关于气相色谱填充柱的老化处理

关于气相色谱填充柱的老化处理
关于气相色谱填充柱的老化处理

关于气相色谱填充柱的老化处理

装填好的气相色谱填充柱,要经过老化处理后才能投入使用。下面简述填充柱的老化问题。

1 老化目的

除去管柱内剩余的溶剂!固定液的低沸程馏分及易挥发的杂质,同时使固定液更均匀!牢固地分布于载体或管壁上。

2 老化作用

2.1 降低由于柱子流失(溶剂!轻馏分)而引起的本底噪声。这对于使用高灵敏度的检测分析是很重要的,如用氢火焰离子化检测器,一般认为流失能引起噪声和不稳定的基线。真正的柱流失常常有如同噪声状的正向漂移。

2.2 提高定量的准确度这一点一般易被忽视,假若要求分析结果的相对偏差等于或低于3%时,应在固定液的最高使用温度下历时6~48h(视固定液的性质决定)。

3 老化原则

老化的原则有:1.设置老化温度时,决不允许超过固定液的最高使用温度。2.根据涂渍固定液的百分数合理设置老化温度,低含量固定液的柱子,老化温度相对要低些。3.老化时间与所用检测器的灵敏度和类型有关,灵敏度越高,要求老化的时间相对越长。4.老化时间的长短也取决于固定液的特性,“气相色谱纯的”要少于“工业纯的”。例如,OV固定液老化时间要少于SE-60,QF-1(工业纯)。5.样品的极性越强,要求填充柱老化的时间相对越长。

4 老化方法

由文献可知,老化的方法多采用气体流动法,将柱入口与进样室相连,出口勿接检测器,通小流量(一般为

5~10ml/min)的载气,以(2~4)℃/min程序升温至低于固定液最高使用温度20~30℃,老化12~24h,获得平稳基线,则表明老化已合格。具体的老化方法是:

4.1 对于工业纯固定液因为它们是大批量制造的,并非专门用于气相色谱,所以老化尤其需要。在柱子入口通入载气,加热柱子,到固定液最高使用温度的1/4,保持1~2h,再升温至比工

作温度高25℃,对于定性要求历时6h,对于定量要求历时24h。硅酮固定液比PEG固定液老化的时间要长。

4.2 对于气相色谱纯固定液例如OV型、SE30型和许多聚酯固定液是我们平时常用的“精制”型固定液,这些材料在用于气相色谱工作时是小批量制作的,它们的热稳定性要比工业纯的好。硅酮里含有不多的馏份,一般要求在100e时保持1h,而后按升温速率5~10℃/min,升温至低于最高使用温度20℃,并保持2h,极性样品,如醣类!醇类,则要求过夜老化。聚酯的老化通常是在100℃保持2h,而后在低于最高使用温度20℃时保持8~12h。

4.3 对于多孔型聚合物Porapak型,在低于最高使用温度20℃时保持1~2h。而Chromosorb100系列,在低灵敏档工作时,于工作温度下保持1h;定量工作时,升温至比工作温度高25℃,过夜老化。

4.4 对于常用的固体吸附剂酸洗活性炭!硅及和氧化铝柱,加热到150℃,保持3~4h。分子筛柱,加热到250~300℃,过夜老化。

虽然色谱填充柱的老化过程耗费了一定时间,但是能得到长的柱寿命!好的稳定性和小的拖尾,因此是十分必要的和值得的。如果柱子使用后放置了一段时间,更不要忘了对色谱柱进行“再老化”处理,否则将得不到好的分析结果。

色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。气相色谱中所用毛细管柱的内径一般小于1mm。微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。第一节气-固色谱固定相-固体固定相气—固色谱法广泛应用于永久气体和低沸点烃类的分析。常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。表5-1 气-固色谱与气-液色谱的比较气-液色谱气—固色谱1 分配系数小,保留时间短吸附系数大,保留时间长2 色谱峰对称色谱峰常常不对称 3 保留值重现性好,吸附剂间差异大,保留值及分离性能不稳定4 固定液一般无催化性高温下吸附剂有催化性 5 可用于高沸点化合物的分离适用于永久气体和低沸点烃类的分离 6 品种多,选择余地大品种少,选择余地不大7 高温下固定液易流失较高柱温下不易流失

吸附等温线气—固色谱法遵循了气体在吸附剂表面上的吸附规律。气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。(1)线性吸附等温线如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。(2)朗格缪尔吸附等温线(向下弯曲的吸附等温线)朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。(3)向上弯的吸附等温线这种吸附等温线如图5-1的(C)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附的量随气相中物质浓度的增加而急剧增加,吸附等温线与其对应的色谱峰是不对称的“伸舌峰”。

图5-1 三类吸附等温线与其对应的色谱峰(Cs:物质在固定相上的浓度、Cm:物质在流动相上的浓度)一、吸附剂虽然吸附剂的种类很多,但是在气固色谱中作为固定相的却不多,一般仅限于活性炭、石墨化炭黑、碳多孔小球、硅胶、氧化铝,分子筛等。由于吸附剂的性能与制备、活化条件等有很大关

系,所以,不同来源的同种吸附剂,甚至于同一来源的非同批产品,其色谱分离效能均不重复。(一)活性炭--非极性。有较大的比表面积,吸附性较强。可用于惰性气体、永久气体,气态烃的分析等分析。由于活性炭表面活性大而不均匀,会造成色谱峰拖尾,现在很少使用权了。(二)石墨化炭黑(Cabopack 系列):非极性。为克服活性炭的

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221.html缺点,把炭黑进行高温处理,如加热到3000℃,表面均匀、使活性点大为减少。所以大大改善了色谱峰形,提高了分析重现性。据有关研究认为石墨化炭黑的表面没有官能团,没有π键,它的吸附性主要靠色散力起作用,因而石墨化炭黑的极性比角鲨烷还小。(三)碳分子筛(碳多孔小球;TDX系列)--非极性。是用偏聚氯乙稀小球进行热裂解,得到固体多孔状的炭。碳多孔小球的国外商品名为Carbosieve,国内叫TDX,具体牌号有TDX-01、TDX-02。碳多孔小球特点是非极性很强,表面活性点少,疏水性强,可使水峰在甲烷前或后洗脱出;柱效高;耐腐蚀、耐辐射;寿命长。TDX可用于分析H2、、O2、N2、CO、CO2、CH4、C2H2、C2H4、C2H6、以及C3的烃类和SO2等气体的分析;氮肥厂的半水煤气分析;金属热处理气氛的分析;低碳烃中水分的分析等。图5-1是碳分子筛分离含硫化合物的色谱图。图中各峰的组分依次是1.空气;2.硫化氢;3.氧硫化碳;4.三氧化硫; 5.甲基硫醇; 6.二硫化碳。图5-2碳分子筛分离含硫化合物(四)活性氧化铝--有较大的极性。热稳定性好,机械强度高,适用于常温下O2、N2、CO、CH4、C2H6、C2H4等气体的分离。CO2能被活性氧化铝强烈吸附,因此不能用这种固定相进行分析。(五)硅胶SiO2 xH2O (Porasil系列等)--强极性。分离能力决定于孔径大小及含水量,一般用来分离C2—C4烃类及某些含硫气体:H2S、CO2、N2O、NO、NO2、、N2O、SO2,有与活性氧化铝大致相同的分离性能,且能够分离臭氧。(六)分子筛--有特殊吸附活性。碱及碱土金属的硅铝酸盐(沸石),多孔性。人工合成的泡沸石,化学组成为MOAl2O3 xSiO2yH2O其中M是金属离子Na+、K+、Ca2+等,合成的泡沸石加热时,结构水就从空隙中逸出,留下一定大小均匀的孔穴。当样品分子经过分子筛时,比孔径小的分子被吸进去,比孔径大的分子通过分子筛出来,故分子筛实际是个反筛子。分子筛的种类很多,分析用的有4A、5A、13X等,其中前面的数字代表孔径,A、X表示类型,A、X化学组成不同。用于分析气样中N2和O2有特效。分子筛可用来分离永久气体、H2、H2S、O2、CH4、CO气态烃分析等。特点是能在高温下使用,但重复性好的吸附剂很难制备,往往使峰拖尾。图5-3表示活性炭吸附剂(13X分子筛)分离永久气体的色谱图,柱温22℃,He气流速20ml/min。图5-3 活性炭吸附剂(13X分子筛)分离永久气体的色谱图二、分子多孔微球(Porapak,Chropmosorb等) 高分子多孔微球是新型的有机合成固定相,是用苯乙烯与二乙烯苯共聚所得到的交联多孔共聚物。既可做固定相,又可做载体。Hollis所研究的PorapakQ是一种色谱分离性能很好的气-固色谱固定相。我国天津化学试剂二厂的GDX系列分为非极性,弱极性,中等极性的相当于美国的Parapak,chromosorb系列,型号有GDX-101、GDX-102、GDX-103、GDX-104、GDX-105、GDX-201、GDX-301、GDX-501等。适用于水、气体及低级醇的分析。高分子多孔微球的特点是:(一)表面积大,机械强度好。(二)

