化工原理课程设计(循环水冷却器设计说明书)

化工原理课程设计(循环水冷却器设计说明书)
化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学

化工原理课程设计

题目循环水冷却器的设计

学院化学与化学工程学院

专业班级制药工程

学生姓名夏天

指导教师吕君

成绩

2016年07月01日

目录

摘要……………………………………………………………………………错误!未定义书签。Abstract………………………………………………………………………………错误!未定义书签。

第1章绪论 (1)

1.1设计题目:循环水冷却器的设计 (1)

1.2设计日任务及操作条件 (1)

1.3厂址:齐齐哈尔地区 (1)

第2章主要物性参数表 (1)

第3章工艺计算 (2)

3.1确定设计方案 (2)

3.2核算总传热系数 (4)

3.3核算压强降 (6)

第4章设备参数的计算 (8)

4.1确定换热器的代号 (8)

(9)

4.2计算壳体内径D

4.3管根数及排列要求 (9)

4.4计算换热器壳体的壁厚 (9)

4.5选择换热器的封头 (11)

4.6选择容器法兰 (11)

4.7选择管法兰和接管 (13)

4.8选择管箱 (14)

4.9折流挡板的设计 (15)

4.10支座选用 (16)

4.11拉杆的选用和设置 (16)

4.12垫片的使用 (18)

总结评述 (20)

参考文献 (21)

主要符号说明 (22)

附表1 (24)

附表2 (25)

致 (26)

摘要

在国内外的化工生产工程中,列管式换热器在目前所用的换热器中应用极为广泛——由于它具有结构牢固,易于制造,生产成本较低等特点。

管壳式换热器作为一种传统的标准换热器,在许多部门中都被大量使用。其结构由许多管子所组成的管束,并把这些管束固定在管板上,热管板和外壳连接在一起。为了增加流体在管外的流速,以改善它的给热情况在筒体内安装了多块挡板。

我们的进行作业时列管换热器的设计,根据所给的任务,进行综合考虑。

首先确定流体流径。我们选择冷却水通入管内,儿循环水通过入管间。

其次,我们确定两流体的定性温度,由于温度引起的热效应不大,可以选择固定管板式换热器。根据初算的总传热系数和热负荷,以及换热器的换热面积,换热器的根数和长度,来确定管程数。并查阅相关资料。

初步工作完成之后,对设备的各种参数校核,包括换热器壳体,封头,管箱,管板,法兰的选用等等,接着进行一系列的检查。

选择这些附件,不仅要与所选换热很好的匹配,而且要兼顾经济的要求,让换热器既造价低廉又坚固耐用,以达到即经济又实惠的效果。

换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备,在热交换器中,至少有两种温度不同的流体,一种是流体温度较高,放出热量,另一种是温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随意我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

关键字:换热器;列管式换热器;循环水;冷却器

Abstract

Heat exchanger is part of the thermal fluid heat transfer to cold fluid equipment, in order to realize the different temperature of heat transfer between fluid, also called heat exchanger. Heat exchanger is to realize the heat exchange and transmission in the process of chemical production indispensable equipment, in the heat exchanger, there are at least two different fluid temperature, fluid temperature is higher, one is gives off heat, the other is a low temperature, absorption of heat.

In chemical, petroleum, power, refrigeration, food and other industries widely used in all kinds of heat exchanger, and they are universal equipment, these industry occupies very important position. Optional constant development of the industry in our country, to the requirement of increasing the energy utilization, development and conservation, the requirement of the heat exchanger is also growing. The design and manufacture of heat exchanger structure improvement and the heat transfer mechanism of research is very active, appeared some new high efficiency heat exchanger. According to different purposes, the heat exchanger can be heat exchanger, heater, cooler, evaporator, condenser, etc. Because of the different conditions of use, heat exchanger can have various forms and structures. In production, heat exchanger is a separate equipment sometimes, sometimes, is a part of the process equipment.

