并联电抗器中性点小电抗选择EMTP仿真验证计算

并联电抗器中性点小电抗选择EMTP仿真验证计算
并联电抗器中性点小电抗选择EMTP仿真验证计算

中性点小电抗补偿系统仿真计算

3.1 系统概况及仿真计算条件

本文以华东某地区一全线同杆双回并架的500kV 超高压送电线路为例,使用ATP - EMTP 电磁暂态软件分析研究中性点加小电抗四线补偿系统中出现的问题及小电抗的工作性能。该线路原全长约170km ,同杆双回架设于变电站A 和B 之间,在站A 侧装有额定容量为150Mvar 的并联高抗。由于电网扩建,将该线路断开后π接入新建变电站C ,原线路被截断为95km 和75km 两段,并联电抗器依然应用原配置。本文算例所采用的是站A 和站C 之间一段长为95km 的500kV 交流输电线路。

常规500kV 交流超高压送电线路对地电容为km /F 015.0μ,高抗的电抗值为

Ω==67.20162

S

U

X n L

(3-1)

可估算本段线路的补偿度为

108.111===

L

C L X C Q Q T ω (3-2)

很明显,本段线路的高抗处于过补偿运行,系统易发生工频谐振问题[20]。 应用ATP - EMTP 对该算例进行计算,分析该段线路在非全相运行(包括空载线路非全相运行和正常线路非全相运行)情况下开断相上电压和电流的变化,本文将建立双电源单回和双回运行下发生非全相切合时工频传递过电压与潜供电流仿真模型。考虑到系统仿真分析的简便性,本章的仿真模拟均以A 相拒动或发生故障为例分析。

仿真计算等值电路如图3-1所示。图中,Z 1、Z 2和Z 3分别为变电站A 、变电站C 和避雷线的序分量等效阻抗,各阻抗参数见表3-1。

图3-1 仿真计算等值电路 表3-1 等值阻抗参数

名称

正序等值阻抗(Ω)

零序等值阻抗(Ω) Z 1 Z 2 Z 3

0.441+j9.330 0.391+j8.649 5.303+j69.794

1.290+j1

2.384 1.976+j14.553 100.192+j325.822

本算例中假设该段线路的换位方式为三段式逆相序全线换位,(本算例尽量削弱换位方式对系统的影响。实际运行中,该段线路的换位方式应为不换位或不完全换位的方式)换位情况见图3-2。

图3-2 线路完全换位示意图

3.2 非全相切合时的工频谐振过电压计算

分相操作的开关单相、两相故障或系统中SPS 装置动作时,系统就会处在非全相运行的状态,有单相或两相导线变为孤立导线,进而在其上产生了工频谐振过电压。本节在空载线路非全相运行条件下仿真计算工频谐振过电压幅值,根据系统参数,建立了500kV 超高压输电线路空载非全相运行(合空线单相拒动)时的工频谐振过电压仿真计算模型,如图3-3所示。

Z1

Z2Z3

A

C

LCC

LCC

LCC

LCC

LCC

LCC

LCC

X0017

X0020

XX0019

LCC

V

V

V

X0022

XX0021

V

V

图3-3 工频传递谐振过电压仿真计算模型

本例中,X L=2016.67Ω,根据所建立的如图3-3所示的线路模型,测算该线路的序参数见表3-2。

表3-2 线路序参数

根据表3-2中参数和式(3-2)可计算该段线路的补偿度T=1.213>1,属于过补偿。由式(2-7)可计算该线路在此运行状况下最佳理论小电抗值X n=471.4Ω。

本节中线路仿真时,设图3-3中第?回线路两侧开关为断开状态,第??回线路初始正常运行。正常相合闸时间为0.04s,A相拒动。该线路单回运行时开断相上工频谐振电压波形如图3-4所示,不同小电抗值时开断相分别在单回、两回运行状况下所计算的工频传递谐振过电压值见表3-3。由图3-4和表3-3可以得出,当线路未加高抗补偿装置时,开断相上没有产生近似拍频的谐振过电压,且此时开断相上电压很小,约为0.3p.u.,并不会对系统和设备造成危害。当线路有高抗补偿装置且其直接接地时,开断相上产生了谐振过电压,幅值最大为.1u

p,该传递过电压在系统安全运行允许范围内。若高抗经小电抗器接地,02

..

很明显小电抗对谐振过电压产生了不同程度的抑制,且由表3-3可看出小电抗值为300~600Ω时,线路在单、双回运行时传递过电压均有较小值,小电抗对谐振传递过电压的抑制效果最好,最佳理论小电抗取值X n=471.4Ω也在该范围内。

图3-4(a)高抗直接接地时的工频传递谐振电压波形

图3-4(b )Xn=500Ω时工频谐振电压波形 表3-3 不同小电抗时的工频传递谐振过电压的计算结果

注:1.0p.u.=3/2550=449.07k V 。

根据以上的仿真计算结果绘制了与之对应的工频谐振过电压随小电抗取值变化的曲线,如图3-5所示。

0.2

0.40.60.81.01.21.41.61.8

2.02.2 工频谐振过电压/p .u .

