进国家在满足欧洲统一法规的大前提下,又制定了符合自己国情的实施标准。 为了进一步降低汽车污染物的排放, EN 228-2002汽油质量标准(与欧Ⅲ排放法规相对应),将汽油硫含量降到150μg/g、芳烃含量降到42%、要求苯含量不大于1.0%,铅含量不大于5 mg/L,并对各种氧化物的含量加以限制。2005年,欧洲将开始执行欧Ⅳ排放标准,将清洁汽油中的硫含量降为50μg/g,芳烃、苯、烯烃含量分别降为35%、1.0% 和18%。2007年10月1日起推行无硫汽油(欧Ⅴ排放标准),使硫含量低于10μg/g,并出台了EN 228-2008汽油质量标准,于2009年1月1日开始强制执行,该标准为最新的欧盟汽油标准。欧盟汽油规格主要指标的变化见表1。 表1 欧盟汽油规格主要指标的变化

《世界燃油规范》是美国汽车制造商协会(AAMA)、欧洲汽车制造商协会(ACEA)、日本汽车制造商协会(JAMA)根据所属的30个汽车公司的研究成果联合发表的,主要是汽车制造商和发动机制造商针对环保要求,对汽车燃料提出的基本要求。世界燃油规范要求清洁汽油降低硫含量,减少尾气中SO x的排放,抑制尾气转化器中催化剂中毒;降低烯烃含量,避免发动机进油系统和喷嘴堵塞,减少发动机进气阀和燃烧室中生成沉积物,减少汽车尾气中1,3-丁二烯的排放,避免汽油辛烷值分布不均;降低苯和芳烃含量,减少致癌物;降低蒸汽压和T90,减少挥发性有机化合物(VOC)、毒物(TOX)的排放;提高辛烷值,提高汽车动力性能,减少污染物的排放。 2006年9月,世界燃油规范进行了第四次修订,将无铅汽油标准划分为四类: 1类:汽车市场对排放污染控制没有或极少要求,主要考虑汽车或发动机本身的技术状况。 2类:市场上有严格的排放控制和其它要求。 3类:市场上有超前的排放控制要求和其它要求。 4类:市场上有更超前的排放控制要求,满足最新汽车复杂的NOX排放后处理控制技术,实现超低排放。 《世界燃油规范》不允许汽油中加入含有锰、铅等金属的添加剂,可加入无灰的汽油清净剂,并根据不同的类别对硫、烯烃、芳烃和苯的含量分别加以限制,其中硫含量的下降幅度最大。《世界燃油规范》不仅对汽油的组分有限制指标外,还对汽油的性能评定方面提出了严格的要求。《世界燃油规范》指标见表2。

汽油柴油油品升级标准

1、(1)查找国四、国五商品汽油质量标准,按照顺序列表、对比国四、国五商品汽油质量标准的差异:1、抗爆性 2、蒸发性 3、腐蚀性 4、安定性(评分标 抗爆性用辛烷值(简称ON)来表示,汽油的辛烷值越高,抗爆性就越好。 从国Ⅳ到国Ⅴ的汽油标号从90,93,95降为89,92,95。 抗爆性降低,主要是由于加氢脱硫,烯烃含量减少,正构烷烃的增多导致辛烷值降低。 汽油的抗爆性与化学组成的关系为: 芳香烃>异构烷烃和异构烯烃>正构烯烃和环烷烃>正构烷烃。 (2)蒸发性:反映蒸发性的主要指标是馏程和饱和蒸汽压。 初馏点、t10%:反映启动性能;t50%:反映爬坡、加速性能;t90%:反映汽油完全蒸发、燃烧性能。饱和蒸汽压衡量汽油在汽油机燃料供给系统中是否易

于产生气阻的指标,同时还可相对地衡量汽油在储存运输中的损耗倾向。 从国Ⅳ到国Ⅴ的馏程没有变化,但是饱和蒸汽压11月1日至4月30日的42~85变至45~85,从5月1日至10月31日的40~68变至40~65。 这主要是由于汽油的蒸汽压越大,蒸发性越强,易于冷起动;同时产生气阻倾向增大,蒸发损失增大。所以冬季适当提高饱和蒸汽压,夏季适当降低饱和蒸汽压。 (3)腐蚀性: 评定汽油腐蚀性的指标:硫及含硫化合物、有机酸、水溶性酸或碱。 从国Ⅳ到国Ⅴ的汽油硫含量从50ppm降至10ppm。有机酸、水溶性酸或碱、铜片腐蚀等没有变化。硫含量的降低不仅能减少汽油燃烧产物对金属的腐蚀。同时也能够减弱汽车对大气污染程度,降低pm2.5的含量。 (4)安定性:汽油在常温和液相条件下,抵抗氧化的能力。 评定汽油安定性的指标:碘值、实际胶质、诱导期。 直馏汽油馏分安定性很好,二次加工生成的汽油馏分(如裂化汽油等)安定性较差。 汽油组成中的烯烃含量降低,硫酚及硫醇均在合理的范围内,实际胶质和诱导期没有变化。但通过烯烃及金属含量的降低,可以推知国Ⅴ汽油的安定性要优于国Ⅳ汽油。