疏水性很强,可快速测定有机物中的微量水分。如顺丁橡胶合成中要求单体丁二稀含水量在3×10-5 g/mL 以下,可用1M×4㎜的GDX-105色谱柱,120℃柱温下,载气流速33mL/min很好分离测定。(三)耐腐性好。可分析HCI、NH3、HCN、Cl2、SO2等活性气体。有机溶剂和氯化氢中的微量水分可用GDX-104色谱柱测定。[见文献]。(四)不存在固定液流失问题。图5-4是Porapak Q(150-200目)填充柱、TC=220℃、载气He 37ml/min、TCD检测器测定溶剂中水分的色谱图。图5-4 Poropak Q 测定溶剂中水三、化学键合相化学键合相的优点是防止固定液流失,提高柱效。将在以后章节中讨论。第二节气液色谱固定相气液

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_2.html色谱固定相是固定液均匀地涂在载体上,载体是化学惰性的固体微粒,用来支持固定液的,气液色谱固定相中的固定液大多数是高沸点的有机化合物,在气相色谱工作条件下呈液态,所以叫固定液。在气—液色谱柱内,被测物质中各组分的分离是基于各组分在固定液中溶解度的不同。当载气携带被测物质进入色谱柱,和固定液接触时,气相中的被测组分就溶解到固定液中去。载气连续进入色谱柱,溶解在固定液中的被测组分会从固定液中挥发到气相中去。随着载气的流动,挥发到气相中的被测组分分子又会溶解到固定液中。这样反复多次溶解、挥发、再溶解、再挥发。由于各组分在固定液中溶解能力不同。溶解度大的组分就较难挥发,停留在柱中的时间长些,往前移动得就慢些。而溶解度小的组分,往前移动得快些,停留在柱中的时间就短些。经过一定时间后,各组分就彼此分离。固定液配比一般是3-25%,配比指固定液在固定相中所占重量,色谱柱起分离决定作用的是固定液。载体作用是提供一个大的惰性表面,以便涂上固定液。一、气液色谱载体载体是一种化学惰性、多孔性的颗粒,它的作用是提供一个大的惰性表面,用以承担固定液,使固定液以薄膜状态分布在其表面上。(一)对载体的要求1.载体表面应是化学惰性的,即表面没有吸附性或和吸附性很弱,更不能与被测物质起化学反应。

2.足够大的表面积。多孔性,即表面积较大,使固定液与试样的接触面较大。3.热稳定性好,有一定的机械强度,不易破碎。4.形状规则、大小均匀。对担体粒度的要求,一般希望均匀、细小,这样有利于提高柱效。(二)载体的分类气—液色谱中所用担体可分为硅藻土型和非硅藻土型两大类。1.硅藻土类载体:由天然硅藻土煅烧而成的。常用此类担体,主要成分无机盐。根据制造工艺和助剂不同,又可分为红色担体和白色担体两种。(1)红色载体:孔径较小,表面孔穴密集,比表面积较大(4 m2/g),机械强度好。适宜分离非极性或弱极性化合物。缺点是表面存有活性吸附中心点。常见的有201、202系列、6201系列等(2)白色载体:白色担体是在煅烧时加Na2CO3之类的助熔剂,使氧化铁转化为白色的铁硅酸钠。白色载体颗粒疏松,孔径较大。表面积较小(1 m2/g),机械强度较差。但吸附性显著减小,适宜分离极性化合物。常见的有101、102系列。2.非硅藻土载体(1)玻璃微球:是小玻璃珠,颗粒规则,涂渍困难。(2)聚四氟乙烯:吸附性小,耐腐蚀,分析SO2、Cl2、HCl等气体。(3)高分子多孔微球GDX既可做G S C固定相,又可做G L C载体GDX-101、102、103、104、105--201、202--301--401--501(GDX系列产品)。前面的数字表示极性,后面的数字是不同的稀釋剂(汽

油、甲苯等)用量。(三)硅藻土类载体的表面处理普通硅藻土类载体表面并非惰性,含有≡Si-OH,Si-O-Si,=Al-O-,=Fe-O-等基团,故既有吸附活性又有催化活性。若涂渍上极性固定液,会造成固定液分布不均匀;分析极性试样时,由于活性中心的存在,会造成色谱峰拖尾,甚至发生化学反应。因此,载体使用前应进行钝化处理,钝化处理方法如下:1.酸洗、碱洗(除去酸性基团):用浓HCl、KOH 的甲醇溶液分别浸泡,以除去铁等金属氧化物及表面的氧化铝等酸性作用点。2.硅烷化:(消除氢键结合力)用硅烷化试剂(二甲基二氯硅烷等)与载体表面的硅醇、硅醚基团反应,以消除担体表面的氢键结合力。处理后,性能好,但试剂昂贵。3.釉化(表面玻璃化、堵微孔):以碳酸钠,碳酸钾等处理后,在担体表面形成一层玻璃化釉质。(四)载体的选择1.红色硅藻土载体用于烷烃、芳烃等非极性、弱极性物的分析。2.白色硅藻土载体用于醇、胺、酮等极性物的分析。3.固定液含量大于5%,一般选用的红色、白色载体。4.固定液含量小于5%,一般选用处理过的载体。5.高沸点化合物的分析要选玻璃微球;强腐蚀的物质的分析选氟载体。二、气液色谱固定液(一)特点气液色谱固定液的特点是可得较对称的色谱峰;可供选择的固定液很多;谱图重现性好;可在一定范围内调节液膜厚度。(二)对固定液的要求1.选择性好(对填充柱要求α1.2>1.15,或α1.2>1.08);2.化学稳定性好,热稳定性好热稳定,化学稳定性好(每种固定液都有一个“最高使用温度”),固定液的蒸汽压要低,固定液流失要少;3.对组分要有一定的溶解度,即对组分有一定的滞留性;4.凝固点低,粘度适当(因为凝固点以下,固定液凝固,只起吸附作用,所以凝固点就是固定液的“最低使用温度”)。(三)固定液与组份分子间作用力固定液为什么能固定在载体表面,而不被载气带走?组分分子为什么能溶解在固定液里,而且有不同的溶解度?这都是由于固定液、组分分子间的相互作用结果。组分之所以能够分离,是由于组分在色谱柱中容量因子k就是组分与固定液分子间的作用力不同。固定液与组分分子间作用力从tR反映出来。分子间作用力包括定向力、诱导力、色散力、氢键作用力。不同,在固定液中的溶解力不同,也

图5-5 固定液、组分分子间的相互作用力1.定向力(静电力)——极性分子和极性分子间的作用力E (5-1)5-1式中,μA、种极性分子的永久偶极矩;r为分子间距离;k为波兹曼常数;T为温度。μS为两极性固定液分离极性样品组分时,定向力起主导作用,分子间距离越小,相互作用越强,偶极矩越大,作用力越大。该组分滞留时间就越长。图5-6表明用极性固定液甘油分离极性组分乙醇时,定向力起主导作用,乙醇的保留时间长。

上一页[1] [2] [3] [4] [5] [6] [7] [8] 下一页

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_3.html 图5-6 用极性固定液分离极性组分乙醇2.诱导力ED 一个具有永久偶极的极性分子,永久偶极对非极性分子会产生诱导作用,产生偶极,此时两分子间