小电抗X n 取值/Ω

图3-5 不同小电抗值对工频传递谐振电压的影响

如图3-5所示,在相同的小电抗值下,线路双回运行较单回运行有更大的工频谐振过电压,这是因为双回路时存在回间耦合作用,与理论的分析结果是相符的。线路双回运行时在Xn=700Ω处再一次出现了谐振,产生了幅值很高的传递谐振过电压为2.22p.u.,经计算分析确认其原因为该段线路处于过补偿状态,使得系统更易发生谐振【20】。因此应尽量避免高抗为过补偿状态,尤其是避免接近全补偿。

3.3 单相接地故障切除时的仿真计算

根据系统参数,构建了500kV超高压输变电线路单相瞬态性接地故障切除时的仿真计算模型,如图3-6。

图3-6 单相接地故障切除仿真分析计算模型

本节中线路仿真时,设图3-6中站A到站C同塔两回线路正常运行,?线路A相0.02s时(相电压幅值最大)在C站出口处出现单相瞬态性接地故障,且在0.18s后清除,而A相两侧开关在故障出现0.06s后分闸。仿真过程中分别改变单一不同的条件进行分析计算并考虑输电线路分别在单回路和双回路运行2种情况。

3.3.1 小电抗选择对潜供电流的影响

经过仿真计算,该段线路单回运行时开断相上潜供电流波形如图3-7所示,不同小电抗值时开断相分别在一回、两回状况下的潜供电流I j有效值见表3-4。根据仿真计算结果可以得出,开断相上潜供电流的初始波形有很大的高频次分量,但经过1个工频波形周期就衰减为零,因此在潜供电弧熄灭前潜供电流大致只有工频分量,仿真计算结果也取其有效值。该段线路未装设并联补偿装置时,开断相上的潜供电流数值较小,在线路装设并联补偿装置时,幅值较大,且在不

同小电抗值下得到不同程度的抑制,由表3-4可知小电抗取值范围为300~550Ω时,线路在单、双回运行时I j均有较小值,小电抗器对I j有最好的抑制效果,且最佳理论小电抗值Xn=471.4Ω也在该范围内。

图3-7(a)高抗直接接地时的潜供电流波形

图3-7(b)Xn=350Ω时的潜供电流波形

表3-4 小电抗参数取值对线路潜供电流影响

根据以上仿真计算结果绘制了与之相应的线路潜供电流I j 随小电抗参数取值变化的折线图,见下图。

40

6080100120140160180200

220小电抗值/Ω

潜供电流(有效值)/A

图3-8 不同小电抗取值对I j 的影响

由上图可知,线路高抗值不变时,小电抗器有一个最优取值,在该取值下,开断相上I j 有最小值。线路单回运行,小电抗取值在250~450Ω时,I j 有较小值;线路两回运行,小电抗取值在400~700Ω时,I j 有较小值,对系统及设备危害小;两回运行时的最优小电抗值较单回运行时大,与理论分析相符[2]。为了满足线路正常运行要求,小电抗的参数取值区间应为300~550Ω。

3.3.2 小电抗选择对恢复电压的影响

经过仿真计算分析,该段线路单回运行时开断相上恢复电压波形如图3-9所示,不同小电抗值时分别在单回、两回运行状况下所计算的开断相上恢复电压U h 值见表3-5。根据恢复电压的模拟仿真计算结果可以得出,该段线路未装设并联补偿装置时,开断相上的恢复电压较小,在线路装设并联补偿装置且其中性点直接接地时,开断相上的恢复电压波形近似拍频,幅值较大,当其中性点经小电抗接地时,开断相上的恢复电压波形已不再是拍频,且不同小电抗值下恢复电压值得到不同程度的抑制,由表3-5可得小电抗值为300~500Ω时,线路在单、双回运行时恢复电压均有较小值,最佳理论小电抗值Xn=471.4Ω也在该范围内。

图3-9(a)高抗直接接地时的恢复电压波形

图3-9(b)Xn=350Ω时的恢复电压波形

表3-5 小电抗参数选择对恢复电压U h的影响

注:表中记录值取拍频波形最大幅值。

根据以上仿真计算结果绘制了相应的U h 随Xn 变化的折线,如下图。

100

200300400500

600700

800900小电抗值X n /Ω

恢复电压U h /V

图3-10 不同小电抗值对U h 的影响

如图3-10所示,线路高抗值一定时,不同小电抗取值在不同运行状况下对恢复电压的影响不同,且小电抗器存在一个最优值,在该小电抗取值下,恢复电压有最小值。线路单回运行,小电抗取值范围为200~450Ω时,恢复电压有较小值;线路两回运行,小电抗取值范围为350~650Ω时,恢复电压有较小值,对系统及设备危害小;两回运行时的最优小电抗值较单回运行时大,与理论分析相符。为了满足线路正常运行要求,小电抗参数的取值区间应为300~500Ω。