汽柴油的调和技术

汽柴油的调和技术 一、什么是调合技术 调合技术就是用炼厂生产的一些国标或非标油品,油田生产中产生的轻烃(凝析油)及化工产品经过精制装置精制处理后,辅以一些添加剂,调合成符合客户要求的国标汽、柴油,以达到最大程度降低成本,节约石油资源的一门应用技术。 汽柴油的调合技术在国外油品的贸易领域已十分成熟,如可利用抗爆剂,将90#汽油调成93#、97#油,将-5#、0#柴油调合成-10#油出售。 在我国,每年都有生产几百吨石脑油产品,由于石脑油辛烷值低,RON 只有40—60左右,除小部分进入重整装置生产高辛烷值汽油组份外,大部分石脑油只能以乙烯裂解原料出售,价格低且不稳定,如果我们采取调 合技术,将石脑油通过精制脱去硫,并与高辛烷值组份混合,再加入抗爆 剂,就可调合出90#和93#汽油,这就可以为国家节约数量可观的石油资源。 由此可看出,汽柴油调合技术是有效节约成本,有效利用现有石油资源的有效途径的一门应用技术,应在国内大力推广。 说到这里,可能就有人问,调合油能用吗?质量可靠吗,要回答这问题,就要从炼厂生产的工艺谈起。 二、炼油厂汽柴油的生产方法 我国现在使用的汽、柴油,都是从石油中提炼出来的,未经炼制的石油,通常称为原油,用原油炼制汽柴油要经过以下基本过程: 1、先将原油脱盐脱水,然后进行常压蒸馏,分割出适宜作为汽、柴油的 馏分,这种馏叫做直馏馏分,如石脑油、常一、常二线柴油等。 2、再以炼制过程中产生的常、减压重油等为原料,用热裂化、催化裂化、 加氢裂化和延迟焦化等二次加工方法,将高沸点馏份裂解为适宜作燃料的低分子烃,经过分馏得到汽、柴油的热裂化,催化裂化和焦化组份。如果生产高辛烷值汽油,还需要采用催化重整和烷基化等方法,制得重整汽油组份和轻烷基化油。 3、将直馏馏份油和二次加工方法得到的馏分油分别进行电化学精制、加 氢精制、脱硫醇和脱蜡,除去其中的有害物质,提高油品质量。 4、最后根据不同牌号汽、柴油的质量要求,以上述各种馏份油为组份, 按所需的比例并加入适量的各种添加剂进行调和,即得到质量符合国家标准的汽、柴油。

常用单位换算(天然气)

CONVERSIONS Prefix Unit Kilo 103 Mega 106 Giga 109 Tera 1012 Peta 1015 Metric Imperial 1 kilogram 2.204 pounds 1 tonne 1.10231 US short ton ( 2 000 lbs) 1 tonne 0.98421 UK long ton ( 2 240 pounds) 1 kilolitre 6.28981 barrels (bbls) 1 barrel (of oil, bbl) 158.987 litres 42 US gallons 0.1364 tonnes 1 cubic metre (1 kilolitre) 35.3147 cubic feet 1 kilojoule 0.94781 British Thermal Units (Btus) 1 calorie 4.186 joules Other 1 cubic metre 35.3147 cubic feet Table 2 Petroleum and coal Mass or volume gas Energy & other 1 cubic metre of gas 38 megajoules as methane 44 megajoules as W.A. NWS LNG 1 billion cubic metres of natural gas 730 000 tonnes of LNG 1 Trillion Cubic Feet (TCF) Approx. 1 000 petajoules 20 million tonnes 1 tonne of gas 1 333 cubic metres 1 terajoule 26 300 cubic metres of gas 0.929 million cubic feet of natural gas 17.63 tonnes of LNG 1 MCF (eg. per day) (millions cubic feet) of gas (also 1MMSFD = 1 million cubic feet per day) 28 317 cubic metres 19.39 tonne of LNG 1 057 Gigajoules 1.1 Terajoules 1 tonne of LNG 1 460 cubic metres (at 20oC) (or 1 333 at 0oC) 54.5 Gigajoules 9.5 bbl of Arab crude oil by energy equivalence 51.7 MMBTUs 1 tonne of crude oil 7.33 bbls 42.1 gigajoules 1 MMBTU 1.055 Gigajoules 3.6 gigajoule 1 MWh 1 petajoule (1 terajoule) ca. 20 000 tonnes (20 tonnes) gas