相互吸引而产生诱导力。

(5-2)5-2式中,αSαS为组分和固定液的分子极化率。诱导力通常是很小的,但在分离非极性和可极化分子的混合物时,极性固定液的诱导力就突出表现出来,例如图5-7表达了苯(沸点:80.10℃)与环己烷(沸点80.81℃)在不同极性固定液中的分离情形。苯的环己烷的两种组分都是非极性分子,无永久偶极,沸点接近。若用非极性固定液很难分开,但苯比环己烷易极化。若用强极性的ββ′氧二丙腈固定液,使苯产生诱导偶极矩,很易分离。tR苯=6.3tR环己烷。

图5-7苯(沸点:80.10℃)与环己烷(沸点80.81℃)在不同极性固定液中的分离3.色散力EL——非极性分子间唯一的相互作用力. (5-3)式中,IA、IS为组分和固定液分子的电离能,有机物分子电离能接近。非极性分子间没有静电力与诱导力,由于分子电中心瞬间位移产生瞬间偶极矩,能使周围分子极化,被极化的分子又反过来加剧瞬间偶极矩变化幅度产生所谓色散力。例如用非极性角鲨烷固定液,分离非极性C1~C4正构烷烃,因为色散力与沸点成正比,所以按沸点顺序出峰。4.氢键作用力--一个氢原子与一个电负性大的原子构成共价键,又能与另外一个电负性大的原子形成一种有方向性的静电吸附力,叫氢键力。假如固定液分子中含—OH —COOH —NH2官能团,分析组分含F、O、N化合物时,常有显著氢键作用,使保留值增大。氢键强弱顺序为:F—H……F>O—H……O>O—H……N>N—H……N>N≡CH……N (四)固定液的分类——如何评价固定液?目前约有700多种可供使用的固定液,如何对众多的固定液有规律的排列,以利于选择,方法有如下几种: 1.五级分类法用(5-4)式计算时要选择一物质对,常用苯与环己烷。分别在非极性、极性、被测固定液柱上测出物质对的相对保留值,并取对数。这种分类法的优点是直观、简单。缺点是粗分,有时P出现负值。

(5-4)五级分类法规定了ββ’氧二丙腈的相对极性P=100;角鲨烷(异30烷)相对极性P=0;其它固定液按下式计算:

(5-5)

上一页[1] [2] [3] [4] [5] [6] [7] [8] 下一

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_4.html5-5式中,q1用极性柱测定;q2用非极性柱;qX用被测固定液柱。q1是苯与环己烷在ββ′氧二丙腈柱上相对保留值的对数值q1=㏒(t′苯/t′环己烷);q2是苯与环己烷在异30烷柱上相对保留值的对数值q2=㏒(t′苯/t′环己烷);qX是苯与环己烷在被测固定液柱上相对保留值的对数值qX=㏒(t′苯/t′环己烷)。根据(5-5)式算出各种固定液的PX,然后把极性分为五级,每20为1级,共粗分为五级。所有固定液相对极性都在0—100之间。所有固定液分成为强极性,极性,中等极性,弱极性,非极性五类。这样最强极性固定液β,β’—氧二丙晴极性为

100;非极性固定液角鲨烷极性为0;其余,0--100之间。见表5-2。如果0 -----------20 +1 如果21-----------40 +2 如果41-----------60 +3 如果61-----------80 +4 如果81-----------100 +5 表5-2 固定液的相对极性、分级、最高使用温度和分析对象

固定液名称固定液的相对极性级别最高使用温度℃分析对象异烷(角鲨烷)0 C8前烷烃阿皮松N 高沸点有机物SE—30 高沸点有机物邻苯二甲酸二壬酯(DNP)有机物PEG600 74 4 120 含D,N 有机物ββ′氧二丙腈脂肪烃、芳香烃、氧化物、等极性化合物

这种表示固定液极性方法的缺点是未能反映出固定液与组分间的全部作用力,主要反映分子间的诱导力,所以不完善,为此提出下列的特征常数分类法。2.罗什那德常数(特征常数法) 按相对极性分类只反映分子间的诱导力,而实际上,组分与固定液分子间除诱导力外,还尚有定向力、色散力、氢键作用力等。因此相对极性不能反映分子间的全部作用力。1966年,Rohrschneider提出,称为罗什那德常数,使极性的表达更加完善。为全面反映被测固定液的极性,选了五种物质为标准物,见表5-3。分别代表各种不同的作用力. 每种组分与固定液间作用力类型不同,见表5-3。用五种代表物在多种固定液柱上的保留指数,与在非极性固定液柱上保留指数之差(△I)来代表固定液的相对极性,显然△I越大,该固定液的极性越强,△I就是选择性指标。表5-3 罗什那德常数的五种标准物

l乙醇甲乙酮硝基甲烷吡啶各种作用力电子给予体易极化,大π键质子给予体形成氢键定向偶极力接受氢键电子接受体质子接受体代表物芳烃、烯烃醇、腈、酸、氯化物酮、醚、醛、酯硝基化合物、腈类衍生物喹啉、吡啶、氧、氮杂环

P = △I = IP - IS = aX + bY + cZ + dU + eS 其中:a、b、c、d、e叫组分常数,组分不同,常数也不同;X、Y、Z、U、S叫溶剂常数,固定液决定这些常数,数值越大,极性越大。X---对苯而言,柱的极性;Y---对乙醇而言,柱的极性;Z---对甲乙酮而言,柱的极性;U---对硝基甲烷而言,柱的极性;S---对吡啶而言,柱的极性。对苯定义 a = 100,b c d e = 0 对乙醇定义 b = 100,a c d e = 0 对甲乙酮定义 c = 100,a b d e = 0 对硝基甲烷定义 d = 100,a b c e = 0 对吡啶定义 e = 100, a b c d = 0 其它 a b c d e < 100≠0 罗什那德常数可查手册,用分子间各种相互作用力的总和来确定固定液的选择性。总△I 值越大,极性越强。二固定相常数相同,则表明它们的性质基本相同。二固定相常数差别大,则表明它们的性质差别较大。某固定相常数越小,则该固定相性质越接近非极性鲨鱼烷。某固定相常数越大,则该固定相极性越强,越接近氧二丙腈。利用罗什那德常数的值,将有助于固定液的评价、分类和选择。3.麦克雷诺常数1970年Mcreynalds(麦克雷诺)在罗氏工作基础上提出的改进方案,柱温改在120℃,用十种化合物测得麦克雷诺常数制成表供

查阅,在许多手册上都能查到。为了提高代表性,Mcreynalds做了大量工作,最后,他认为,用五种代表物丁醇--乙醇,戊酮—2--甲乙酮,硝基丙烷--硝基甲烷,比罗什那德常数更准确些。为了区别,将麦氏常数分别用X’、Y’、Z’、U’、S’表示。五种化合物的ΔI值之和称为总极性,按总极性由小到大的顺序,就构成M氏、R氏常数表。一些书中,R氏常数表示溶剂常数,M氏常数表示ΔI值。ΔI = 100 X R、M氏常数表的应用如下:(1)有效的按五项平均极性把固定液分类、排对,为选择固定液提供方便。(2)比较极性,选代用固定液OV-1和SE-30。(3)优选少量有代表性的固定液(例如可以在200种中选5种,10种等)(4)作为固定液的技术指标。(5)验证新型固定液的极性范围。(6)选适当的固定液以上固定液常数帮助我们如何选择固定液。总之对固定液评价是一个相当复杂的问题,至今尚未找出一种非常满意的方法。最近仍有学者在考虑以上常数的可靠性,提出这种方法在数学上、理论上还不够严格。4.按化学类型分类(1)烃类极性最弱,有角鲨烷、石蜡油、聚乙烯等。适用于非极性物分析。基本上按沸点顺序出峰。(2)聚硅氧烷类应用最广,使用温度范围宽(50---350℃),固定液的种类日益增多,引入不同的取代基,使极性不同,如甲基聚硅氧烷,苯基聚硅氧烷等。中、英文名称对照:methyl silicone--甲基硅酮methyl polysiloxane--甲基聚硅氧烷、硅醚结构,见图5-8。根据分子量不同,状态分别为油、橡胶等。图5-8甲基聚硅氧烷、硅醚结构图(3)醇、醚类易形成氢键,选择性取决于氢键作用力。聚乙二醇固定液应用最多。种类有PEG-200、300、400、1000、1500、6000、20M。PEG-后面的数字代表平均分子量。(4)酯类为中等极性,含有极性和非极性集团。例如邻苯二甲酸二壬酯(DNP)、丁二酸二乙二醇聚酯(DEGS)。(5)其它固定液还有有机皂土;液晶;手性固定相等固定液。(五)固定液的选择固定液的选择没有严格的规律可循,一般规则是根据样品来选固定液。固定液的分离特征是选择固定液的基础。固定液的选择,一般根据“相似相溶”原则进行。在GC中,常用“极性”来说明固定液和被测组分的性质。如果组分与固定液分子性质( 极性) 相似,固定液和被测组分两种分子间的作用力就强,被测组分在固定液中的溶解度就大,K就大,也就是说,被测组分在固定液中溶解度或K的大小与被测组分和固定液两种分子之间相互作用的大小有关。1.已知样品分离非极性