各种电抗器的计算公式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l

铁心电抗器电感计算公式【通用

铁心电抗器电感计算公式 铁心电抗器电感计算公式 当有气隙时,其磁阻主要取决于气隙尺寸。由于气隙的磁化曲线基本上是线性的,所以其电感值仅取决于自身线圈匝数、铁心截面和气隙的尺寸。 主磁通所产生的电感LM LM=ψ/ I =μ0W2 SM / n d=1.257 W2 SM / n d×10 – 8 (H) 式中: ψ─磁通量(Wb) I ─电流(A) μ0 ─空气中的导磁率= 0.4π×10 – 6 = 1.257×10 – 6 (H/m) W ─线圈匝数 SM ─气隙处总有效截面积(cm 2 ) n ─气隙个数 d─单个气隙尺寸(cm ) SM ─气隙处总有效截面积计算 选择单个气隙尺寸d=0.5~3 cm 计算行射宽度E E=d/π ln ((H+d) /d) cm π=PI() 圆周率 H—铁饼高度,一般5 cm

计算行射面积(圆形铁心时)SE SE=2E×(AM+BM+2E) cm 2 AM—叠片总厚度cm BM—最大片宽cm (矩形铁心时)SE SE=2E×(AM+BM) cm 2 AM—叠片总厚度cm BM—片宽cm 计算气隙处总有效截面积 SM=SF / KF +SE cm 2 SF—铁芯截面 KF—叠片系数 漏磁通所产生的电感Ld Ld= 1.257 W2 Sdρ/ H1×10 – 6 (H) 式中: W —线圈匝数 Sd —总漏磁链 ρ—洛氏系数 铁心电抗器电感计算公式 H1 —线圈高度cm Sd=2π/3 F RF +πRn2 - SF / KF ρ=1- 2(RW - RO)/(πH1)

式中: F —线圈幅向尺寸cm RF —线圈平均半径cm Rn —线圈内半径cm RW —线圈外半径cm RO —铁芯半径cm H1 —线圈高度cm 线圈总电感 L= LM + Ld 线圈匝数W计算 ∵ I L = W φ = W B S ∴ W = I L /(B S) 程序计算步骤: 输入:I1,L 1. 计算容量P = I1 ^ 2* L / 1000 2. 参考铁心截面积QC = 15 * P ^ 0.5 3. 参考片宽DOOL =(QC / 1.5)^ 0.5 * 10 4. 参考铁心厚DOOS = DOOL * 1.5 5. 铁心截面积QC = Int(DOOL * DOOS * KQ) / 100 6. 初设磁密BMM =9000 7. 匝数N1 = Int(2 ^ 0.5 *I1 * I1*L * 10 ^ 5 / (BMM * QC))

电感计算公式

电感计算公式(转载) 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

三相滤波电抗器参数计算实例

三相滤波电抗器作 一.设计依据 482V 500V 1,电抗器总额定容量16.66kvar 15.51kvar 2,电抗率 4.16% 4.16% 3,总电感量 0.0577mH 0.0619mH 4,电容器安装总容量550Kvar 550Kvar 5,电容器额定电压 480v 500v 6,电容器基波容量383.31Kvar 357.31Kvar 7,成套装置分四组即:50kvar ,100kvar ,200kvar ,200kvar 。 按安装容量分配: 1/2/4/4 故需制做四只三相或12只单相电抗器 二,电抗器制作要求 ⒈ 电抗器的绝缘等级660v 。 ⒉ 电抗器的耐热等级H 级。 ⒊ 电抗器的额定容量S ,0.7Kvar 。 ⒋ 电抗器的电抗率 4.16%。 ⒌ 电抗器的电感1.995mH 。 ⒍ 电抗器的额定电流33.2A 。 ⒎ 电抗器的绝缘耐压5千伏。 三,铁芯计算及材料的选择 ⒈ 硅钢片选用D310取向硅钢片。 2.电抗器容量的确定。 (1)给定无功16.6Kvar 求电容量 C =92102?fU ?=9210500 3146.16??=910785000006.16?=211.46μF (2)根具电容量求容抗 Xc= 6101c ω=61046 .2113141??=15.064?