天然气综合换算表(1)

天然气综合换算表 2015-04-28 一、天然气介绍 天然气是指埋藏在地下的可燃气体,主要成分为甲烷(CH4)。天然气形式主要有四种: 气田气由气井采出的可燃气体称为纯天然气或气田气。它的主要成分是甲烷(CH4 ),约占90%以上,此外还含有少量的乙烷(C2H6 ),丙烷 (C3H8 ),硫化氢(H2S), 一氧化碳(CO),二氧化碳(CO2 )等,热值约为38MJ/Nm3。 凝析气田气凝析气田气是指在开采过程中有较多C5 及C5 以上的石油轻烃馏分可凝析出来,但是没有较重的原油同时采出的天然气。其主要成分除含有大量的甲烷(CH4 )外,还含有2%-5%的C5 及C5 以上碳氢化合物,热值约46MJ/Nm3。 石油伴生气石油伴生气是指在开采过程中与液体石油一起开采出来的天然气,是采油时的副产品。它的主要成分也是甲烷,约占70%-80% 左右,还含有一些其它烷烃类,以及CO2 ,H2,N2 等。热值约为42MJ/Nm3。 煤矿矿井气煤矿矿井气是指从井下煤层中抽出的煤矿矿井气,是采煤的副产品。实际上它是煤层气与空气的混合气。其主要成分是甲烷(CH4 )和氮气 (N2),此外还含有O2 和CO 等。值得注意的是,矿井气只有当CH4 含量在40% 以上才能作为燃气供应,CH4 体积组分在40% —50%时,矿井气热值约为17MJ/Nm3。另外,天然气除了常规的气态形式存在于管道当中外,还可以经过加工,变成LNG 和CNG 。 LNG 当天然气在大气压下,冷却至约-162 ℃时,天然气由气态转变成液态,称为液

化天然气(Liquefied Natural Gas ,缩写为LNG )。LNG 无色.无味.无毒且无腐蚀性,天然气液化是一个低温过程,在温度不超过临界温度(-82 摄氏度),对气体进行加压0.1MPa 以上,液化后其体积约为同量气态天然气体积的 1/600 ,LNG 的重量仅为同体积水的45% 左右,热值为52MMBtu/t ,(百万英热单位/吨)(.52 ×108cal )。 CNG 压缩天然气(Compressed Natural Gas, 简称CNG)是天然气加压(超过3,600 磅/ 平方英寸)到20-25MPa ,再经过高压深度脱水并以气态储存在容器中。它与管道天然气的组分相同。CNG 可作为车辆燃料利用。 天然气的储存方式: (1)地下储气库是将长输管道输送来的商品天然气重新注入地下空间而形成的 一种人工气田或气藏,一般建设在靠近下游天然气用户城市的附近。与地面球罐等方式相比较,地下储气库具有以下优点:储存量大,机动性强,调峰范围广;经济合理,虽然造价高,但是经久耐用,使用年限长达30~50 年或更长;安全系数大,安全性远远高于地面设施。 (2)天然气储存方式主要有压缩天然气(CNG:15Pa~20MPa). 液化天然气(LNG :沸点-162 ℃)和吸附天然气(ANG);CNG 是目前车用天然气燃料的主要储存方式,缺点是储气瓶重量重.占用体积大;与液体燃料相比,天然气体积能量密度低,20MPa 压力下的CNG 燃料仅相当于汽油能量密度的30 %。(3)国际上天然气另一储存方式是液化天然气,LNG 是对地质开采的天然气通过“三脱”净化处理.实施低温液体处理而成,液化后的体积仅是原气态体积的1/625 ,LNG 的能量密度是CNG 的三倍多.能量密度大大提高,但LNG 的生产成本相对较高,储存容器的绝热性要求高,这些是制约其发展的因素。(4)吸附式储存天然气(ANG)技术是目前尚处研究阶段的一种天然气储存方式,它用多孔吸附剂填充在储存容器中,在中高压(3.5MPa 左右)条件下,利用吸附刑对天然气高的吸附容量来增加天然气的储存密度。ANG 作为未来替代CNG 的一项新技术将有广阔的发展前景,但由于技术上的不少难点还有持解决,故在目前还尚难进入实用化阶段。 、常用燃料的热值 天然气热值根据产地不同,其热值也有所不同。对于沧淄线,天然气热值约为35590 KJ/Nm3 ,换成大卡约为8500 大卡/立方。 Nm3为标准立方米,是在温度为0℃,压力为101325pa 时的体积。