上一页[1] [2] [3] [4] [5] [6] [7] [8] 下一页

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_6.html物质,一般选用非极性固定液,这时试样中各组分按沸点次序先后流出色谱柱,沸点低的组分先出峰,沸点高的组分后出峰。分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极性小的先流出色谱柱,极性大的后流出色谱柱。分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰,极性组分( 或易被极化的组分) 后出峰。对于能形成氢键的试样,如醇、酚、胺和水等的分离。一般选择极性的或是氢键型的固定液,

这时试样中各组分按与固定液分子形成氢键的能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。(1)相似相溶原则:按极性选择固定液;按化学官能团选择固定液。(2)按组分之间的沸点差别或极性差别选择:如果主要差别是沸点差别,选非极性固定液;如果主要差别是极性差别,则选极性固定液。(3)按麦氏常数选择固定液,对于不同类组分的分离可按麦氏常数选择固定液。(4)特殊样品选特殊固定液:例如分离醇、水可选GDX;分离N2、O2可选分子筛。(5)选择混合固定液:对于复杂的样品的分离,单一固定液分不开,可选混合固定液。2.未知样品时(1)用毛细管柱初分离实验室中可常备中等极性,极性和非极性三根毛细柱。由于毛细管柱具有很高的分离效能,一般的组分未知样品大都可以得到良好的分离,使用不同极性的毛细管柱,进行定性分离,可以确定样品中组分的峰数、极性范围等。(2)几种常用的固定液就目前来说,被优选的次数最多,性能好、有代表性的固定液见表5-4。表5-4最常用的气液色谱固定液

名称商品代号毛细柱使用情况% 填充柱使用情况% 1 聚二甲基硅氧烷OV-101,SE-30,SP2100 55 50 2 聚苯基二甲基硅氧烷OV-17,SP2250 3 聚乙二醇PEG-20M 27 44 4 聚酯DEGS 5 全氰基聚硅氧烷SP2340 6 三氟丙基聚硅氧烷OV-201,SP2401 4 9

固定液SE—30、OV—17、QF—1(丙酮会使其分解)、PEG—20M、DEGS的极性依次增大,未知样品可以先在QF—1上分离,而后换成OV—17,若有所改善,再减小到SE—30。若由QF—1到OV—17分离度变坏,可增加极性。然后再细分。第三节气液色谱填充柱的制备一、根据样品选择固定液、载体二、根据固定液选择溶剂三、根据配比和所需固定相的量,计算所需固定液的量、载体的量例如:固定相20克,固定液DNP含量为10%,用101白色载体制备气液色谱填充柱。计算:所需DNP 固定液是2克,101白色载体是18克四、涂渍将称好的固定液放在一个烧杯中,加入适量的溶剂溶解。将称好的载体,倒入溶解好固定液的烧杯中,在适当的温度下,轻轻摇动烧杯,让溶剂均匀挥发。如果溶剂沸点高,可在红外灯泡下烘干,直至载体呈颗粒状、没有溶剂气味-为止。五、柱的填充(一)柱的清洗:依次用自来水--5%NOH--蒸馏水--丙酮--馏水清洗,然后烘干。(二)柱的填充:用玻璃棉将柱的一端(接检测器的一端)塞牢,经缓冲瓶与真空

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_7.html抽气机连接,柱的另一端接一漏斗,徐徐倒入涂有固定液的载体,边抽真空边轻敲柱管,直至装满为止。用玻璃棉塞紧柱的另一端口。六、柱的老化(一)目的:彻底除去填充物中的残留溶剂和某些挥发性的物质;也促使固定液均匀牢固地分布在载体的表面上。(二)方法在常温下使用的柱子,可直接装在色谱仪上,接通载气,冲至基线平稳即可使用;如果新装填好的色谱柱要在高温操作条件下应用,则要将装填好的色谱柱接入色谱仪中,但柱出口不与检测器相连,以防止加热时从柱内挥发出的杂质污染检测器。在操作温度低于最高使用温度下,通入载气,将柱加热几小时至几十小时,这一过程为老化。老化时,升温要缓慢,老化后,将色谱柱与检测器连接上,待基线平直后就可进样分析。

本篇文章来源于“三九化工网https://www.360docs.net/doc/a713052962.html,”转载请以链接形式注明出处网址:https://www.360docs.net/doc/a713052962.html,/Article/ChmSb/200812/44221_8.html

气相色谱常见问题及处理方法

问题解答:气相色谱常见问题及处理方法 一、气相色谱系统的基本组成是什么? 气相色谱系统的基本组成有: 1.气源:常用的有N2、H2、Air、Ar、He等高压气体钢瓶,也可采用氢气发生器、氮气发生器、无油空气泵; 2.气路控制系统:由开关阀、稳定阀、针形(调节)阀、切换阀和气阻、压力表、流量计等组成; 3.进样系统:即汽化室,可以根据不同的分析要求,装置不同的进样器内衬。对于气体样品,最好采用六通阀定体积进样,可获好的重复性,对液体样品,一般采用微量注射器进样,对固体样品,多用裂解器或脉冲炉配合; 4.色谱分离系统:色谱柱是解决样品组份分离的关键,有填充柱和毛细柱二大类,根据不同的分析要求来具体配置; 5.检测器:是将样品中的化学组份转化为电讯号,灵敏度和稳定性是关系到整个仪器性能的心脏部件,常用有TCD、FID、ECD、FPD、NPD; 6.色谱工作站 7.温度控制器:有恒温控制和程序升温控制二种方式; 8.检测器电路;每种类型检测器都必须配置一个控制和测量的电路,从而实现非电量转换。例如,配合高灵敏度TCD,就要配置一个热导池恒流电源,对FID就需配置一个微电流发大器。 二、气体为什么要净化? 气体纯度要影响灵敏度、稳定性。净化工作主要是脱除水份、氧(TCD、ECD)和碳氢化合物,碳氢化合物将影响基线稳定性。对于高纯气体分析,要求载气纯度要比被测气体纯度高一个数量级才能正常工作,否则要出倒峰,例如分析高纯Ar(O2≤2PPm,N2≤5PPm),就要求高纯Ar载气中O2、N2都要小于1 PPm才行。应用ECD时,载气中内的H2O和O2将严重影响灵敏度。 三、对进样的五点基本要求是什么? 为保证定性定量精度,进样的基本要求是: 1.快速:是指取样要快,取样后送进仪器要快,样品应进入汽化室中载气流速的区域; 2.重复:是指取样要重复、送入仪器的操作也要重复,对气体样品,要控制住气体样品的流量和压力恒定,以便保证进样和进被测气体的进样量一致性; 3.进样器温度要正确设置;对液体样品,进样汽化温度要设置正确,要高于试样的平均沸点,温度太低会造成高沸点组份汽化不完全,温度太高,可能会引起某些组份的分解; 4.进样死体积要尽量小;指汽化室到色谱柱的连接气路体积要尽可能小,气体进样阀到色谱柱的连接管尽量短,从而减少死体积对峰变宽的影响; 5.对不同柱型要配置不同的进样器结构,以便获得理想的柱效和好的峰形。例如:对填充柱和细口径毛细柱分流进样,衬管内径要适当大些,而对大口径毛细柱柱头进样,衬管内径要适当小些(中间有窄小收口)。 四、填充柱的基本要素是什么? 对一个具体的被测样品,就必需应用一根适用的色谱柱,要考虑到组份的全部分离,也要考虑分析速度和检测器灵敏度。分离、速度、灵敏度是与填充柱的基本要素有关:

气相色谱柱知识详解

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在0.20.5mm,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

气相色谱仪操作步骤(精)

气相色谱仪操作步骤 1 打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2. 打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3. 设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。 4. 点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5. 打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度

TRACE1300气相色谱仪操作规程

TRACE1300气象色谱操作规程 一,仪器设备: 1.1仪器组成 a、TRACE 1300 GC b、氮气瓶 c、JM-3型空气发生器 d、JM-3型氢气发生器 e、AI 1310自动进样器 1.2 TRACE1300机身基本构造 a、仪器正面

b、仪器背面: c、仪器内部

二,仪器基本操作: 2.1色谱柱安装: a、进口端安装顺序:带上橡胶手套,取出红色垫片、螺帽、石墨垫依次套入毛细管,毛细管插入进样端(分流进样留出10mm,不分流进样留出5mm),拧紧螺丝; b、出口端(接入检测器),烧杯中倒入少量丙酮,将出口端插入丙酮,检测是否有载气流出(有气泡出来说明载气通过),然后将螺帽、石墨垫依次传入毛细管柱,用丙酮润湿的滤纸将毛细管柱前端擦拭干净,将毛细管柱接入检测器至顶,拧上螺丝(不可拧紧),将柱子抽回约2mm,拧紧螺丝。 注意:如果是新色谱柱,可只接进口端,出口端先不接入检测器,已老化色谱柱,待老化完成后柱温箱温度降下来后再行接入。 2.2开机: a、打开电脑,打开载气(氮气),保证载气压力在13.5Mpa,分压在0.5-0.6Mpa,打开主机电源(power),依次打开氢气、空气发生器开关。 b、在电脑主界面上,找到右下角的chromeleon服务管理器,在chromeleon服务管理器未打“ⅹ”的前提下才能保证仪器启动。 c、双击桌面上的“Chromeleon 7”变色龙图标,进入Chromeleom console界面 在该界面下依次有“Thermo Scientific GC Home”、“Sample”、“Front-Inlet”、“Oven”、“Channel-1”、“审计(I)”、“队列(Q)”;根据要求依次在各界面下设置相关参数。

气相色谱柱正确安装的九个步骤方法(精)

气相色谱柱的安装 色谱柱的正确安装才能保证发挥其最佳的性能和延长使用寿命。正确的安装请参考以下步骤: 步骤1. 检查气体过滤器、载气、进样垫和衬管等检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。 步骤2. 将螺母和密封垫装在色谱柱上,并将色谱柱两端要小心切平 步骤3. 将色谱柱连接于进样口上色谱柱在进样口中插入深度根据所使用的GC 仪器不同而定。正确合适的插入能最大可能地保证试验结果的重现性。通常来说,色谱柱的入口应保持在进样口的中下部,当进样针穿过隔垫完全插入进样口后如果针尖与色谱柱入口相差1-2cm,这就是较为理想的状态。(具体的插入程度和方法参见所使用GC的随机手册)避免用力弯曲挤压毛细管柱,并小心不要让标记牌等有锋利边缘的物品与毛细柱接触摩擦,以防柱身断裂受损。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动了)用扳手再多拧1/4-1/2圈,保证安装的密封程度。因为不紧密的安装,不仅会引起装置的泄漏,而且有可能对色谱柱造成永久损坏。 步骤4. 接通载气当色谱柱与进样口接好后,通载气, 调节柱前压以得到合适的载气流速(见下表)。 柱前压设置为Psi 15m 25m 30m 50m 100m 0.20mm 10-15 20-30 18-30 40-60 80-120 0.25mm 8-12 13-22 15-25 28-45 55-90 0.32mm 5-10 8-15 10-20 16-30 32-60 0.53mm 1-2 2-3 2-4 4-8 6-14

(以上仅为建议的起始设置,具体数值要依据实际的载气流速。)将色谱柱的出口端插入装有己烷的样品瓶中,正常情况下,我们可以看见瓶中稳定持续的气泡。如果没有气泡,就要重新检查一下载气装置和流量控制器等是否正确设置,并检查一下整个气路有无泄漏。等所有问题解决后,将色谱柱出口从瓶中取出,保证柱端口无溶剂残留,再进行下一步的安装。 步骤5. 将色谱柱连接于检测器上其安装和所需注意的事项与色谱柱与进样口连接大致相同。如果在应用中系统所使用的是ECD或NPD等,那么在老化色谱柱时,应该将柱子与检测器断开,这样检测器可能会更快达到稳定。 步骤6. 确定载气流量,再对色谱柱的安装进行检查注意:如果不通入载气就对色谱柱进行加热,会快速且永久性的损坏色谱柱。 步骤7. 色谱柱的老化色谱柱安装和系统检漏工作完成后,就可以对色谱柱进行老化了。 对色谱柱升至一恒定温度,通常为其温度上限。特殊情况下,可加热至高于最高使用温度10-20℃左右,但是一定不能超过色谱柱的温度上限,那样极易损坏色谱柱。当到达老化温度后,记录并观察基线。初始阶段基线应持续上升,在到达老化温度后5-10分钟开始下降,并且会持续30-90分钟。当到达一个固定的值后就会稳定下来。如果在2-3小时后基线仍无法稳定或在15-20分钟后仍无明显的下降趋势,那么有可能系统装置有泄漏或者污染。遇到这样的情况,应立即将柱温降到40℃以下,尽快的检查系统并解决相关的问题。如果还是继续的老化,不仅对色谱柱有损坏而且始终得不到正常稳定的基线。 一般来说,涂有极性固定相和较厚涂层的色谱柱老化时间长,而弱极性固定相和较薄涂层的色谱柱所需时间较短。而PLOT色谱柱的老化方法有各不相同。PLOT 柱的老化步骤:HLZ Pora 系列250℃,8小时以上Molesieve(分子筛) 300℃12小时Alumina(氧化铝) 200℃8小时以上由于水在氧化铝和分子筛PLOT柱中的不可逆吸附,使得这两种色谱柱容易发生保留行为漂移。 当柱子分离过含有高水分样品后,需要将色谱柱重新老化,以除去固定相中吸附

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

色谱分析法实验实验一填充柱气相色谱进样技术练习一实验目的

色谱分析法实验 实验一填充柱气相色谱进样技术练习 一、实验目的 1、熟悉填充柱色谱仪进样系统结构。 2、掌握微量注射器的使用方法。 3、练习进样技术。 二、仪器与试剂 1、仪器气相色谱仪一台,上海分析仪器厂。 2、试剂甲乙酮、环已烷、苯,均为色谱纯或优级纯。 三、实验步骤 1、色谱条件柱2 mX3mm不锈钢柱,载体:硅烷化白色载体(60—80目)固定液,DNP,配比:20:100, 柱温90℃,捡测器温度了90℃,气化室温度:130℃, 氢火焰离子化检测器。 2.操作: (1) 调整仪器,使其正常运行 (2) 用1μl注射器分别取0.1μl三种纯物质,多次进样, 观察同一物质相同进样量情况下色谱峰重现性。 (3) 将三种物质按一定比例混合,制成混合样,用10μl 注射器进样0.2μl ,多次进样观察每次进样时色谱