(3)已知容抗和电抗率求电抗 XL=0.0416064.15?=0.6266624 ? (4)求制作电抗器的电感 L=310?ωXL =310314 6266624.0=1.9957mH (5)根具电容器的容抗和额定电压求电抗器的流 IL=XC u =064 .15500=33.2A (6)求制作电抗器的容量 Q=310-IV =33.2?21310-=0.7kvar ⒉ 铁芯柱截面积的选择。 ⑴按0.7Kvar 计算铁芯柱的截面积。(按三相变 直径 D =kd 4P =69×47.0=6.31cm (KD-经验数据) 铁芯柱圆截面积 S =π×2231.6??? ??=3.14×9.55=312cm 电抗器的电压 V =P ÷I =0.7÷33.2=21V 一、 硅钢片宽度的选择 1 硅钢片宽度尺寸的计算 E =(2.6-2.9)2LI =2.922.330019957.0?=4.3cm 取4.8 2 铁心厚度尺寸的计算 ⑴ 净厚度B =S ÷E =31 2cm ÷4.8cm =6.5 cm 硅钢片数为:6.5÷0.27=240片 ⑵铁心厚度 s B =B ÷K =6.5 cm ÷0.91=7.15 cm 二、 绕组匝数w 和气隙的计算 ⒈ 绕组匝数的计算w

各种电抗器的计算公式

各种电抗器的计算公式 The manuscript was revised on the evening of 2021

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2* ÷ F (工作频率) = 360 ÷ (2* ÷ = 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(寸)) + ( 40 * 圈长(寸))}] ÷圈直径 (寸) 圈数 = [ * {(18* + (40*}] ÷ = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)= D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=*D*N*N)/(L/D+ 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ= 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为英寸),经查表其AL值约为33nH L=33.2=≒1μH 当流过10A电流时,其L值变化可由l=(查表) H-DC=πNI / l = ×××10 / = (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中

并联电抗器的选择及保护装置的配置

并联电抗器的选择及保护装置的配置 来源:时间:2007-06-13 字体:[ 大中小 ] 投稿 摘要: 本文讨论了在地方电网工程设计实践中,线路并联电抗器的容量、台数、装设地点、继电保护配置等有关技术问题,对设计人员有一定参考价值。 电抗器分为铁芯的和空芯的两大类。铁芯电抗器有线路并联电抗器和消弧线圈两种,其构造与变压器相似,不同的是其铁芯带有气隙,电抗器的线圈只有一个,不分一次和二次。空芯电抗器有水泥电抗器,用电缆做成空心线圈,沿线圈圆周均匀对称的用水泥浇注,把线圈匝间固定起来。水泥电抗器大多用在大容量发电厂或变电站的输配电系统中。 一、并联电抗器容量及台微选择 二、在大电力系统中,并联电抗器的容量、台数、装设地点、中性点小电抗器参数及伏安特性等的选择比较复杂,需对工频暂态及稳态电压升高、潜供电流及恢复电压、发电机自励磁、谐振过电压等方面进行专题计算、模拟试验和分析比较后才能确定。 对地方小电力系统,我们是对工频电压升高,发电机自励磁计算分析后,再根据小电力系统实际情况来确定并联电抗器容量。其推荐值可按下式初步计算。 若线路电压为110~220千伏,线路长度在300公里以下,取0.4~0.45.线路电压为330千伏,线路长度在300公里以上,可取0.5 Ue——电力网额定线电压(千伏)来源:https://www.360docs.net/doc/a713766118.html, Ic.——电力网电容电流(千安) 此值可用计算或直接测量的方法求得.如果能从有关手册查出输电线的电纳,则可直接由下式计算求得:请登陆:输配电设备网浏览更多信息

可查表求得(表略). 根据以上公式计算出并联电抗器容量后进行标准化,选取铁芯式电抗器.其台数决定于并联电抗器总容量的大小,设计容量在10000千乏以上,投切次数少,可选一台集中补偿;8000千乏以下适用于小电力系统、电压等级低,一般选两台分散补偿,有利于运行调整. 并联电抗器可向特种变压器厂订货,选取BKSJ型. 二、装设地点及安装方式 理论上讲,并联电抗器装设地点设在线路的哪一方都可以.但要根据工程实际情况考虑所选并联电抗器电压等级高低、新建工程是否需要补偿,工程扩建时是否有安装地方,控制操作是否方便灵活等各方面因素后再确定. 对大电力系统,补偿容量大,电压高,可集中安装在区域性枢纽变电所高压倒,采用户外安装方式.因投切次数少,在满足开断容量条件下可采用隔离开关和油开关操作. 小电力系统的补偿容量小,电压等级低,可户外分散安装。为了运行、调整投切灵活力便,可采用ZN型真空断路器开关柜. 三、保护装置的配置 (-)装设瓦斯保护.当并联电抗器内部由于短路等原因产生大量瓦斯时,应及时动作并跳闸。当产生轻微瓦斯或油面下降时,应及时发出信号。 瓦斯保护流速整定值的选择,主要取决于并联电抗器容量、冷却方式及导油管直径。目前国内尚无统一标准,均采用经验数据进行整定。 1.并联电抗器容量≤10000千乏、导油管直径≤5.3厘米或瓦斯继电器为QJ1一50型时,流速值可取0.6~0.8米/秒。 2.当并联电抗器容量大于10000千乏以上,导油管直径为8.0厘米或瓦斯继电器为QJ1一80型时,流速值可取0.8~1.2米/秒。 3.对于强迫油循环冷却的并联电抗器不低于1.1米/秒。 (二)装设差动保护或电流速断保护 大容量并联电抗器装设差动保护,小容量若灵敏度满足要求时可装设电流速断保护,以防御并联电抗器内部及其引出线的相间和单相接他短路。在可能出现的最大不平衡电流下,保护装置不应该误动作.并联电抗器装设过电流保护作为差动保护的后备,保护装置带时限动作于跳闸。 (三)装设过负荷保护,以防御电源电压升高和引起并联电抗器的过负荷。保护装置带时限动作后作用于信号。来源:输配电设备网