天然气转换的热值标准选择

天然气转换的热值标准选择

————————————————————————————————作者:————————————————————————————————日期:

天然气转换的热值标准选择 中国与世界上许多国家一样,城市燃气发展都经历过煤制气→油制气→液化石油气→天然气转换过程→天然气。 1、天然气转换过程 所谓天然气转换过程,就是用天然气不断置换原先所使用的燃气(煤制气、油制气、液化石油气)以达到以天然气为主气源供气的整个置换过程,包括气体转换过程和热值转换过程。用天然气取代其它气源是一种必然趋势。 20世纪50年代以后,一些发展国家就致力开发天然气资源,即使本身缺乏天然气资源的国家和地区都在大量进口天然气,不断进行人工煤气或液化石油气向天然气转换的工程,以实现天然气转换的目标。 (1)部分国家天然气转换时间表 国家实现天然气转换时间(年) 气源 美国1945 — 1958 管道天然气为主 前苏联1948 — 1960 管道天然气为主 前期用LNG,后 英国1964 — 1977 期用管道天然气 LNG与管道天然 法国1962 — 1982 气 以管道天然气为 德国1960 — 1970 主,少量LNG 澳大利亚1976 — 1986 管道天然气 日本1969 — 1998 全部LNG供应 (2) 日本四大煤气公司天然气转换情况 变化情况东京大阪东部西部 引入天然气1969年1972年1977年1988年 开始热量转换1972年1975年1978年1990年

实现转换1988年1990年1993年1998年注:热量转换是在LNG气化之后加进一定数量的LPG气体,使其热值维持在11000Kcal/Nm3范围内。日本称13AGas。 2、天然气时代的特征 当城市燃气进入以天然气为主气源供应的时段,人们称之为天然气时代,这个使用着“无悔燃料”天然气的时代,将会延续相当长的一段历史时期。 (1)当天然气成为城市燃气的主气源时,其供应方式必将朝着跨地区、大面积、大管网的方向发展。 (2)燃气企业将朝着上、中、下游利益共享、设施配套、产供销一体化的产业集团方向发展。 (3)供气管网将朝着跨地区、跨省市、甚至是跨国界的方向发展。 (4)共同遵守天然气的质量标准,包括天然气的热值标准和燃器具的燃烧技术标准。 3、天然气转换的“互换性”要求 要安全有效地完成一个地区或一个国家的天然气转换和热值转换,是燃气事业者的历史责任和历史使命。 规定天然气的热值指标,实际上就是限定燃烧气体的华白指数范围,解决气源互换性的重要手段,满足华白指数在5%~10%范围内波动,有利于对燃器具燃烧技术的规范。 提出符合国家实际的天然气热值标准,让天然气转换的燃气互换性和燃具的适应性相互匹配,顺利完成天然气转换是一个非常重要的课题。 4、天然气转换的热值标准选择 对我国各地天然气组分与燃烧特性以及在我国使用的LNG组分与燃烧特性结合起来综合分析: (1)国内各地天然气组分与燃烧特性参数一览表 目甲烷乙烷丙烷异丁烷正丁烷戊烷氮气高位热值 低位热 值 华白指数燃烧势气体 CH4C2H6C3H8iC4H10nC4H10C5H12N2 MJ/Nm3(kcal/Nm3) CP 相对密度(体积:%) - 甘宁94.7 0.55 0.08 1 0.01 0 4.64 38.2 34.47 50.26 37.89 0.5778 -9124 -8232 -12004 里木96.266 1.77 0.3 0.062 0.075 0.125 1.442 40.27 36.36 52.99 39.85 0.5775 -9616 -8684 -12658 西北80.38 12.48 1.8 0.08 0.11 0.06 5.08 43.16 39.21 46.85 32.03 0.849

