基于单片机的频率计设计

基于单片机的频率计设计
基于单片机的频率计设计

[摘要] 本设计采用的是脉冲宽度测量法实现对频率的测量,采用了MCS-51系列的单片机AT89C51和五个硬件电路。单片机片内有两个独立的16位定时计数器,对被测信号进行分频后送入单片机,由单片机内部时钟12分频的脉冲信号对其测量,将测量的结果,经过运算后通过LED数码管显示出来。本文设计的频率计就是基于上述设计思路,实现测量的数字化、自动化、智能化。

[关键词] 数字频率计;频率测量;周期测量;单片机控制

目录

前言 (1)

1测量频率的方案及基本原理 (2)

1.1数字频率计的测量方案选取 (2)

1.2 测量频率的基本原理 (2)

2频率计的整体设计思想及设计框图 (4)

2.1系统总体设计要求 (4)

2.2设计思想 (4)

3系统的实现 (5)

3. 1硬件系统的组成 (5)

3.2软件系统的设计 (10)

4 被测信号的频率范围及其误差分析 (14)

4.1 频率运算的基本方法 (14)

4.2同步计数计时法 (16)

4.3 连续采样的两种方法及其误差分析 (16)

4.4所测频率最大值fxmax (21)

4.5所测频率最小值fxmin (21)

5 结论 (23)

参考文献 (24)

前言

频率计是一种基础测量仪器,到目前为止已有30多年的发展史。一直以来,人们对频率计的特性主要有如下需求:(1)足够宽的频率测量范围;(2)高精度和高分辨率。精度是指测量的准确程度,即仪器的读数接近实际信号频率的程度,精确度越高测量越准确。分辨率表明很小的变化都能在仪器上显示出来,高分辨率可快速测出更小的漂移值和不稳定值。长期以来,人们测量频率的方法有两大种类:直接测量频率法,间接测量频率法。直接测量就是依据频率的定义对被测信号进行测量,即是单位时间内(通常是一秒)发出的脉冲个数,直接测量频率法在低频误差较大,不能满足设计要求。间接测量频率法有多种,较常用的是周期测量频率法和脉冲宽度测量法,实际上周期测量和脉冲测量方法基本相同,本论文就是用的脉冲宽度测量法实现对频率的测量,他的特点是测量迅速、灵敏,结构简单,精度高,误差小。

单片机是一门发展极快,应用方式极其灵活的使用技术。它以灵活的设计、微小的功耗、低廉的成本,在数据采集、过程控制、模糊控制、智能仪表等领域得到广泛的应用。微电子技术和计算机技术的飞速发展,使得现代电子系统的设计和应用进入了一个全新的时代。高性能但结构简单的电子技术产品已经成为了市场的主体。

频率的测量在生产和科研部门中经常使用, 频率计在教学、科研、仪器测量、工业控制等方面都有较广泛的应用。也是一些大型系统实时检测的重要组成部分。采用单片机与频率测量技术相结合可大大提高频率计的自动化程度和灵活性,采用分频周期测量法可提高测频的精确度。本设计是对被测信号进行分频后送入单片机,由单片机内部时钟12分频的脉冲信号对其测量,将测量的结果,经过运算后通过LED数码管显示出来。本文设计的频率计就是基于上述设计思想。实现测量的数字化、自动化、智能化。众所周知,数字化、自动化、智能化已成为各类仪器仪表设计的方向,这里介绍一种用单片机控制的、全自动、数字显示的测量频率的方法。

本论文基于单片机的频率计设计针对中高频的测量,该设计具有结构简单,价格低廉,使用方便,可靠性高,可自主更改测量频率范围,灵活性强等很多优点。

1测量频率的方案及基本原理

1.1数字频率计的测量方案选取

频率测量方法很多,但常用的是直接测量法和间接测量法。直接测频法是依据频率的含义把被测频率信号加到闸门的输入端,只有在闸门开通时间T(以1s 计)内,被测(计数)的脉冲送到十进制计数器进行计数。设计数器的计数值为N,则可得到被测信号频率为f= N 。但是由于闸门的开通、关闭的时间与被测频率信号的跳变难以同步,因此采用此测量方法在低频段的相对测量误差可能达到50%,即在低频段不能满足设计要求。直接测频法更加简单方便可行,直接测频法虽然在低频段测量时误差较大,但在低频段我们可以采用间接测频法测量,这样就可以提高测量精度了。间接测频法最常用的方法就是直接周期测量法。直接周期测量法是用被测周期信号直接控制计数门控电路,使主门开放时间等于TX,时标为TS 的脉冲在主门开放时间进入计数器。设在TX 期间计数值为N,可以根据TX=N ×TS 来算得被测信号周期。与直接测频法相似,经误差分析,用该测量法测量时,被测信号的周期越短,测量误差越大。也就是说,直接周期测量法在高频段时误差较大,但同样可以在高频段采用直接测频法来提高测量精度。

下面我们选择和直接周期测量法相似的脉冲宽度测量法对被测信号进行频率测量。脉冲宽度测量,测量电路在检测到脉冲信号的上升沿时打开计数器,在下降沿时关闭计数器。设脉冲宽度为TWX,计数时钟周期为TS =1/fs,计数结果为N,则根据TWX=N/fs=N ?TS 就可得出测量结果。这种脉宽测量方法与周期测量方法基本相同。由以上分析可得频率测量的主要思路,高频的我们可以通过分频转化为低频段进行测量。