峰重现情况。 四、问题讨论 1、为什么有时同一样品同一进样量时色谱峰形(如峰高)不同? 2.为什么有时进样后不出峰? 五、注意事项 1、一取好样后应立即进样,进样时整个动作应稳当、连贯、 迅速。 2、硅橡胶密封垫圈在几十次进样后容易漏气,需及时更换。 实验二有关色谱参数的测试及计算 一、目的要求 1、通过本实验基本色谱参数的测试与计算,定量地了解溶 质组分在色谱柱过程中热力学和动力学作用的量度。 2.理解各色谱参数的意义及其相互关系。 3、通过本实验进一步掌握柱效、柱选择性、分离能力、 保留值等性质,使之能选择出最佳色谱操作条件,得到 可靠的定性,定量结果。 二、基本原理 在规定的色谱条件下,测定惰性组分的死时间(tM)及被测组分的.保留时间(tR)、半高峰宽(wh/2)及峰宽(w)等参 数,便可计算出基本色谱参数值。 三、仪器与试剂 1 仪器气相色谱仪一套,色谱柱2000mmX3mm一支, FID检测器;微量注射器(5—10μl)一支。 2 试剂甲烷(自制),正己烷,正庚烷,正辛烷,乙酸正丁酯,102白色载体(60—80目);Apienzon—L; 石油醚(低沸程馏分);DNP,乙醚,二氯甲烷。 四、实验步骤 1.联结好仪器系统,检查并排除故障至正常工作状态。 2.制备填充色谱柱: (1)Apienzon-L柱:经计算称取适量102白色硅烷化载 体(60–- 80目)和ApienzonlL油酯(以5%重量比计),用 CH2Cl2将其溶解并均匀地涂渍在载体上,挥发溶剂至 干。负压装柱至均匀满口,按老化程序老化好待用。 (2)DNP柱:以15%重量比计算称取DNP足量,用

色谱柱的使用和维护

正相、反相和极性胶联柱使用手册 更多资料请访问:https://www.360docs.net/doc/a713052962.html, Chrompack HPLC Normal-,Reversed phase and Polar bonded columns 注意 此色谱柱填充的是改性硅胶材料。向柱内导入碱性溶剂(pH>7.0)或酸性溶剂(pH<2.0)会导致柱子损坏。 1 简介 此柱填充的是反相或者极性胶联型态的硅胶基质材料的硅胶。硅胶形态的柱子用于正相(非水)条件。 反相(C8,C18,ODS,RP-8和RP-18)通常用于反相条件(水相)。 极性胶联型(APS,diol,CN和NH2)依照应用目的,可以用于正相和反相条件。建议不要将一个相同的柱子用于差别非常大的条件下,这是因为柱子在特定的条件下,固定相的性质会发生变化,所以在其他的条件下,会影响柱效。也不建议将硅胶柱用在反相条件下或者将方向柱用在正相条件下,这是因为这种过程会发生重复性差的问题(每一次注射之间和柱与柱之间的比较)。 2 色谱柱老化 在开始分析工作以前,柱子必须经过正确的老化。一个没有正确老化的柱子可能会带来问题,诸如很差的柱效或者分离情况发生变化等等。 A.在反相条件下老化 要老化这类柱子,首先要使用乙腈或者甲醇淋洗,然后你选用的洗脱液进行平衡。 在发货以前,每根柱子都已经测试过并进行了老化。因此没有必要在第一次使用时用水冲洗)。 如果流动相中使用了添加物(例如缓冲液或离子对试剂),建议使用正确比例的但不含此添加物的流动相进行缓冲冲洗。缓冲冲洗应当首先以低流速进行,最后再使用正常流速。 B.在正相条件下老化 柱效可能会受水与固定相的键合的严重影响。柱子的干燥(激活)或润湿(失活)可能是需要的。使用的溶剂可能是水饱和的或者是无水的。干燥柱子可以使用无水的二氯甲烷。 C.对于极性键合柱的特殊说明 由于这些柱子可以用于反相或者正相条件,在进行老化以前,一定要首先检查你要使用的淋洗溶剂或洗脱液是否可以与封装在柱子里的溶剂相混溶。如果这些溶剂不能混溶,必须先使用一个合适的缓冲溶剂进行冲洗。 3 洗脱液 注意第节和第2节。一定不要使用pH低于2或者高于7的缓冲液,这是由于它们会改变固定相的性质。极性键合柱最好使用在3到5 之间。在使用以前,洗脱液要进行脱气,以及使用0.5微米的滤膜过滤,以免发生检测和泵送问题。 一定要在开始使用系统以前检查水溶液中有否微生物生长,否则你的柱子会堵塞,柱压会升高到无法接受的水平。 4 流量和压力 增加流速或者降低流速要采取小的间隔变化以防止填充床的扰动。 如果你想更换柱子,,要降低流量至0,等待洗脱液完全流出柱子为止(2分钟)。

气相色谱仪的操作流程及注意事项

(沈阳光正分析仪器有限公司https://www.360docs.net/doc/a713052962.html,/cn/index.asp) 现在的气相色谱仪的操作都非常简单,类似于傻瓜式的操作。另外,如果购买我公司的产品,我们负责安装调试,培训操作人员。而且具有完善的售后服务。下面我就谈一下气相色谱仪的操作流程和注意事项。如有疑问欢迎随时来电咨询。 操作流程 一、开机前准备: 1、根据实验要求,选择合适的色谱柱; 2、气路连接应正确无误,并打开载气检漏; 3、信号线接所对应的信号输入端口。 二、开机: 1、打开所需载气气源开关,稳压阀调至0.3~0.5 Mpa,看柱前压力表有压力显示,方可开主机电源,调节气体流量至实验要求; 2、在主机控制面板上设定检测器温度、汽化室温度、柱箱温度,按《输入》键,升温; 3、打开氢气发生器和纯净空气泵的阀门,氢气压力调至0.3~0.4Mpa,空气压力调至0.3~0.5Mpa,在主机气体流量控制面板上调节气体流量至实验要求;当检测器温度大于100℃时,按《点火》按钮点火,并检查点火是否成功,点火成功后,待基线走稳,即可进样; 三、关机: 关闭FID的氢气和空气气源,将柱温降至50℃以下,关闭主机电源,关闭载气气源。关闭气源时应先关闭钢瓶总压力阀,待压力指针回零后,关闭稳压表开关,方可离开。 气相色谱使用注意事项 一、进样应注意问题: 手不要拿注射器的针头和有样品部位、不要有气泡(吸样时要慢、快速排出再慢吸,反复几次,10ul注射器金属针头部分体积0.6ul,有气泡也看不到,多吸1-2ul把注射器针尖朝上气泡上走到顶部再推动针杆排除气泡,(指10ul 注射器,带芯子注射器平感觉)进样速度要快(但不易特快),每次进样保持相

色谱柱使用手册

正相、反相和极性胶联柱使用手册 分类:质量检验 2007.3.22 22:20 作者:LAI | 评论:0 | 阅读:146 正相、反相和极性胶联柱使用手册Chrompack HPLC Normal-,Reversed phase and Polar bonded columns 注意: 此色谱柱填充的是改性硅胶材料。向柱内导入碱性溶剂(pH>7.0)或酸性溶剂(pH<2.0)会导致柱子损坏。在使用这个柱子之前,你要充分地熟悉这本手册讲述的内容。未正确地使用不能享受保修待遇。 1.简介 此柱填充的是反相或者极性胶联型态的硅胶基质材料的硅胶。硅胶形态的柱子用于正相(非水)条件。反相(C8,C18,ODS,RP-8和RP-18)通常用于反相条件(水相)。极性胶联型(APS,diol,CN和NH2)依照应用目的,可以用于正相和反相条件。建议不要将一个相同的柱子用于差别非常大的条件下,这是因为柱子在特定的条件下,固定相的性质会发生变化,所以在其他的条件下,会影响柱效。也不建议将硅胶柱用在反相条件下或者将方向柱用在正相条件下,这是因为这种过程会发生重复性差的问题(每一次注射之间和柱与柱之间的比较)。 2.色谱柱老化 在开始分析工作以前,柱子必须经过正确的老化。一个没有正确老化的柱子可能会带来问题,诸如很差的柱效或者分离情况发生变化等等。 A.在反相条件下老化 要老化这类柱子,首先要使用乙腈或者甲醇淋洗,然后你选用的洗脱液进行平衡。在发货以前,每根柱子都已经测试过并进行了老化。因此没有必要在第一次使用时用水冲洗)。 如果流动相中使用了添加物(例如缓冲液或离子对试剂),建议使用正确比例的但不含此添加物的流动相进行缓冲冲洗。缓冲冲洗应当首先以低流速进行,最后再使用正常流速。 B.在正相条件下老化 柱效可能会受水与固定相的键合的严重影响。柱子的干燥(激活)或润湿(失活)可能是需要的。使用的溶剂可能是水饱和的或者是无水的。干燥柱子可以使用无水的二氯甲烷。 C.对于极性键合柱的特殊说明 由于这些柱子可以用于反相或者正相条件,在进行老化以前,一定要首先检查你要使用的淋洗溶剂或洗脱液是否可以与封装在柱子里的溶剂相混溶。如果这些溶剂不能混溶,必须先使用一个合适的缓冲溶剂进行冲洗。 3.洗脱液 注意第节和第2节。一定不要使用pH低于2或者高于7的缓冲液,这是由于它们会改变固定相的性质。极性键合柱最好使用在3到5 之间。在使用以前,洗脱液要进行脱气,以及使用0.5微米的滤膜过滤,以免发生检测和泵送问题。