调和柴油

调和柴油分为车用,船用,烧火用,另外要根据原材料的情况,一般需要调配的是调配:闪点、馏程、热值、十六烷值、颜色、味道、硫含量、比重等主要项目,要根据使用要求来进行调配,没有固定配方,调配的方法千变万化。北京环宇美佳科技发展中心 轻质石油产品,复杂烃类(碳原子数约10~22)混合物。为柴油机燃料。主要由原油蒸馏、催化裂化、热裂化、加氢裂化、石油焦化等过程生产的柴油馏分调配而成;也可由页岩油加工和煤液化制取。分为轻柴油(沸点范围约180~370℃)和重柴油(沸点范围约350~410℃)两大类。广泛用于大型车辆、铁路机车、船舰。柴油最重要的性能是着火性和流动性。①着火性。高速柴油机要求柴油喷入燃烧室后迅速与空气形成均匀的混合气,并立即自动着火燃烧,因此要求燃料易于自燃。从燃料开始喷入气缸到开始着火的间隔时间称为滞燃期或着火落后期。燃料自燃点低,则滞燃期短,即着火性能好。一般以十六烷值作为评价柴油自燃性的指标。②流动性。凝点是评定柴油流动性的重要指标,它表示燃料不经加热而能输送的最低温度。柴油的凝点是指油品在规定条件下冷却至丧失流动性时的最高温度。柴油中正构烷烃含量多且沸点高时,凝点也高。一般选用柴油要求凝点低于环境温度3~5℃。柴油可以被用来作为汽车、坦克、飞机、拖拉机、铁路车辆等运载工具或其它机械用器的燃料,也可用来发电、取暖等。柴油的效率较高,如果大量取代汽油,可以降低石油消耗速度及二氧化碳的排放量。但是比起汽油来,柴油含更多的杂质,它燃烧时也更容易产生烟灰,造成空气污染。但柴油不像汽油般会产生有毒气体,所以比汽油更环保和健康。为了减少因为烟灰所造成的污染,因此近年中在西欧各国包括汽车在内燃烧柴油的机器必须装滤尘器才可使用,而其硫氧化合物(SOx)污染也是一个问题。因此各汽车公司都在发展降低污染的技术:为了减低污染,柴油的含硫量也是关注的重点,例如台湾有含硫量低于50ppm的柴油供选购。柴油

天然气换算表

1千克液化天然气=1.4-1.5立方米天然气(标况气态); 1立方米天然气(标况气态)=0.7256千克液化天然气; 1立方米液化天然气(LNG)可气化600-625立方米天然气(标况气态) 1立方米液化天然气的质量约为 430-470 千克 1升液化天然气=0.001立方米液化天然气=0.6-0.625立方米天然气(标况气态)1升液化天然气=0.001立方米液化天然气其质量为0.43-0.47千克 1升天然气(压力为20MPa)=0.001立方米天然气(压力为20MPa)=0.208立方米天然气(标况气态) 一、 CNG燃料汽车与汽油车的比较 1)经济性比较 以公交车为例,LNG燃料汽车在价格上比柴油车贵8万左右,但由于LNG和柴油保持一定的价差,车辆价格上价格差主要通过燃料费用来得到补偿。 LNG与柴油性能对比表 对单位体积热值的比较,用LNG取代柴油,1 标准立方米天然气相当于1.017升柴油,柴油车百公里消耗燃油27.5升,LNG燃料汽车百公里消耗天然气30标准立方米天然气。 柴油和LNG作为燃料经济效益比较表:(以公交车日行驶300公里计算) LNG燃料汽车与柴油车相比较每天燃料成本减少218元,按年运营时间350天计算,年可以节省燃料成本7.6万,购车增加的8.0万元成本可以在运营1年半后收回,按公交车运营寿命为8年,8年由燃料费用上得到的经济效益为61万元,因此采用LNG燃料汽车相对于柴油车大幅度的降低了车辆的运营成本,为公交公司创造较大的经济利益。 2)续驶里程比较 LNG燃料汽车采用低温液态储存方式,能源密度较高,其液化比为1:625,其配置375L车用LNG储气罐,储存量大约234标准立方米天然气,扣除LNG的蒸发量,在满载的情况下可以行驶700公里。柴油车配置280升油箱,在满载的情况下可以行驶600公里,因此在续驶里程上LNG燃料汽车比柴油车要长些。 3)车辆尾气污染物排放 汽车尾气排放是造成空气污染的主要原因之一,据统计汽车尾气排放占了空气污染源总量的40%以上,将汽车燃料由燃油改为天然气后,尾气污染将会明