1.2 测量频率的基本原理

频率测量的主要思路是:首先被测信号通过放大器进行放大,然后对放大后的脉冲信号整形、分频,其次由单片机控制选择器选择分频通道,被选择的分频信号进入单片机,最后用单片机中的已知标准频率的信号去测量一个或几个已分频的被测信号的周期(见图1-1,以4分频为例)。在被测信号的一个或几个周期内,通过的标准信号的脉冲个数为N,则被测信号的周期TX 如下计算[1]。

TX=T0?N/m (1-1) 其中m 为分频数

图1-1 测频原理图

N

被测信号

被测信号的四分频

标准信号通过标准脉冲的个数 N

f

x

f 0

/

4

f x

标准信号周期 T0 =1/f0 (1-2) 所以被测信号频率 fx =1/Tx=m ?f0/N (1-3) 被测信号频率的相对误差: dfx/fx =dN/N+dfo/f0 (1-4) ?fx=?N + ?f0 (1-5) 即:?fx=?N + ?f0为被测信号的相对误差; ?N= dN/N =±1/N 为读数的相对误差,即量化误差;?fo=df0/f0 为标准频率的相对误差,由石英晶体振荡器决定,石英稳定度达10

10

-~

1110-,所以相对误差很小。若不考虑标准频率的误差,则被测信号的相对误差为:

N

N dN N f 1

±==?≈? (1-6)

根据以上分析,被测信号的相对误差取决于N,N 越大,被测信号频率的精度越高。由于标准

信号f0不变,可采用对被测信号fx 进行m 分频的方法,来提高N,从而减小相对误差,提高被测频率的精度。

2频率计的整体设计思想及设计框图

2.1系统总体设计要求

测量范围:根据分频数值m 自由设定 测量信号电压: 0.5V 显示方式:6位LED 数显

频率测量、周期测量、自校、记数功能

2.2设计思想

单片机中一般都设有定时计数器,如MCS-51系列的单片机片内有两个独立的16位定时计数器, 本设计是对被测信号进行分频后送入单片机,由单片机内部时钟12分频的脉冲信号对其测量,将测量的结果,经过运算后通过LED 数码管显示出来。本文设计的频率计就是基于上述设计思想从而实现测量的数字化、自动化、智能化。

提高频率计的工作频率只能在硬件选材上下工夫。本文所设计的频率计,为了能实现对超高频的信号进行测频,保证测量的高精度,在硬件选材方面做如下选择:

选用了前置分频器CC74HC4040,其特点是工作频率高,且可工作于输入正弦信号的场合。 选用了带施密特触发器的反相器7414。

单片机的12MHz 晶振选用超高精度的晶体振子TCXO 器件,它具有对温度进行自动补偿的功能,其稳定度可达±3PPM 。

单片机选用89C51,其片内有4KB 的E2PROM 、128B 的RAM,故整个系统比较简单。 整个电路的功能框图[2]:

图2-1 系统结构框图

波形放大整形分频

多路开关

单片机

显示

fx

3系统的实现

数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器系统实现包括硬件系统的实现和软件系统的实现。硬件系统五个电路单元和一个AT89C51单片机:软件系统设计的实现包括两个部分,主程序的设计和中断服务子程序的设计。软硬件的紧密配合,才能使频率计稳定、精确的工作。

3. 1 硬件系统的组成

硬件系统包括五个电路单元和一个单片机A T89C51。硬件系统的五个电路单元分别为:(1)放大电路,(2)整形电路,(3)分频处理电路,(4)多路开关,(5)单片机外围电路及其显示电路。下面图3-1是系统的硬件电路图[3]。

图3-1 系统的硬件电路框图

下面分别对他们的作用和功能作简单的介绍。

3.1.1放大电路

前向通道是由放大、整形、分频、多路开关四级电路组成(见上图3-1)。

第一级电路是由开关三极管组成的零偏置放大电路(见下图3-2)。

输入信号R1

R2

T

图3-2 零偏置放大电路

开关三极管组成的零偏置放大电路用来保证放大电路具有良好的高频响应, 当输入信号为零或负电压时, 三极管工作在截止状态,输出为高电平,当输入为正电压时,三极管工作在饱和状态,即导通状态,输出电压随输入电压上升而下降。零偏置放大器可把正负交替波形变换成单向脉冲,该电路可以测量任意方波信号、正弦波信号、锯齿波信号、三角波信号等频率。放大器的放大能力实现了对小信号的测量,三极管应采用开关三极管以保证放大器具有良好的高频应。3.1.2整形电路

前向通道的第二级电路即为整形电路。

整形电路采用带施密特触发器的反相器7414,其主要作用是对放大器输出的信号进行整形,使其输出的信号脉冲与后级电路相兼容。也就是他用于把放大器生成的单向脉冲变换成与

CMOS电平相兼容的方波。

3.1.3分频处理电路

前向通道的第三级电路即为分频处理电路。

第三级采用12位二进制异步计数器CC74HC4040,对整形后的信号进行分频, 对输入信号的分频,从12个输出端输出的分别是对被测信号进行21、22、23、24、25、26、27、28、29、210、211、212分频,而该系统只取前八个输出与后级八选一电路中八个输入端相连。

3.1.4多路开关

前向通道的第四级电路即为多路开关电路,也就是八选一数据选择器。

第四级电路是由CC74HC151构成的多路开关(见上图3-1),将数据选择器的输出端直接与单片机的外中断INT1相连,通道的控制信号A2、A1、A0与CPU的I/O端P3.2、P3.1、P3.0相连,根据对被测信号相对误差的要求,CPU给出对应的控制信号,选择相应的分频输入通道,被测信号

通过INT1的引脚向CPU申请中断。

3.1.5单片机显示电路

输出显示,本电路采用动态显示的方法。实际使用的LED显示器都是多位的。对多位LED 显示器,通常都是采用动态扫描的方法进行显示,即逐个地循环地点亮各位显示器。这样虽然在任一时刻只有一位显示器被点亮,但是由于人眼具有视觉残留效应,看起来与全部显示器持续点亮效果完全一样。