各类电抗器计算

如下 1. 进线电抗器 1.1 进线电抗器的额定电流I LN: 对直流传动装置(6RA70): I LN=0.82I dN (A) 式中:I dN:传动装置额定整流电流,通常即为由其供电的电动机的额定电流 (A)。 对电压型变频器(6SE70): I LN=1.1I CN (A) 式中:I CN:变频器额定输出电流,通常即为由其供电的电动机的额定电流 (A)。 对6SE70中的整流单元和整流/回馈单元: I LN=0.87I dc (A) 式中:I dc:整流单元或整流/回馈单元额定输出电流 (A)。 1.2 进线电抗器的电感值L: 对直流传动装置(6RA70)和6SE70中的整流/回馈单元按压降4%选择L: L=0.04U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值 (V) f:电网频率 (Hz) I LN:进线电抗器的额定电流 (A) 当f=50Hz时: L=73.51×U LN/I LN (μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.1~表1.4中选择进线电抗器(适用于f=50Hz)。 对变频器(6SE70)和6SE70中的整流单元,按压降2%选择L: L=0.02×U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值 (V) f:电网频率 (Hz) I LN:进线电抗器的额定电流 (A) 当f=50Hz时: L=36.76×U LN/I LN (μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.5~表1.8中选择进线电抗器(适用于f=50Hz)。

电感线圈匝数的计算公式

电感线圈匝数的计算公式 计算公式:N=0.4(l/d)开次方。N一匝数,L一绝对单位,luH=10立方。d-线圈平均直径(Cm) 。 例如,绕制L=0.04uH的电感线圈,取平均直径d= 0.8cm,则匝数N=3匝。在计算取值时匝数N取略大一些。这样制作后的电感能在一定范围内调节。 制作方法:采用并排密绕,选用直径0.5-1.5mm的漆包线,线圈直径根据实际要求取值,最后脱胎而成。 第一批加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定

电抗器起动时电抗器的选定计算书

电抗器起动时电抗器的选定计算书计算依据 《工业与民用配电设计手册》第三版中P270页表6-16的公式 已知条件 线缆类型:铜 线缆截面S(mm2 )=120.000 线缆长度L(km)=0.025 电机名称:Y(IP44) 电机型号:90L-2 电机功率(kw):2.200 电机转速(r/min):2840.000 电机额定电流(A):4.740 电机起动电流(A):33.000 电机额定电压(kV):0.380 母线短路容量Skm(MVA)=80.000 预接负荷Sfh(MKVA)=0.400 功率因数cosφ=0.850 母线标称电压UM(kV)=10.500 计算要求:母线电压相对值Ustm=0.900 起动电抗器型号: 计算公式和过程 电动机起动电流倍数Kst=Iq/Ir=33.000A/4.740A=6.962 电动机额定容量Srm=1.732UrIr=1.732*0.380kV*4.740A/1000=0.003MVA 电动机额定起动容量Sstm=KstSrm=6.962*0.003MVA=0.022MVA 铜线Xl=(0.08+18.3/S)L=(0.08+18.3/120.000mm2)*0.025km=0.006Ω 预接负荷Qfh=Sfh*SINφ=0.400MKVA*0.527=0.211MVar 电抗值Xk =Um2 /[(Qfh+Skm)(1/Ustm-1)]-Xl-Um2 /Sstm =10.500kV2 /[(0.211MVar+80.000MVA)*(1/0.900-1)]-0.006Ω-10.500kV2 /0.022MVA =-5063.770Ω

电抗器计算公式和顺序

电抗器计算公式和步骤 S=1.73*U*I 4% X=4/S*.9 1. 铁芯直径D D=KPZ0.25 cm K—50~58 PZ—每柱容量kVA 2.估算每匝电压ET ET=4.44fBSP×10-4 V B—芯柱磁密 0.9~1T SP—芯柱有效截面

cm2 3. 线圈匝数 W=UKM/(ET×100)KM—主电抗占总电抗的百分数 U—总电抗电压 V 4. 每匝电压及铁芯磁密 ET=UKM/(W×100) V BM=ET×104/(4.44fSP) T 5. 主电抗计算 选择单个气隙尺寸δ=0.5~3cm 计算行射宽度E E=δ/πln((H+δ)/δ) cm H—铁饼高度,一般5cm 计算行射面积SE

SE=2E×(AM+BM+2E) cm2 AM—叠片总厚度 cm BM—最大片宽 cm 计算气隙处总有效截面积 SM=SF/KF+SE cm2 SF—铁芯截面 KF—叠片系数 计算气隙个数 n=(7.9fW2SM)/(X NδKM×106) XN—电抗Ω 计算主电抗 XM=(7.9fW2SM)/(nδ×108) 如果XM≈X N KM/100则往下进行,否则重新选择单个气隙长度,重复上述计算。 6.