最全天然气常识及单位换算

气田气 由气井采出地可燃气体称为纯天然气或气田气.它地主要成分是甲烷(),约占以上,此外还含有少量地乙烷(),丙烷(),硫化氢(),一氧化碳(),二氧化碳()等,热值约为3.文档来自于网络搜索 凝析气田气 凝析气田气是指在开采过程中有较多及以上地石油轻烃馏分可凝析出来,但是没有较重地原油同时采出地天然气.其主要成分除含有大量地甲烷()外,还含有地及以上碳氢化合物,热值约3.文档来自于网络搜索 石油伴生气 石油伴生气是指在开采过程中与液体石油一起开采出来地天然气,是采油时地副产品.它地主要成分也是甲烷,约占左右,还含有一些其它烷烃类,以及,,等.热值约为3.文档来自于网络搜索 煤矿矿井气 煤矿矿井气是指从井下煤层中抽出地煤矿矿井气,是采煤地副产品.实际上它是煤层气与空气地混合气.其主要成分是甲烷()和氮气(),此外还含有和等.值得注意地是,矿井气只有当含量在以上才能作为燃气供应,体积组分在—时,矿井气热值约为3.文档来自于网络搜索另外,天然气除了常规地气态形式存在于管道当中外,还可以经过加工,变成和. 当天然气在大气压下,冷却至约℃时,天然气由气态转变成液态,称为液化天然气(,缩写为).无色.无味.无毒且无腐蚀性,天然气液化是一个低温过程,在温度不超过临界温度(摄氏度),对气体进行加压以上,液化后其体积约为同量气态天然气体积地,地重量仅为同体积水地左右,热值为,(百万英热单位吨)(×).文档来自于网络搜索 压缩天然气( ,简称)是天然气加压(超过磅平方英寸)到,再经过高压深度脱水并以气态储存在容器中.它与管道天然气地组分相同.可作为车辆燃料利用.文档来自于网络搜索 天然气地储存方式: ()地下储气库是将长输管道输送来地商品天然气重新注入地下空间而形成地一种人工气田或气藏,一般建设在靠近下游天然气用户城市地附近.与地面球罐等方式相比较,地下储气库具有以下优点:储存量大,机动性强,调峰范围广;经济合理,虽然造价高,但是经久耐用,使用年限长达~年或更长;安全系数大,安全性远远高于地面设施.文档来自于网络搜索 ()天然气储存方式主要有压缩天然气(:~).液化天然气(:沸点℃)和吸附天然气();是目前车用天然气燃料地主要储存方式,缺点是储气瓶重量重.占用体积大;与液体燃料相比,天然气体积能量密度低,压力下地燃料仅相当于汽油能量密度地%.文档来自于网络搜索()国际上天然气另一储存方式是液化天然气,是对地质开采地天然气通过“三脱”净化处理.实施低温液体处理而成,液化后地体积仅是原气态体积地/,地能量密度是地三倍多.能量密度大大提高,但地生产成本相对较高,储存容器地绝热性要求高,这些是制约其发展地因素.文档来自于网络搜索 ()吸附式储存天然气()技术是目前尚处研究阶段地一种天然气储存方式,它用多孔吸附剂填充在储存容器中,在中高压(.左右)条件下,利用吸附刑对天然气高地吸附容量来增加天

0汽油国家标准

车用汽油国家标准 2014.10.01 项目 国三 国四 国五/京四 粤四 抗爆性 研究法辛烷值(RON) 不小于 抗爆指数 不小于 93# 93# 92# 93# 93 93 92 93 88 88 87 88 铅含量 % 不大于 0.005 0.005 0.005 0.005 馏程 10%蒸发温度 ℃ 不高于 50%蒸发温度 ℃ 不高于 90%蒸发温度 ℃ 不高于 终馏点温度 ℃ 不高于 残留量 ml 不大于 70 120 190 205 2 蒸气压11月1日—4月30日 KPa 不大于 5月1日—年10月31日 KPa 不大于 88 72 42-85 40-68 45-85 42-65 40-65 40-65 溶剂洗后胶质 mg/100ml 不大于 5 5 5 5 未洗胶质 mg/100ml 不大于 -- 30 30 --- 诱导期 min 不小于 480 480 480 480 硫含量 %(m ) 不大于 0.015 0.005 0.001 0.005 硫醇(需满足下列要求之一) 博士实验 通过 通过 通过 通过 硫醇硫含量 %(m )不大于 0.001 0.001 0.001 0.001 铜片腐蚀(50 ℃ 3h) 级 不大于 1 1 1 1 水溶性酸碱 无 无 无 无 机械杂质及水分 无 无 无 无 苯含量 % (m) 不大于 1.0 1.0 1.0 1.0 氧含量% (m) 不大于 2.7 2.7 2.7 2.7 甲醇含量% (m) 不大于 0.3 0.3 0.3 0.3 烯烃含量%(v/v) 不大于 30 28 25 25 芳烃含量 % (v) 不大于 40 40 --- --- 芳烃+烯烃含量 % (v) 不大于 -- -- 60 60 锰含量/(g/L ) 不大于 0.016 0.008 0.002 0.008 铁含量/(g/L ) 不大于 0.01 0.01 0.01 0.01 密度(20℃)kg/m 3 --- 0.72-0.775 0.72-0.775 0.72-0.775