为了实现LED显示器的动态扫描,除了要给显示器提供段(字形代码)的输入之外,还要对显示器加位的控制,这就是通常所说的段控和位控。因此多位LED显示器接口电路需要有两个输出口,其中一个用于输出8条段控线(有小数点显示);另一个用于输出位控线,位控线的数目等于显示器的接口电路。P1 口作为字型口输出口,即段控口输出口,以P1.0~P1.7输出段控线。以输出8位字形代码。P2口作为字位口输出口, 即位控口,以P2.0~P2.5输出位控线。考虑到单片机端口的驱动能力,在字型口(P2口)的输出端加74LS244单向驱动电路。单片机显示电路见图3-1 系统的硬件电路图。

3.1.6AT89C51单片机[4]

ATMEL的AT89C51是一种带有4K字节可电擦除电编程的只读存储器,高性能的8位CMOS处理器,可1000次循环写/擦,数据保留时间为10年右,128字节的内部RAM,32个可编程I/O线,2个16位的定时器/计数器,6个中断源,一个可编程串行通讯口,静态工作频率:0Hz-24MHz。

在本设计中, 单片机有三个作用。第一,采集数据,根据系统设计的相对误差要求,选择不同的分频输入,供标准信号去测量,测量得到的是脉冲个数N。第二,运算,将测量到的脉冲个数N,经过运算得到被测信号的频率;再将运算得到的十六进制的结果转换成用于显示的BCD码。第三,将要显示的结果查字型表通过动态扫描显示电路显示出来。

12345678

1312119101918171615

1420

27262524232221

323130

292837363533

34403938P1.0P1.6

P1.5P1.4P1.3P1.2P1.1(RXD)P3.0RST P1.7(TXD)P3.1(WR)P3.6(T1)P3.5

(TO)P3.4(INT1)P3.3(INT0)P3.2(RD)P3.7XTAL2XTAL1GND

P2.0

P2.1P2.4P2.3P2.2ALE/PROG

PSEN P2.7P2.6P2.5EA/V P0.7P0.1P0.2P0.3P0.4P0.5

P0.66P0.0V CC PP

A T 89C 51

图3-3 AT89C51的引脚排列

引脚功能介绍: VCC :供电电压。 GND :接地。

P0口:P0口为一个8位漏级开路双向I/O 口,每脚可吸收8TTL 门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH 编程时,P0口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O 口,P1口缓冲器能接收输出4TTL 门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 INT0(外部中断0)

P3.3 INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 WR(外部数据存储器写选通)

P3.7 RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的PSEN信号将不出现。

EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

3.2软件系统的设计

3.2.1主程序的设计[5]

在主程序中先初始化各单元,T0工作在方式1(16位的定时/计数方式) , 无门控定时状态。INT1工作在中断状态、边沿触发方式, 设置各标志位。显示子程序执行一次需6ms,而显示次数决定显示器的刷新时间,显示结束后,将计算得到的结果转换成BCD码,送显示缓冲器,程序框图见下图

3-3。

开始

清缓冲单元、结果单元

初始化标志位

初始化定时计数器

设INT1为边沿触发开中断

设置显示次数

调用显示子程序

N

显示是否结束

Y

有测量结果

N Y

将结果转换成BCD码送显示缓冲器

清测量结束标志

图3-4 主程序设计框图

3.2.2中断服务子程序的设计

第一次进入中断服务主程序后,对T0寄存器TH0、TL0清零,选择分频通道, 初始状态为D0通道(2分频)。启动定时/计数器T0(TR0=1),返回主程序。第二次进入中断服务子程序,首先停止计数(TR0=0),判断T0是否溢出,若溢出,则被测信号的频率低于设计频率,给出错标志,中断返回;否则判断相对误差是否达到要求,达到要求,根据公式fx=m f0/N计算出被测信号频率,中断返回;若达不到要求,则修改数据选择器控制信号的地址,选择D1通道(4分频),以此类推达到相对误差要求为止,CC74HC151的地址、通道与分频的关系见表1 ,该电路的设计最高分频是82,若82分频,还达不到要求,则被测信号的频率高于设计频率,给出错标志,中断返回。

表3-1 CC74HC151的地址、通道与分频的关系[6]

A2 A1 A0 Y 分频

0 0 0 D021

0 0 1 D122

0 1 0 D223

0 1 1 D324

1 0 0 D425

1 0 1 D526

1 1 0 D627

1 1 1 D728

显示子程序、计算被测频率及转换成BCD码子程序,较简单,这里不在讲述。下面是中断服务子程序的流程图。

Y

N

N

Y

Y

Y

Y

图3-5 INT1中断子程序框图

开始

测量是否结束

(F0)=0

TH0 TLO 清零 设置分频通道选择 启动计数TR0=1

F0取反

中断返回

停止计数TR0=0

T0是否溢出

通道选择是否结束

选择下一通道

低于设计频率 给出错标志

计算

高于设计频率 给出错标志

误差是否达到要求

设置测量 结束标志

4 被测信号的频率范围及其误差分析

频率运算法在速度、流量、以及旋转加速度等物理量的测量上被广泛采用。频率运算方法,有定时计数法(测频法)、定数计时法(测周法)和同步计数计时法。本文结合实际,对这几种方法加以探讨,并且对主要误差源加以分析,进而描述改进方法和缩小误差的过程。