漏电抗计算 Xd=(7.9fW2Sdρ)/(H×108) Ω Sd=2π/3FRF+πRn2-SF/KF ρ=1-2×(RW-RO)/(π×H)式中: F—线圈幅向尺寸 cm RF—线圈平均半径 cm Rn—线圈内半径 cm RW—线圈外半径 cm RO—铁芯半径 cm

H—线圈高度 cm 总电抗X N X N=XM+Xd Ω 附:串联电抗器参数与计算 一基本技术参数 1 额定电压UN (电力系统的额定电压kV) 并联电容器的额定电压U1N 2 额定电流I1 3 额定频率f 4 相数单相三相 5 电抗器额定端电压U1当电抗器流过额定电流时一相绕组二端的电压6 电抗器额定容量P

电抗器设计

07

《电磁装置设计原理——电抗器的设计》
设 计 报 告
姓 学
名 号
专业班号
指导教师 日 期

1
480KV/10KV 电 抗 器 设 计
一.电抗器的额定值和技术要求:
1、 额定容量 S N = 480 KVA 2、 额定电压 U N = 10 KV 3、 阻抗压降 U 1 = 381V 4、 相数 m = 3 5、 额定电流 I N = 419 A 6、 损耗 PCU + PFe ≤ 7000W 7、 线圈温升 TK < 125K 电抗器的主要参数选择结果
二.电抗器的参数计算选择
1. 铁芯参数设计选择
1.1 铁芯直径选择
D = K D 4 S / m = 0.06 × 4 480 / 3 = 0.206m ,
选择 D = 210 × 10 ?3 m ,采用 DQ133 ? 30 硅钢片,查表(5-1)得: 铁芯叠压系数: K dp = 0.95

2
铁芯柱有效截面面积: Az = 291.8 × 10 ?4 m 2 轭有效截面面积: Ae = 321.3 × 10 ?4 m 2 角重: G? = 84.8kg 铁芯最大片宽: BM = 0.2m 铁芯总叠厚: ? M = 0.178m 铁轭片高: bem = 0.19m 1.2 矩形铁芯长宽确定 举行铁芯的面积由上面查表得到的数据确定,又要求 a/b 为 3, 则可选取长 a=300mm,宽 b=100mm。 有效铁芯截面积等于铁芯面积 X 叠压系数: A S =0.95*300*100=28500 mm 2
2. 线圈参数设计选择
电抗额定值
X1 =
VN
IN
= 381
419
= 0.909
设计后,要满足电抗器的电抗的标幺值为 1~1.025 线圈匝数 初选 B ' = 0.81T , k m = 0.81 ,
W=
k mV 2πfB' AZ
=
0.81× 381 = 60匝 ,取整得: W = 60匝 2π × 50 × 0.87 × 300 × 10 ?4
主电抗计算
初选单个气隙长度 δ = 6.5 × 10 ?3 m ,铁芯饼高度 H B = 50 × 10 ?3 m

并联电抗器无功补偿

并联电抗器 1.并联电抗器在电力系统中的作用 并联电抗器无功功率补偿装置常用于补偿系统电容。它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。 由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。 2.可控并联电抗器的分类、基本原理和优缺点 图1可控并联电抗器的分类 2.1 传统机械式可调电抗器 调匝式和调气隙式是最早出现并广泛应用的可调电抗器。其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。调气隙式由于机械惯性和电机的控制问题无法在工程上应用。 2.2 晶闸管可控电抗器(TCR) 晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。 TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电

电抗器参数计算公式

电抗器参数计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位F 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

电抗器参数计算公式培训资料

电抗器参数计算公式

电抗器参数计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率)*电感量(mH),设定需用360ohm阻抗,因此: 电感量(mH)=阻抗(ohm) 弋*3.14159) 工作频率)=360 (乞*3.14159) -7.06 = 8.116mH 据此可以算出绕线圈数: 圈数=[电感量* { ( 18*圈直径(吋))+ ( 40 *圈长(吋))}] 圈直径(吋) 圈数=[8.116 * {(18*2.047) + (40*3.74)}] 2.047 =19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d----线径 H---■线圈咼度 W---线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式 l=(0.01*D*N*N)/(L/D+0.44)