浅谈汽柴油的调和技术及应用现状

2012年8月(下) 工业技术科技创新与应用浅谈汽柴油的调和技术及应用现状 王海春 (茂名瑞派石化工程有限公司,广东茂名525011) 1前言 进入90年代,石化工业面临着强化环境保护、提高产品质量、深化节能创效的严峻挑战,各行业对石油产品的要求越来越高。由于炼油装置加工工艺局限以及出于技术经济的综合考虑等因素,经过一次加工和二次加工所得到的油品还不能完全符合用户使用质量和环境保护等要求。因此,油品调合技术应运而生。所谓油品调合技术,就是为了满足市场需要,炼油厂生产的油料,在出厂前需要经过一定的工艺,把两种或者两种以上的基础组组分油或添加剂,按照一定比例混合成符合市场需要的产品的一门应用技术[1]。例如将石脑油通过精制脱去硫后,与高辛烷值组分混合,再加入抗爆剂,就可调合出90#和93#汽油。 2炼油厂汽柴油调和的目的 炼油厂出厂的汽柴油,大部分都是通过调合而成的油品。汽柴油调和的目的不外乎三种:一是调和后使油品具有使用要求的各种性质和性能,符合规格标准要求,并能保持产品质量稳定性;二是可以提高产品质量等级,改善油品使用性能,获得较大的经济效益和社会效益;三是可以促进基础油组分的合理使用,有效地提高产品的收率,增加产量。 3炼油厂油品调合机理 油品调合主要是使各基础油组分之间相互溶解达到均质的目的。在油品中添加各种添加剂大部分也是组分之间的溶解过程(仅有少数添加剂例外)。溶解过程的机理是扩散过程,而扩散主要分为分子扩散、涡流扩散和主体对流扩散三种形式。 3.1分子扩散 各组分(包括添加剂)分子之间相对运动引起物质传递和相互扩散,这种扩散的特点就是在不同物质的分子之间进行。 3.2涡流扩散 当采用机械搅拌调合器或泵循环调合等方式进行调合油品时,机械能传递给部分液体组分,使其形成高速流动,它与低速流动的组分(或精致液体组分)的界面产生剪切作用,从而形成大量漩涡,漩涡促使局部范围的液体组分对流扩散。这种扩散仅限于在涡流的局部范围进行。 3.3主体对流扩散 大范围内即所需调合的全部组分通过自然对流或者强制对流引起的物质传递。这种扩散的特点就是在物料的整体范围内进行。 4目前炼油厂汽柴油的生产方法及调和原料 上世纪50、60年代,我国曾从油母页岩中提炼油品,即被称为“人造原油”。而现在,我们所使用的汽、柴油等都是从原油中提炼出来的。用原油炼制汽柴油要经过以下基本过程[2]: 4.1先将原油脱盐脱水,然后进行常压蒸馏,分割出适宜作为汽、柴油的馏分,这种馏叫做直馏馏分,如石脑油、常一、常二线柴油等。 4.2再以炼制过程中产生的常、减压重油等为原料,用热裂化、催化裂化、加氢裂化和延迟焦化等二次加工方法,将高沸点馏分裂解为适宜作燃料的低分子烃,经过分馏得到汽、柴油的热裂化,催化裂化和焦化组份。如果生产高辛烷值汽油,还需要采用催化重整和烷基化等方法,制得重整汽油组分和轻烷基化油。 4.3将直馏馏分油和二次加工方法得到的馏分油分别进行电化学精制、加氢精制、脱硫醇和脱蜡,除去其中的有害物质,提高油品质量。 4.4最后根据不同牌号汽、柴油的质量要求,以上述各种馏分油为组分,按所需的比例并加入适量的各种添加剂进行调和,即可得到符合国家质量标准的汽、柴油。 由此可看出,炼厂也是先生产出各种组分,再调合成成品油。目前,国内炼油厂用于调制汽柴油的原料种类繁多,多达数十种。例如直馏汽油(石脑油、石油醚),轻质石脑油,凝析油(轻烃)等等常作为调制汽油的原料;重柴油,蜡油,焦化蜡油,200#以上的溶剂油,重芳烃,C8、C9、C10、C11、C12、C13、C14、C15等常用作柴油调制原料。在油品实际调合操作中,一般是利用以上原料,经过前期脱色、除臭、精制稳定处理后, 再加入改质添加剂复合,最后经过质量检测,达到或接近国家标准后,即可出售。 各种添加剂在汽柴油调合技术中也是广为使用而且效果明显。