同步计数计时法结合了前两种方法的优点,在测量准确度上有了新的提高,并且又分出定时采集法和定脉冲采集法,虽然都运用同步计数计时法,但是又分别与早期的测频法和测周法相似,往往又被归类为测频法(新)和测周法(新);至于归类的合理性问题,在此不做探讨,但是将其本源的东西,在本文加以介绍,以便进一步探讨误差的来源和测量方法的改进,以及在运用中如何选择更加切合实际的测量方法。

4.1 频率运算的基本方法

定时计数法(测频法)在测量上有±1的误差,低速时误差较大;定数计时法(测周法)也有±1个时间单位的误差,在高速时,误差也很大。

同步计数计时法综合了上述两种方法的优点,在整个测量范围都达到了很高的精度,误差率在万分之五以上的频率测量仪表(转速表、流量表、频率计)基本都是这种方法。

下面以XJP-10B为例,介绍以前常被采用的定时计数法(测频法)、定数计时法(测周法)和同步计数计时法;以便了解方法演变的过程。

早期的XJP-10B转速数字显示仪,采用CMOS数字集成电路。其原理可用如下三个框图表示[7]:

图4-1 测频原理

框图一告诉我们,被测信号通过放大整形进入加法计数器;晶体振荡器的频率信号通过分

频产生秒(或分钟)信号,在计数显示控制器中生成寄存脉冲和清零脉冲。寄存脉冲将加法计

数器的BCD码送入寄存器,通过译码驱动,LED数码管显示一秒(或分钟)内的计数值,直

到下一次寄存脉冲的到来;紧接着清零,进行下一轮计数、寄存(译码显示);如此,不间断测频。如果我们考察一下这些信号的时序,不难发觉这种定时计数测量方法的缺陷是:被计数脉

冲有±1的误差。如果被测频率为10000Hz,多一或少一的误差,相对来讲只不过万分之一;如

果被测频率为2Hz, ±1的误差,相对来讲就达到了百分之五十,不难看出频率越低,误差越大,而且还有一点,把一秒变成一分钟,误差就变小了。低频时,如不延长采样时间,要提高精度就要采用测周的方法,框图二正是说明这种方法。

图4-2测周原理

将框图二与框图一进行比较,我们不难发觉:上述二者的差别在于晶体振荡器与被测信号的位置作了互换,象是代数上的分子分母的颠倒,也正是物理上的频率和周期互为倒数,我们不难体会到,学科之间的内在联系无处不在。

测周的误差:与测频相似,是±1一个晶体振荡器脉冲,也就是±1个时基脉冲,晶体振荡器脉冲频率准确度越高误差越小,晶体振荡器脉冲频率越高误差也越小,被测频率越高误差越大;因此测量高频时,对被测信号进行分频,确实是提高测周精度的好方法。在周期过长时,还可通过计数器,借助计时器来测量转速。下面的框图表示了计数器的工作原理。

图4-3计数器原理

现在我们可以看出,XJP-10B转速数字显示仪,在CMOS数字集成电路的条件下,已经是一款十分完备的转速测量工具。

早期的XJP-10B转速数字显示仪,在今天看来有哪些不足呢?周期和频率都不能等同转速,频率与转速存在倍数关系,通过时基频率的分频(采样时间的倍乘),基本满足了大都数用户的需要,测周则需要用户自己换算成转速。在今天的电子技术条件下,解决这些问题用单片机或FPGA都比较方便。那么今天的设计者怎样设计新的智能频率计(测速仪)呢?下面以SQY01T 智能测速仪计为例,介绍同步计数计时法。

4.2同步计数计时法

同步计数计时法,是随着单片机的普及而得到普及运用。同步计数计时法是怎样综合前两种方法的优点的呢?我们还是用时序来分析。

定时计数时序

图4-4时序一图4-5时序二

时序图一:计时和计数脉冲不同步;时序图二:计时和计数脉冲同步。但不管计时和计数脉冲同步与否,都有±1的误差。同理,定数计时也有±1的误差。

图4-6同步计数计时时序

当定时器与被测脉冲同步计数时,为避免被测脉冲计数±1的误差,将定时作延时调整,等待被测脉冲计数完整;与此同时,取时间基准脉冲计数值。这样脉冲计数N为零误差,时间基准脉冲计数T有±1的误差。当时间基准脉冲源(晶振)误差小于十万分之一时,误差源主要是时间基准脉冲计数±1误差引起。

频率F=N/T,假定定时为1秒,时间基准脉冲周期为100μS,T=10000+ΔT

F=N/(10000+ΔT),

误差Δf/f=[N/(10000+ΔT)-N/(10000+ΔT±1)]/[N/(10000+ΔT)]

=1-(10000+ΔT±1)/(10000+ΔT)

=±1/(10000+ΔT)

可见误差小于万分之一,随着晶振频率的提高误差减小。进一步分析误差源还要考量晶振频率的稳定度和误差,以及单片机中断响应滞后引起的误差。

下面介绍的改进方法,应用在以32位ARM微处理器做为核心芯片的SQY11-03智能频率计上。

4.3 连续采样的两种方法及其误差分析

4.3.1 连续定时采样法 [8]

图4-7 Tc采样时间

首次中断:捕捉脉冲上升沿触发时间t0,记录脉冲计数值P0同时启动采样定时器Tctimer,等采样时间Tc到,给出采样时间到的标志;采样时间到后发生的脉冲上升沿触发中断,也就是末次中断。

末次中断出现,捕捉脉冲上升沿触发时间t1,记录脉冲计数值P1;清时间到的标志(为下次采集做准备),将这次的脉冲上升沿触发时间t和脉冲计数值P储存,并且清采样定时器Tctimer (为下次采集做准备),允许运算;(主程序做运算,保存运算结果。)一次采集结束。