7890B气相色谱仪的操作规程

1、目的:建立安捷伦7890B GC气相色谱仪的操作规程,使检验人员能够正确的使用安捷伦7890B GC气相色谱仪。 2、适用范围:气态有机化合物或较易挥发的液体、固体有机化合物样品。 3、责任人:检测员 4、正文: 4.1 操作步骤 4.1.1 操作前准备 4.1.1.1 色谱柱的检查与安装首先打开柱温箱门看是否是所需用的色谱柱,若不是则旋下毛细管柱按进样口和检测器的螺母,卸下毛细管柱。取出所需毛细管柱,放上螺母,并在毛细管柱两端各放一个石墨环,然后将两侧柱端截去1~2mm,进样口一端石墨环和柱末端之间长度为4~6mm,检测器一端将柱插到底,轻轻回拉1mm左右,然后用手将螺母旋紧,不需用板手,新柱老化时,将进样口一端接入进样器接口,另一端放空在柱温箱内,检测器一端封住,新柱在低于最高使用温度20~30℃以下,通过较高流速载气连续老化24小时以上。 4.1.1.2 气体流量的调节 4.1.1.2.1 载气(氮气)开启氮气钢瓶高压阀前,首先检查低压阀的调节杆应处于释 (400-690kPa)放状态,打开高压阀,缓缓旋动低压阀的调节杆,调节至约0.55MPa。 4.1.1.2.2 氢气打开氢气钢瓶,调节输出压至0.41MPa。(400-690kPa) 4.1.1.2.3 空气打开空气钢瓶,调节输出压至0.55MPa。(550-690kPa) 4.1.1.3 检漏用检漏液检查柱及管路是否漏气。 4.1.2 主机操作 4.1.2.1 接通电源,打开电脑,进入windows 主菜单界面。然后开启主机,主机进行自检,自检通过主机屏幕显示power on successul,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,使仪器和工作联接。 4.1.2.2 编辑新方法 4.1.2.2.1 从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺

填充柱气相色谱

第五章填充柱气相色谱 色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。气相色谱中所用毛细管柱的内径一般小于1mm。微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。 第一节气-固色谱固定相-固体固定相 气—固色谱法广泛应用于永久气体和低沸点烃类的分析。常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。 气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。 吸附等温线 气—固色谱法遵循了气体在吸附剂表面上的吸附规律。气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。 (1)线性吸附等温线 如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。 (2)朗格缪尔吸附等温线(向下弯曲的吸附等温线) 朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。 (3)向上弯的吸附等温线

气相色谱仪操作规程及注意事项

气相色谱仪操作规程及注意事项 1、检漏先将载气出口处用螺母及橡胶堵住,再将钢瓶输出压力调到0.4~0.6MPa(4-6kgf/cm2)左右,继而再打开载气稳压阀,使柱前压力约0.3~0.4MPa (3-4kgf/cm2),并察看载气的流量计,如流量计无读数则表示气密性良好,这部分可投入使用;倘发现流量计有读数,则表示有漏气现象,可用十二烷基硫酸钠水溶液探漏,切忌用强碱性皂水,以免管道受损,找出漏气处,并加以处理。 2、载气流量的调节气路检查完毕后在密封性能良好的条件下,将钢瓶输出气压调到0.2~0.4MPa(2-4kgf/cm2),调节载气稳压阀,使载气流量达到合适的数值。注意,钢瓶气压应比柱前压(由柱前压力表读得)高0.05MPa(0.5kgf/cm2)以上。 3、恒温在通载气之前,将所有电子设备开关都置于“关”的位置,通入载气后,按一下仪器总电源开关,主机指示灯亮,层析室鼓风马达开始运转。 打开温度控制器电源开关,调节层析室温控调节器向顺时针方向转动,层析室的温度升高,主机上加热指示灯亮表示层析室在加温,升温情况可以由测温毫伏表(根据测温毫伏表转换开关的位置)读得,还可以由插入的玻璃温度计读得。当加热指示灯呈暗红或闪动则表示层析室处于恒温状态。调节层析室温控调节器,使层析室的温度恒定于所要求的温度上。层析室的温度可根据需要在室温至250℃之间自由调节。 开汽化器(样品进入处)加热电源开关,汽化加热指示灯亮,调节汽化加热调节器,分数次调到所要求的温度上。升温情况可由测温毫伏表读得。 汽化器(样品进入处)及氢焰离子室加热温度的调节由温度控制器内汽化加热电路直接控制,其调节范围为0-200V。汽化器及氢焰离子室所需温度应逐步升高,以防止温度升得过高而损坏。氢焰离子室温度由钮子开关控制,可高于、低于汽化器温度或不加热。测温的显示仪表为一测温毫伏计。层析室、汽化器、氢焰离子室合用同一测温仪表,其显示方法是用一单刀三掷的波段开关予以切换完成的。 层析室、汽化器及氢焰离子室的温度、气体流量和进样量等,应根据被测物质的性质、所用色谱柱的性能、分离条件和分析要求而定。 4、热导检测器的使用层析室温度恒定一段时间后,将热导,氢焰转换开关置

气相色谱柱知识详解

气相色谱柱知识详解

————————————————————————————————作者:————————————————————————————————日期:

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

气相色谱仪操作步骤(做组分)

气相色谱仪操作步骤(做组分) 1、打开氮气钢瓶,减压阀输出压力调到0.4MPA,平时不需调整,只开关总阀。 2、打开氢气发生器,待发生器的压力达到0.4MPA以后,打开空气发生器。 3、待空气发生器的压力达到0.4MPA以后,观察色谱仪上空气Ⅱ的压力表指示应为0.12mp a(平时不需要调整),打开仪器总开关,仪器开始升温,待所有绿色指示灯闪烁后,按一下色谱仪上的桥流红色按钮,桥流指示灯亮。 4、打开色谱在线工作站,选择通道1,观察基线,基线平稳后开始进行分析。分析时,用上面的六通阀时,按参数键,TCD的极性设为1,检出CO2、C2H4、C2H6等,用下面的六通阀时,按参数键,TCD的极性设为0,检出O2、N2、CH4、CO等。 5、所有工作完成后,先关闭色谱仪总打开,再依次关掉氮、空、氢发生器。 二、求校正因子的操作步骤。 1、打开在线工作站,选择通道1点OK。 2、点击“实验信息”根据需要输入相关信息{也可以不输} 3、点击“方法”再点击屏幕左下方的“采样控制”,输入采样结束时间,选择文件保存方式,并点击“采用” 4、点击屏幕左下方的“积分”选择积分参量为面积,积分方法为“外标法”并点击“采用”。 5、点击“数据采集”“查看基线”待基线稳定后,开始做标准气样,

每做完一个标准气样,你要记住它所保存的文件名。 6、标准气体做完后,打开离线工作站。 7、点击“积分方法”选择积分参量为“面积”,积分方法为“外标法”并点击“采用”。 8、在离线工作站中,点击左上角的“打开”,选择一个你在在线工作站中所做的标样,并打开它。 9、点击“组分表”点击屏幕右边的“全选”在组分表中输入各组分的名字,点击“采用”。 10、点击“校正”,点击“标准含量”输入各组分的含量,选择重复次数,点击OK 11、点击加入标样,找到你在在线工作站所做的标样的文件名,并打开,再点击“加入标样”,直到把你所做的标样都加入一次,点击“校正完毕”点击“校正曲线”中个组分的名字,选择“强制过零”,就会出现校正曲线了。 12、点击屏幕上方的输出,把你所做的校正因子以一个方法文件的名称存在标样下 三、在线工作站中求样品含量的操作步骤 1、打开在线工作站,选择通道2,点击打开,找到你在离线工作站中所保存的相应的校正因子方法文件并打开它。 2、点击查看基线,待基线稳定后就可以进行样品分析。 3、样品出完后,点击预览,就可以看到结果了 四、在离线工作站中,查看所保存的样品的数据结果 1、打开离线工作站 2、点击屏幕左上方的打开,找到你想查看数据的样品的文件名并双