添加剂的作用在于可以提高产品质量、增加品种、降低成本、减少油品消耗量,并可以满足依靠当前炼油工艺技术无法达到的要求。如汽油中添加甲基环戊二烯三羰基锰(简称MMT),它使汽油具有良好的抗爆性能。 5油品调合的方法 当前油品调合的方法主要有两种,分别是管道调合和罐式调合。 5.1管道调合 管道调合也叫连续调合,是将各组分油与添加剂按照不同的调合比例泵入管道中,通过液体湍流混合或者通过混合器把液体一次切割成极薄的薄片,促进分子扩散达到混合状态,然后沿输送管道进入成品油罐储存或直接装车、装船等出厂。管道调合可分为手动调合、半自动调合、全自动调合等方式。 5.2罐式调合 罐式调合也叫批量调合或间歇式调合,是将各组分及添加剂分别用泵按预定比例送入油品调合罐,在罐内调合为成品油,在经过分析化验,满足质量指标后装车、装船或者装桶出厂。罐式调合方法根据不同条件采用不同的调合设备,如循环调合、喷嘴调合、搅拌调合等形式。 6国外汽柴油调合工艺技术现状[3] 国际上,从上世纪90年代初开始研究全自动调合工艺,许多工业发达国家和地区的炼厂大多采用了这些先进的汽柴油调合技术,并由此获得了巨大经济效益。例如,在1994年,英国BP公司就在法国的lavera炼厂便采用了在线近红外线分析仪实时测量16种调合组分及3种成品油的RON,马达法辛烷值(MON)、密度、蒸气压和镏程等指标,测量间隔为45s,通过集散控制系统(DCS)将数据传输给多元控制软件,对油品的调合生产进行优化和控制,使成品油的MON富余量从0.6个单位下降至0.3各单位,每年约增加经济效益200×104美元。波兰最大的燃料油生产厂PKN ORLEN,1996年建成了一套油品调合装置(GBU),其包括一套复杂的自动调合控制欲优化系统。这套技术可最大限度地利用罐区设备(如罐、调合器、泵、管道和泊位等),在不增加投资的情况下,就实现了提高炼厂产量、产品合格率、减少浪费等目的。以每年生产4Mt汽油计算,该套工艺每年节约的费用高达(300~400)×104美元。韩国SK公司几乎所有的大型炼油或化工装置都装备了在线近红外线分析系统,与先进过程控制(APC)系统连用实现了装置的实时优化控制,使得SK公司从APC系统获得了巨大的经济效益。 国内炼厂的油品调合工艺技术发展在上世纪90年代就开始了[4]。例如1992年大连某石化公司从国外引进成套的在线调合工艺技术,1993年至1998年,中国石化镇海炼化公司、福建炼化公司和兰州炼化公司相继建成了汽油在线自动调合工艺项目,并都取得较好的经济效益。 7结论 汽柴油调合技术是炼油企业油品生产过程中必不可少的一个重要环节,它的产生、发展,对于满足炼厂油品生产,提高产品质量,符合国家油品标准,改善环境等都具有十分重要的意义。而当前国内外炼厂都非常重视油品调合技术的开发、研究和应用,特别是油品自动调合工艺技术。汽柴油调合技术的改进,可以有效挖掘出潜在巨大经济效益,而且也有利于我们的环境保护,满足人们对高质量油品日益增长的需求。 参考文献 [1]郭光臣等.炼油厂油品储运[M].中国石化出版社,1999. [2]王从刚,张艳梅等.储运油料学[M].中国石油大学出版社,2006. [3]孙根旺等.汽油在线优化调合控制模型及其应用[J].石油炼制与化工,1999. [4]章建华.信息技术在油品调合中的应用[J].炼油设计,2002年09期. 摘要:石油炼制工业由于炼油装置工艺局限和出于技术经济的综合考虑等因素,经过一次加工和二次加工所得到的油品还不能完全符合市场上的使用要求,一般通过油品调合的方式来满足市场上对油品质量要求。因此,本文重点介绍了炼油企业的汽柴油调合技术的原理、调合目的、调和方法以及国外油品调合技术的应用现状。 关键词:油品调和;技术;应用;介绍 73 --

相关文档
最新文档