下次等采样时间到,给出时间到的标志;

末次中断来,捕捉t1,记录P1;(上次P1、t1作为这次的P0、t0)

清时间到的标志,将这次的t和P储存,并且清采样定时器Tctimer,允许运算;(主程序做运算,保存运算结果。)又一次采集结束。如此循环往复,连续不断地定时采集脉冲,测量频率和速度。

F=Pclk *N/(t1-t0),F表示被测频率;CPU时钟频率为66.3552MHz,定时器时钟频率Pclk为33.17762MHz;时钟周期为1/Pclk = 30.140799731867445585307204073107 nS,

因为捕捉计时有±1的误差,假定Pclk误差限远小于1.00 e-8时,Pclk误差忽略不计

频率误差:ΔF = Pclk *N /(t1-t0) - Pclk *N /(t1-t0±1)

Pclk *N /(t1-t0) * (1/(t1-t0±1))

误差率ΔF/F = ±(1/(t1-t0±1))

当采样时间≥10mS时,t1-t0 ≥0.01*Pclk =331776.2

ΔF/F ≤±1/331776.2 = 3.01408 e-6

当采样时间≥1S时,t1-t0 ≥1*Pclk =33177620

ΔF/F ≤±1/33177620 = 3.01408 e-8

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 (1) 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1功能分析与设计目标 背景: 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机 用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(Δm,△ T)要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M法):此法是记录在确定时间TC内待测信号的脉冲个数MX ,则待测频率为: FX=MXZ TC 脉冲周期测频法(T法):此法是在待测信号的一个周期TX内,记录标准频率信号变化次数MO。这种方法测出的频率是: FX=MOZTX 脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。通过A倍频,把待测信号频率放大A倍,以提高测量精度。其待测频率为: FX=MXZATO 脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号 的周期扩大A倍,所测频率为: FX=AMO/Tx

单片机简易频率计课程设计

前言 (3) 一、总体设计 (4) 二、硬件设计 (6) AT89C51单片机及其引脚说明: (6) 显示原理 (8) 技术参数 (10) 电参数表 (10) 时序特性表 (11) 模块引脚功能表 (12) 三、软件设计 (12) 四、调试说明 (15) 五、使用说明 (17) 结论 (17) 参考文献 (18)

附录 (19) Ⅰ、系统电路图 (19) Ⅱ、程序清单 (20)

前言 单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。因此,单片机的学习、开发与应用在生活中至关重要。 随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的范围比较小.考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。

一、总体设计 用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量. 所谓“频率”,就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f x。时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s.闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。由于计数器计得的脉冲数N是在1秒时间内的累计数,所以被测频率fx=NHz。 本系统采用测量频率法,可将频率脉冲直接连接到AT89C51的T0端,将T/C1用做定时器。T/C0用做计数器。在T/C1定时的时间里,对频率脉冲进行计数。在1S定时内所计脉冲数即是该脉冲的频率。见图1: 图1测量时序图 由于T0并不与T1同步,并且有可能造成脉冲丢失,所以对计数器T0做一定的延时,以矫正误差。具体延时时间根据具体实验确定。 根据频率的定义,频率是单位时间内信号波的个数,因此采用上述各种方案

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

高精度单片机频率计的设计

《综合课程设计》 一.数字频率计的设计 姓名:万咬春学号2005142135 一、课程设计的目的 通过本课程设计使学生进一步巩固光纤通信、单片机原理与技术的基本概念、基本理论、分析问题的基本方法;增强学生的软件编程实现能力和解决实际问题的能力,使学生能有效地将理论和实际紧密结合,拓展学生在工程实践方面的专业知识和相关技能。 二、课程设计的内容和要求 1.课程设计内容 (硬件类)频率测量仪的设计 2.课程设计要求 频率测量仪的设计 要求学生能够熟练地用单片机中定时/计数、中断等技术,针对周期性信号的特点,采用不同的算法,编程实现对信号频率的测量,将测量的结果显示在LCD 1602 上,并运用Proteus软件绘制电路原理图,进行仿真验证。 三.实验原理 可用两种方法测待测信号的频率 方法一:(定时1s测信号脉冲次数) 用一个定时计数器做定时中断,定时1s,另一定时计数器仅做计数器使用,初始化完毕后同时开启两个定时计数器,直到产生1s中断,产生1s中断后立即关闭T0和T1(起保护程序和数据的作用)取出计数器寄存器内的值就是1s内待测信号的下跳沿次数即待测信号的频率。用相关函数显示完毕后再开启T0和T1这样即可进入下一轮测量。 原理示意图如下:

实验原理分析: 1.根据该实验原理待测信号的频率不应该大于计数器的最大值65535,也就是说待测信号应小于65535Hz。 2.实验的误差应当是均与的与待测信号的频率无关。 方法二(测信号正半周期) 对于1:1占空比的方波,仅用一个定时计数器做计数器,外部中断引脚作待测信号输入口,置计数器为外部中断引脚控制(外部中断引脚为“1”切TRx=1计数器开始计数)。单片机初始化完毕后程序等待半个正半周期(以便准确打开TRx)打开TRx,这时只要INTx (外部中断引脚)为高电平计数器即不断计数,低电平则不计数,待信号从高电平后计数器终止计数,关闭TRx保护计数器寄存器的值,该值即为待测信号一个正半周期的单片机机器周期数,即可求出待测信号的周期:待测信号周期T=2*cnt/(12/fsoc) cnt为测得待测信号的一个正半周期机器周期数;fsoc为单片机的晶振。所以待测信号的频率f=1/T。 原理示意图如下: 实验原理分析: 1.根据该实验原理该方法只适用于1:1占空比的方波信号,要测非1:1占空比的方波信号 2.由于有执行f=1/(2*cnt/(12/fsoc))的浮点运算,而数据类型转换时未用LCD 浮点显示,故测得的频率将会被取整,如1234.893Hz理论显示为1234Hz,测 得结果会有一定程度的偏小。也就是说测量结果与信号频率的奇偶有一定关 系。 3.由于计数器的寄存器取值在1~65535之间,用该原理时,待测信号的频率小于单片机周期的1/12时,单片机方可较标准的测得待测信号的正半周期。故用 该原理测得信号的最高频率理论应为fsoc/12 如12MHZ的单片机为1MHz。 而最小频率为f=1/(2*65535/(12/fsoc))如12MHZ的单片机为8Hz。 四.实验内容及步骤 1. 仿真模型的构建 数字方波频率计的设计总体可分为两个模块。一是信号频率测量,二是将测得的频率数据显示在1602液晶显示模块上。因此可搭建单片机最小系统构建构建频率计的仿真模型。原理图,仿真模型的总原理图如下:

单片机课设——频率计的设计——C语言编程

沈阳工程学院 ┊┊ 课程设计 设计题目:频率计程序设计 系别自控系班级测控本091 学生姓名学号 指导教师职称教授 起止日期: 2012 年1月2日起——至2012 年1月13日止

沈阳工程学院 课程设计任务书 课程设计题目:频率计程序设计 系别自控系班级 学生姓名学号 2009308119 指导教师职称教授 课程设计进行地点: F422 任务下达时间: 2012 年 1 月 2 日 起止日期:2012年1月2日起——至2012年1月13日止教研室主任 2012 年1月2日批准

频率计的设计 1.设计主要内容及要求; 编写频率计程序。 要求:1)能够测量频率并显示。 2)能够进行闸门时间选择。 2.对设计论文撰写内容、格式、字数的要求; (1).课程设计论文是体现和总结课程设计成果的载体,一般不应少于3000字。 (2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。课程设计论文的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 (3).论文要求打印,打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 (4). 课程设计论文装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。 3.时间进度安排;

沈阳工程学院 C8051F020单片机原理及应用课程设计成绩评定表

中文摘要 在人们的日常生活中,频率的测量无处不在。随着科学技术的发展,尤其是单片机技术和半导体技术的高速发展,频率计的研究及应用越来越受到重视,这样对频率测量设备的要求也越来越高。单片机是一门发展极快应用方式极其灵活的使用技术。他以灵活的设计、微小的功耗、低廉的成本,在数据采集、过程控制、模糊控制、智能仪表等领域得到广泛的应用,极大的提高了这些领域的技术水平和自动化程度。 在电子技术测量中,频率是最基本的参数之一,设计一种快速准确的频率计显得尤为重要。该数字频率计的设计主要实现用数字显示被测信号的频率,该设计是以51单片机作为核心,与传统频率计相比该设计具有更高的测量精度和速度,具有各种中断处理能力,并且具有丰富的数字输入输出口和通信口等。该频率计的设计在软件上编写,并采用计数式测频方法,通过单片机外围电路中由振荡电路产生的闸门信号进行计时,并对整形后的被测信号进行脉冲计数以得到被测信号的频率值。由于低频信号照成了较大的量化误差,可在测量低频信号的时候延长闸门时间信号,以提高测量精度。 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号、方波信号及其他单位时间内变化的物理量。在设计中应用单片机的数学运算和控制功能,来实现测量量程的自动切换,既满足测量精度的要求,又满足系统反应时间的要求。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显式、测量迅速、精确度高、显示直观、所以经常用到频率计。 51系列单片机是国内目前应用最广泛的一种8位单片机之一,随着嵌入式系统、片上系统等概念的提出和普遍接受及应用。51系列及其衍生单片机还会在继后很长一段时间占据嵌入式系统产品的低端市场,因此,作为新世纪的大学生,在信息产业高速发展的今天,掌握单片机的基本结构、原理和使用时非常重要的。 总之,频率计的设计是进行更深层次频率测量的基石。 关键词单片机,频率测量,分频器,硬件,软件

基于单片机的数字频率计设计

江阴职业技术学院 毕业论文 课题:基于单片机的数字频率计的设计 专业电子信息工程 学生姓名冯海洋 班级08电子信息工程(1)班 学号20080305107 指导教师张文洁 完成日期

目录 摘要?错误!未定义书签。 前言................................................................................................... 错误!未定义书签。第一章绪论............................................................................................... 错误!未定义书签。 1.1课题背景?错误!未定义书签。 1.2 课题研究的目的和意义 ................................................................. 错误!未定义书签。 1.4数字频率计设计的任务与要求?错误!未定义书签。 第二章数字频率计总体方案设计............................................................... 错误!未定义书签。 1.1方案比较 .......................................................................................... 错误!未定义书签。 1.2方案论证......................................................................................... 错误!未定义书签。 1.3方案选择......................................................................................... 错误!未定义书签。 第三章数字频率计的硬件系统设计........................................................... 错误!未定义书签。 3.1数字频率计的硬件系统框架...................................................... 错误!未定义书签。 3.2 数字频率计的主机电路设计?错误!未定义书签。 3.3数字频率计的信号输入电路设计................................................... 错误!未定义书签。 3.4数字频率计显示电路的设计 ........................................................... 错误!未定义书签。 3.5数字频率计的计数电路的设计?错误!未定义书签。 3.6数字频率计电源模块的设计?错误!未定义书签。 第四章数字频率计软件系统设计?错误!未定义书签。 4.1 软件设计规划................................................................................. 错误!未定义书签。 4.1.1信号处理............................................................................ 错误!未定义书签。 4.1.2中断控制................................................................................. 错误!未定义书签。 4.2.1定时器/计数器?错误!未定义书签。 4.2.2定时工作方式0..................................................................... 错误!未定义书签。 4.3程序流程图设计................................................................................ 错误!未定义书签。