线圈电感量I单位:微亨 线圈直径D单位:cm 线圈匝数N单位:匝 线圈长度L单位:cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率:f0单位:MHZ本题f0=125KHZ=0.125 谐振电容:c单位F本题建义c=500...1000pf可自行先决定,或由Q 值决定 谐振电感:l单位:微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用:(IRON) L=N2 . AL L=电感值(H) H-DC=0.4 n NI / l ”=线圈匝数(圈) AL=感应系数 H-DC=直流磁化力I=通过电流(A) l=磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如:以T50-52材,线圈5圈半, 其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33 . (5.5)2=998.25nH= 1 订 当流过10A电流时,其L值变化可由1=3.74(查表)

10kV并联电抗器合闸过电压的计算与分析

10kV并联电抗器合闸过电压的计算与分析 摘要:针对某些变电站出现的对10kV并联电抗器进行合闸操作时开关柜发生爆炸的事故,本文分析了并联电抗器合闸过电压产生的原因,并用EMTP对合闸过电压进行了理论计算。计算结果表明,真空开关合闸时发生弹跳是合闸过电压产生的主要原因,阻容吸收装置对该类过电压有较好的抑制作用。 关键词:并联电抗器;真空开关;触头弹跳 1前言 并联电抗器作为电网的无功补偿设备,对于稳定电压、提高供电质量有着重要的意义。并联电抗器的投切也是电网中较为频繁的操作。在投切电抗器的时候通常研究的是分闸时真空开关发生截流、重燃产生的过电压,而对合闸时产生的过电压研究较少[1-5]。但是在某些变电站,对并联电抗器进行合闸操作时,发生了开关柜爆炸的事故。为此,笔者专门针对并联电抗器合闸时产生的过电压进行了计算分析。 2并联电抗器合闸过电压产生原因分析 在对电抗器进行合闸操作时,如果断路器触头同期性差,非全相合闸会产生一个电磁振荡过程,在一定的参数情况下还会产生谐振过电压。如图1所示,A、B、C三相合闸时,如果合闸时间不一致,回路中就会存在电磁振荡的过程,如果电容和电感的匹配,还会产生谐振过电压。 图1电抗器回路示意图 对于某些质量不好的真空开关,在合闸的过程中,开关触头发生弹跳(震动),也会产生过电压。开关触头的弹跳是指开关的触头发生了一个合上以后又分开,然后又合上的过程,或者持续合上又分开直至完全合上不再分开的过程。在这个过程中触头分开的距离不大,断口的电弧会发生重燃,截留现象,回路中会产生高频的电磁振荡,产生过电压。 3计算结果及分析 利用电磁暂态仿真程序(EMTP),进行了10kV真空开关对并联电抗器进行合闸操作产生过电压的理论计算。计算原理如下图所示。

系统电抗的计算

【1】系统电抗的计算 系统电抗,百兆为一。容量增减,电抗反比。100除系统容量 例:基准容量100MVA。当系统容量为100MVA时,系统的电抗为XS*=100/100=1 当系统容量为200MVA时,系统的电抗为XS*=100/200= 当系统容量为无穷大时,系统的电抗为XS*=100/∞=0 系统容量单位:MVA 系统容量应由当地供电部门提供。当不能得到时,可将供电电源出线开关的开断容量 作为系统容量。如已知供电部门出线开关为W-VAC 12KV 2000A 额定分断电流为40KA。则可认为系统容量S=*40*10000V=692MVA, 系统的电抗为XS*=100/692=。 【2】变压器电抗的计算 110KV, 除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 除变压器容量。 例:一台35KV 3200KVA变压器的电抗X*=7/= 一台10KV 1600KVA变压器的电抗X*== 变压器容量单位:MVA 这里的系数,7,实际上就是变压器短路电抗的%数。不同电压等级有不同的值。 【3】电抗器电抗的计算

电抗器的额定电抗除额定容量再打九折。 例:有一电抗器U=6KV I= 额定电抗X=4% 。 额定容量S=*6*= MVA. 电抗器电抗X*={4/}*= 电抗器容量单位:MVA 【4】架空线路及电缆电抗的计算 架空线:6KV,等于公里数;10KV,取1/3;35KV,取3%0 电缆:按架空线再乘。 例:10KV 6KM架空线。架空线路电抗X*=6/3=2 10KV 电缆。电缆电抗X*={3}*=。 这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。【5】短路容量的计算 电抗加定,去除100。 例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量 Sd=100/2=50 MVA。 短路容量单位:MVA 【6】短路电流的计算 6KV,除电抗;10KV,除电抗; 35KV,除电抗; 110KV,除电抗。

各种电抗器的计算公式复习过程

各种电抗器的计算公 式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝

线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方)