气相色谱柱中新填充柱或毛细管柱的老化操作规

气相色谱柱中新填充柱或毛细管柱的老化操作规确保载气流过毛细管柱15~30min。 缓慢程序升温(5℃/min)到老化温度。 最初老化温度≥4hours 如果柱子受到污染。可在推荐的最高色谱柱温度低20℃的条件下,老化柱子。 一般推荐的老化温度为: Tcond = Tmax/2 + Tapp/2 这里: Tcond = 老化温度 Tmax = 色谱柱推荐采用的最高温度 Tapp = 应用中使用的最高温度 在老化柱子时,一定不要将毛细管接在检测器上,应将那一端放空,同时将检测器用闷头堵上。如果是FID,容许接在上面,但应该将检测器温度升上去。 毛细管柱 ?WCOT - 内表面涂有很薄的固定相. ?PLOT –内表面涂有多孔的固体层或吸附剂 ?SCOT –内表面先涂固态载体,然后再涂上固定相。 由于毛细管色谱柱柱效很高,对一般的样品备用三种极性的柱子就能解决大部分问题,但对同分异构体要严格选用专用毛细管色谱柱。 *色谱柱的选择 按样品极性选择: 弱极性样品,可选OV-1,SE-30,OV-101,SE-52,SE-54。 中极性样品,可选OV-17,OV-1701,XE-60,OV-225,OV-210。 极性样品,可选PEG-20M,FFAP,OV-275,DEGS。 按酸碱性选择: 碱性样品:弱碱性可选OV-1,SE-30等;强碱性可选碱性PEGB《br》

酸性样品:FFAP 按沸点选择: 高沸点物质可选OV-1,SE-30,SE-54等交联柱,薄液膜 *毛细管内径的选择 成品分析:小口径 0.25mm,0.32mm ,薄液膜 痕量组分分析:大口径,厚液膜,0.53mm *汽化温度比样品沸点高20~30℃ *柱温首选在样品沸点的0.7倍处,再看分离情况调整。 低于最高温度30度保持3小时左右 如果你要采用程序升温,就先升到高于你一般使用温度的温度值保持一小时,再升至最高温度保持2.5小时 通上载气,气体流量和平时差不多就可以了~ 如果色谱柱出口端未与检测器分离,使用中的色谱柱老化应将检测器处于加温状态(温度高于柱相温度),通上载气。 我平时是这么做的. 一般买回来的色谱柱先看说明书有没有建议的老化程序,如果没有,我会用自己的测试方法(我用的是程序升温)进行老化,没有断开检测器,我的是FID,不过检测器的温度比柱温最高温高30左右,我一般都会老化24个小时,指新的柱子. 具体温度要看柱子的类型了,一般在最高柱温限下20-30度老化2-3小时就可以了.建议不要将柱子尾段移出检测器.通上载气。

老化柱子方法及作用

老化柱子方法及作用 自己设一个程序升温老化就可以了,最高温度不要超过柱子的最大承受温度就好了,如果柱子用的时间比较长,就要多走几遍这样的程序升温。 最好依据说明书来老化,注意接气体净化器!!! 关于气相色谱填充柱的老化处理 装填好的气相色谱填充柱,要经过老化处理后才能投入使用。下面简述填充柱的老化问题。 1 老化目的 除去管柱内剩余的溶剂!固定液的低沸程馏分及易挥发的杂质,同时使固定液更均匀!牢固地分布于载体或管壁上。 2 老化作用 2.1 降低由于柱子流失(溶剂!轻馏分)而引起的本底噪声。这对于使用高灵敏度的检测分析是很重要的,如用氢火焰离子化检测器,一般认为流失能引起噪声和不稳定的基线。真正的柱流失常常有如同噪声状的正向漂移。 2.2 提高定量的准确度这一点一般易被忽视,假若要求分析结果的相对偏差等于或低于3%时,应在固定液的最高使用温度下历时6~48h(视固定液的性质决定)。 3 老化原则 老化的原则有:1.设置老化温度时,决不允许超过固定液的最高使用温度。2.根据涂渍固定液的百分数合理设置老化温度,低含量固定液的柱子,老化温度相对要低些。3.老化时间与所用检测器的灵敏度和类型有关,灵敏度越高,要求老化的时间相对越长。4.老化时间的长短也取决于固定液的特性,“气相色谱纯的”要少于“工业纯的”。例如,OV固定液老化时间要少于SE-60,QF-1(工业纯)。5.样品的极性越强,要求填充柱老化的时间相对越长。 4 老化方法 由文献可知,老化的方法多采用气体流动法,将柱入口与进样室相连,出口勿接检测器,通小流量(一般为5~10ml/min)的载气,以(2~4)℃/min程序升温至低于固定液最高使用温度20~30℃,老化12~24h,获得平稳基线,则表明老化已合格。具体的老化方法是:

气相色谱仪操作规程完全版

气相色谱仪操作规程 GC9790气相色谱仪操作规程(一) (1) SP1000气相色谱仪操作规程 (1) Agilent4890D气相色谱仪操作规程 (2) HP-5890A气相色谱仪操作规程 (3) GC-9790气相色谱仪操作规程(二) (4) SP2100气相色谱仪操作规程 (5) GC-920色谱操作规程 (5) Agilent6890气相色谱仪操作规程 (6) GC9800TT型气相色谱仪操作步骤 (7) GC9800FF型气相色谱仪操作步骤 (8) 9001型气相色谱仪操作规程 (10) SP6800A气相色谱仪的操作说明 (12) GC-930色谱操作规程 (13) GC112A气相色谱操作规程 (14) GC122气相色谱操作规程 (14) GC1690气相色谱仪说明书 (15) 惠普4890D型气相色谱仪标准操作程序 (16) HP6890气相色谱仪操作规程 (19) SP-6890气相色谱仪操作规程 (20) HP-5890A气相色谱仪操作规程 (21) GC-14A气相色谱仪操作规程 (23) HP4890D气相色谱仪操作说明(二) (24) GC9890气相色谱仪操作步骤 (25) 岛津气相色谱GC-2010操作规程 (26) 岛津GC-14CPFID气相色操作规程 (27) GC-14C气相色谱简易操作规程 (27) Agilent6820-GC(ForCerityNDS) (29) 瓦里安CP3800气相色谱操作规程 (33) 安捷伦GC-6820使用规程 (35)

GC9790气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器正面右下侧的针形阀,使空气压力在0.05MPa左右,氢气压力在0.15~0.2MPa之间,用点火枪点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.将仪器右下侧空气、氢气的针形阀压力都缓慢调节到0.1MPa。 8.待基线稳定后开始分析测试工作。 9.分析工作结束后,可以立即关闭氢气钢瓶总阀以及空气发生器电源。 10.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。 11.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC9790的操作。 SP1000气相色谱仪操作规程 1仪器组成 1.1气源部分,包括氮气钢瓶,氢气源发生器,空气源发生器。 1.2气相主机,包括氢火焰离子化检测器(FID)。 1.3计算机及C-21色谱数据采集单位组成。 2采样操作步骤 2.1选择合适的色谱柱安装于进样器一端,另一端安装于所用的检测器口。 2.2打开载气钢瓶的总阀及减压阀至0.4-0.5Mpa,确定有载气流量后,打开气相主机电源开关。在面板上按“设定”键进入设定参数界面,设定柱温(恒温、程序升温)、设定进样器温度,设定检测器温度。程序升温包括起始温度、起始时间、升温速率、结束温度、结束时间等。仪器在升温状态中,等待指示灯亮,到达所设状态,就绪指示灯亮,即可进样。2.3打开氢气发生器和空气发生器开关,平衡10分钟。按住气相主机上“点火”钮数秒钟即可。按“状态”键切换到状态界面可观察到信号显示及仪器各部件状态。 2.4打开电脑,双击BF-2002色谱工作站图标进入色谱工作站。

相关文档
最新文档