单片机数字频率计设计

目录 第一章摘要 (2) 第二章系统总体方案设计 (2) 2.1 总体思路设计 (2) 2.2 测频原理 (3) 第三章系统硬件设计 (4) 3.1 AT89S51单片机引脚的介绍 (4) 3.2 锁存器74HC573引脚的介绍 (6) 3.3 译码器74HC138引脚介绍 (7) 3.4 放大整形模块 (7) 3.5 显示模块设计 (8) 3.6 键盘电路设计 (9) 3.7 复位电路和时钟产生电路设计 (10) 3.8 +5V电源设计 (11) 3.9 系统整体原理图 (13) 第四章系统软件设计 (13) 4.1 主程序流程图 (13) 4.2子程序流程图 (14) 4.2.1中断服务子程序 (14) 4.2.2 显示子程序设计 (15) 4.2.3量程转换程序 (16) 第五章设计总结与心得体会 (17) 参考文献 (19) 附录 (20) 1、源程序 (20) 2、硬件电器总原理图 (25)

第一章摘要 在单片机技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率计的测量就显得更为重要,测量频率的方法有多种,其中基于单片机的数字频率计时器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。本次课程设计以AT89S51单片机为控制核心,应用AT89S51单片机、单片机的I/O端口外扩驱动器74HC573和74HC138、LED动态显示等实现对外部信号频率进行准确计数的设计。电路图设计使用protel绘图软件完成,软件设计方面使用单片机汇编或C语言对各个模块进行编程,最后通过综合测试,实现满足要求的设计方案。频率测量有两种方法:一是直接测频法,即在一定时间内测量被测信号的个数;而是测周法。直接测频法适用于高频信号的频率测量,测周法适用于低频信号的频率测量。 关键词:单片机;频率计;测量 第二章系统总体方案设计 设计要求: 使用单片机的定时器/计数器功能,设计频率测量装置。 (1)直接采用AT89S51单片机的I/O端口外扩驱动器,实现LED动态扫描驱动。(2)采用6位数码管显示输入单片机的外部脉冲频率。 (3)当被测频率fx<100Hz时,采用测周法,显示频率XXX.XXX;当被测频率fx>100Hz 时,采用测频法,显示频率XXXXXX。 (4)利用键盘分段测量和自动分段测量。 (5)完成单脉冲测量,输入脉冲宽度范围是100μs-0.1s,低四位显示脉冲宽度,单位为μs。 2.1 总体思路设计 以单片机AT89S51为核心,利用单片机AT89S51的计数/定时器(T1和T0)的功能来实现频率的计数,并且利用单片机的动态扫描把测出的数据送到数字显示电路显示。利用74HC573驱动数码管,显示电路共由六位LED数码管组成,总体原理框图如图2.1所示。

单片机频率计课程设计

贵州大学课程设计 任务要求 运用所学单片机原理、、模拟和数字电路等方面的知识,设计出一个数字频率计。数字频率计要求如下: 1)能对0~50kHz的信号频率进行计数; 2)频率测量结果通过4位数码管显示(十进制)。 二、课程设计应完成的工作 1)硬件部分包括微处理器(MCU)最小系统(供电、晶振、复位)、频率测量和数码管显示部分; 2)软件部分包括初始化、频率计算、显示等; 3)用PROTEUS软件仿真实现; 4)画出系统的硬件电路结构图和软件程序框图; 内容摘要 1.数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。 2.采用12 MHz的晶体振荡器的情况下,一秒的定时已超过了定时器可提供的最大定时值。为了实现一秒的定时,采用定时和计数相结合的方法实现。选用定时/计数器TO作定时器,工作于方式1产生50 ms的定时,再用软件计数方式对它计数20次,就可得到一秒的定时。

贵州大学课程设计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 1.2任务分析与设计思路 频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。在本次设计使用的AT89C51单片机,本身自带有定时器和计数器,单片机的T0、T1两个定时/计数器,一个用来定时,另一个用来计数,定时/计数器的工作由相应的运行控制位 TR 控制 ,当 TR 置 1 ,定时/ 计数器开始计数 ;当 TR 清 0 ,停止计数。在定时1s里,计数器计的脉冲数就是频率数,但是由于1s超过了A T89C51的最大定时,因此我们采用50ms定时,在50ms 内的脉冲数在乘以14就得到了频率数,在转换为十进制输出就可。

基于51单片机的数字频率计课程设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月 关于毕业论文使用授权的声明

本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

基于5单片机的数字频率计设计

基于5单片机的数字频率计设计

毕业论文基于51单片机的数字频率计 基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概 述…………………………………………… (2) 1.2频率测量仪的设计思路与频率的计 算…………………………………………… (2) 1.3基本设计原 理…………………………………………… (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明…………………………………………………

(5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示…………………………………………………

(12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15) 基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量范围从1Hz—10kHz的正弦波、方波、三角波,时基

基于AT89C52单片机的简易频率计设计说明书

单片机系统开发与应用工程实习报告 选题名称:基于AT89C52单片机的简易频率计设计 系(院): 专业:计) 班级: 姓名:学号: 指导教师: 学年学期: 2009 ~ 2010 学年第 2 学期 2010 年 5 月 30 日