电抗器计算公式和步骤

电抗器计算公式和步骤S=*U*I 4% X=4/S*9 1. 铁芯直径D D=K PZ cm K—50~58 PZ-每柱容量kVA 2.估算每匝电压ET ET= f B SP X 10-4 V B —芯柱磁密 ~1 T SP-芯柱有效截面

cm 2 3. 线圈匝数 W=U KM /(ET X 100) KM-主电抗占总电抗的百分数 U—总电抗电压 V 4. 每匝电压及铁芯磁密 ET=U KM /(W 100) V BM=E T 104/ ( f SP ) T 5. 主电抗计算 选择单个气隙尺寸8 =~3 cm 计算行射宽度E E=8 / n In ((H+ 8 ) / 8 )

cm H—铁饼高度,一般5 cm 计算行射面积SE SE=2氐(AM+BM+2E) cm 2 AM-叠片总厚度 cm BM-最大片宽 cm 计算气隙处总有效截面积 SM=SF / KF +SE cm 2 SF-铁芯截面 KF-叠片系数 计算气隙个数 n= f W2 SM )/(XN S KM K 106)

XN-电抗Q 计算主电抗 XM= f W2 SM )/(n SX 108) 如果X际XN KM/10(则往下进行,否则重新选择单个气隙长度, 重复上述计算。 6. 漏电抗计算 Xd= f W2 Sd p ) / (H X 108) Q Sd=2兀/3 F RF + n Rn2 - SF / KF p =1-2 X( RW-RO / (nX H) 式中: F —线圈幅向尺寸 cm RF-线圈平均半径

cm Rr—线圈内半径 cm RV—线圈外半径 cm RO—铁芯半径 cm H—线圈高度 cm 总电抗XN XN =XM + Xd Q 附:串联电抗器参数与计算

电抗器串联与并联

电抗器串联与并联 电抗器,实质上是一个无导磁材料的空心线圈。它可以根据需要,布置为垂直、水平和品字形三种装配形式。 1、串联电抗器 在电力系统发生短路时,会产生数值很大的短路电流。如果不加以限制,要保持电气设备的动态稳定和热稳定是非常困难的。因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。 由于采用了电抗器,在发生短路时,电抗器上的电压降较大,所以也起到了维持母线电压水平的作用,使母线上的电压波动较小,保证了非故障线路上的用户电气设备运行的稳定性。 近年来,在电力系统中,为了消除由高次谐波电压、电流所引起的电容器故障,在电容器回路中采用串联电抗器的方法改变系统参数,已取得了显著的效果。 2、并联电抗器的作用

1)削弱空载或轻载时长线路的电容效应所引起的工频电压升高。这种电压升高是由于空载或轻载时,线路的电容(对低电容和相间电容)电流在线路的电感上的压降所引起的。它将使线路电压高于电源电压。当愈严重,通常线路愈长,则电容效应愈大,工频电压升高也愈大。 对超高压远距离输电线路而言,空载或轻载时线路电容的充电功率是很大的,通常充电功率随电压的平方面急剧增加,巨大的充电功率除引起上述工频电压升高现象之外,还将增大线路的功率和电能损耗以及引起自励磁,同期困难等问题。装设并联电抗器可以补偿这部分充电功率。 2)改善沿线电压分布和轻载线路中的无功分布并降低线损。当线路上传输的功率不等于自然功率时,则沿线各点电压将偏离额定值,有时甚至偏离较大,如依*并联电抗器的补偿,则可以仰低线路电压得升高。 3)减少潜供电流,加速潜供电弧的熄灭,提高线路自动重合闸的成功率。 所谓潜供电流,是指当发生单相瞬时接地故障时,在故障相

进线电抗器、输出电抗器、平波电抗器选择计算方法

进线电抗器、输出电抗器、平波电抗器 选择计算方法 1. 进线电抗器 1.1 进线电抗器的额定电流I LN: 对直流传动装置(6RA70): I LN=0.82I dN(A) 式中:I dN:传动装置额定整流电流,通常即为由其供电的电动机的额定电流(A)。 对电压型变频器(6SE70): I LN=1.1I CN(A) 式中:I CN:变频器额定输出电流,通常即为由其供电的电动机的额定电流(A)。 对6SE70中的整流单元和整流/回馈单元: I LN=0.87I dc(A) 式中:I dc:整流单元或整流/回馈单元额定输出电流(A)。 1.2 进线电抗器的电感值L: 对直流传动装置(6RA70)和6SE70中的整流/回馈单元按压降4%选择L: L=0.04U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值(V) f:电网频率(Hz) I LN:进线电抗器的额定电流(A) 当f=50Hz时: L=73.51×U LN/I LN(μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.1~表1.4中选择进线电抗器(适用于f=50Hz)。 对变频器(6SE70)和6SE70中的整流单元,按压降2%选择L: L=0.02×U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值(V) f:电网频率(Hz) I LN:进线电抗器的额定电流(A) 当f=50Hz时: L=36.76×U LN/I LN(μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.5~表1.8中选择进线电抗器(适用于f=50Hz)。

相关文档
最新文档