摘要: 在电子技术中,频率是一个经常用到的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。本项目主要阐述了以AT89C52单片机作为核心器件,采用模块化布局,设计一个简易数字频率计,以达到测量频率并进行显示的目的。本项目利用单片机的内部定时器溢出产生中断来实现定时,把单片机内部的定时/计数器0作为定时器,实现2.5ms定时。外部待测脉冲从单片机的TI(第15引脚)输入,以定时/计数器1作为计数器,利用中断方式来达到间接测量的目的。最后采用四位数码管显示。本设计采用C语言进行软件编程,用keil软件进行调试。最后把调试成功后的程序固化到AT89C52单片机中,接到预先焊好的电路板上,接上待测脉冲,通电运行,数码管成功显示待测脉冲频率。 关键词:单片机;频率计;AT89C52

目录 1 项目综述 (1) 1.1 设计要求 (1) 1.2 系统设计 (1) 2硬件设计 (2) 2.1 电路原理图 (2) 2.2 元件清单 (2) 2.3 主要芯片引脚说明 (3) 3 软件设计 (4) 3.1 程序流程图 (4) 3.2 软件设计简述 (5) 3.3 程序清单 (6) 4 系统仿真及调试 (10) 4.1 硬件调试 (10) 4.2 软件调试 (10) 5 结果分析 (10) 总结 (11) 参考文献 (12)

基于单片机的频率计的设计

摘要 本方案主要以单片机为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分,设计以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测的正弦波或者三角波整形为方波。利用单片机的计数器和定时器的功能对被测信号进行计数。编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。 本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED数码显示管将所测频率显示出来。系统简单可靠、操作简易,能基本满足一般情况下的需要。既保证了系统的测频精度,又使系统具有较好的实时性。本频率计设计简洁,便于携带,扩展能力强,适用范围广。 关键词:单片机,运算,频率计,LED数码管

Abstract The program mainly microcontroller as the core, are divided into time-base circuit, the logic control circuit, amplifier shaping circuit, the gate circuit, the counting circuit, latch circuit, decoding circuit most of the seven shows, design a microcontroller as the core, the measured signal the first amplifier to amplify the incoming signal, and then was sent to the waveform shaping circuit surgery, the measured sine wave or triangle wave shaping as a square wave. Counter and timer microchip features of the signal count. Write the corresponding program can automatically adjust the measurement range of SCM, and the frequency of the measured data to the display circuit displays. The design of the 89C51 microcontroller core, microcontroller applications and control functions and arithmetic operations with LED digital display tube to the measured frequency is displayed. System is simple, reliable, easy to operate and can basically meet the general needs. Both to ensure the accuracy of the system frequency measurement, but also the system has good real-time. The frequency meter design is simple and easy to carry, expansion capability, wide application. Key words:microcontroller, operation, frequency meter, LED digital tube

AT89C51简单频率计课程设计

目录 1功能分析与设计目标 (1) 2 频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3 频率计的软件设计与调试 (6) 3.1 软件设计介绍 (6) 3.2 程序框图 (8) 3.3 功能实现具体过程 (8) 3.4 测试数据处理,图表及现象描述 (10) 4 讨论 (11) 5 心得与建议 (12) 6 附录 (13)

1功能分析与设计目标 背景: 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(Δm ,ΔT )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M法):此法是记录在确定时间Tc内待测信号的脉冲个数Mx,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T法):此法是在待测信号的一个周期Tx内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。通过A倍频,把待测信号频率放大A倍,以提高测量精度。其待测频率为: Fx=Mx/A To 脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号

基于51单片机的简易频率计设计lsy

毕业设计 题目:基于51单片机的简易频率计设计专业: 班级: 姓名:学号: 指导老师:

目录 第1节引言 (2) 1.1频率计概述 (2) 1.2频率度量仪的设计思路与频率的计算 (2) 1.3基本设计原理 (3) 第2节频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明 (5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示 (12) 第4节结束语 (13) 参考文献 (14)

摘要 我的这个毕业作品简易频率计开发目的是要把上课中学到的专业知识与一些实践,提高我自己的能力水平。用这些方法让我自己有更好的思维逻辑,可以做出更好的设计,活学活用把知识变成现实。在我的毕业设计中通过自己的发觉、老师的帮助、同学之间的讨论,最后要通过科学的方法来排除设计过程中的坎坷,提高自己能够快速判断问题故障、排除问题、修复问题,积累各方面的开发设计系统的经验,充分发挥出教学与实践的结合。全面提高自身对系统开发的综合能力,开拓设计思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 关键字:单片机、开发、开拓思维 Abstract My graduate work that the aim is to develop secondary school knowledge, as well as read the relevant literature to strengthen the capacity of my own self. I have a guide through the efforts of innovative thinking ideas, the classroom teacher to impart knowledge to our daily lives. Design aspects of my work, the continuous learning, thinking and interactive discussion between the students learn from each other, analyze problems using scientific methods to solve the difficulties encountered, master SCM system design and development related to the production process, allow yourself to understand that for treatment of common problems, the accumulation of experience in all aspects of the development and design of the system, give full play to the combination of teaching and practice. Comprehensively improve their overall capacity of the system development, development of design thinking for the future work on the corresponding work has laid a solid foundation. Keywords: SCM, development, pioneering thinking

单片机课程设计----数字频率计

电子课程设计报告 设计课题: 数字频率计 作者:李成赞≦ 专业: 08信息工程 班级: (2)班 学号: 3081231201 日期 2009年6月5日——2009年6月17日 指导教师: 廖东进 设计小组其他成员:叶昕瑜史海镔陈福青姚闽梁芳芳 衢州职业技术学院信息与电力工程系

前言 一、频率计的基本原理: 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。 频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。 二、频率计的应用范围: 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。 在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

相关文档
最新文档