Key Words:Heat exchanger;Shell and tube heat exchanger;Floating-head type

第1章绪论

1.1 设计题目

循环水冷却器的设计

1.2 设计任务及操作条件

1.2.1 设计任务

①处理能力:72000kg/h

②设备型式:列管式换热器

1.2.2 操作条件

①循环水:入口温度55℃,出口温度40℃

②冷却介质水:入口温度25℃,出口温度35℃

③管程和壳程的压强不大于1.0MPa

④换热器的热损失4%

1.3 厂址

齐齐哈尔地区

第2章主要物性参数表

=(25+35)/2=30℃

在定性温度下:t

定冷

=(55+40)/2=47.5℃

t

定循

表2-1 物性参数表

第3章 工艺计算

3.1 确定设计方案

3.1.1 选择换热器的类型

(1)两种流体的变化情况:

热流体(循环水)进口温度55℃,出口温度40℃;

冷流体(冷却水)进口温度25℃,出口温度35℃;

冷水定性温度: t 定冷=(25+35)/2=30℃

循环水定性温度:t 定循=(55+40)/2=47.5℃

由于两流体温差小于50℃,不必考虑热补偿。因此初步确定选择用固定管板式换

热器。

(2)流程安排:

由于该换热器是具有冷却水冷凝的换热器,应使循环水走壳程,以便于排除冷却

水。

3.1.2计算热负荷和冷却水流量

(1)热负荷的计算

h Q =m h c ph △t 1 (3-1) 物性

密度㎏/m 2

比热容kJ/(kg ℃

粘度Pas

导热系数w/m ℃

进口温度℃

出口温度℃ 壳程(循环水) 管程(冷却水) 符号 ρ C p1 μ1 λ T 1 T 2

数据 988.1 4.174 549.4×10-6 647.8×10-3 55 40 符号 ρ C p1 μ2 λ t 2 t 2 数据 995.7 4.174 800.7×10-6

617.6×10-3 25 35

=(72000/3600) ×4174×(55-40)

=1.252×106w

热负荷

Q=Q h-Q (3-2) h

=(1-5%)Q h

=0.96×1.252×106w

=1.202×106w

(2)冷却水流量的计算

Q=0.96m h c ph(T1-T2) (3-3) h

=m h c ph(t1-t2)

所以m c=0.96×72000×4.174×(55-40)/3600×4.174×(35-25)

=28.8㎏/s

3.1.3计算两流体的平均温差,确定管程数

(1)平均传热温差

△t m=△t1-△t2/ln(△t1-△t2)(按逆流计算)(3-4)

其中:△t1=55-35=10℃;△t2=40-25=15℃

△t m=17.38℃

P=t2-t1/T1-t1=0.33

R=T1-T2/t1-t2=1.5

由P、R值查阅《化工原理》(天津大学出版社)(上册)图4-19,可得:Ψ△t=0.92,则有△t m=0.92×17.38=15.99℃

(2)确定管程数

由于Ψ△t=0.92〉0.8,故此换热器应选用单壳程。

3.1.4工艺结构尺寸

(1)初选换热器的规格

假设K=850 W/(mk)

则估算的传热面积为:

A=Q/K△tm=88.44㎡

(2)管径和管内流速

选用Φ25×2.5的碳钢传热器

取管内流速为u i=0.5m/s

(3)估算管程数和传热管数V=n s3.14/4d i2u i

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

循环水冷却器

化工原理课程设计————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日

目录 1 设计任务书 (1) 2 设计摘要 (2) 3 主要物性参数表 (4) 4 工艺计算 (5) 4.1 确定设计方案 (5) 4.1.1 选择换热器的类型 (5) 4.1.2 计算热负荷和冷却水流量 (5) 4.1.3 计算两流体的平均温差,确定管程数 (6) 4.1.4 工艺结构尺寸 (6) 4.2 核算总传热系数 (8) 4.2.1 管程对流传热系数Ai (8) (9) 4.2.2 壳程流体传热系数 o 4.2.3 计算总传热系数K0 (10) 4.3 核算压强降 (12) 4.3.1 管程压强降 (12) 4.3.2 壳程压强降校核 (13) 5 设备参数的计算 (16) 5.1 确定换热器的代号 (16) 5.1.1 换热器的代号 (16) 5.1.2 确定方法 (16) D (16) 5.2 计算壳体内径 i 5.3 管根数及排列要求 (16) 5.4 计算换热器壳体壁厚 (17) 5.4.1 选适宜的壳体材料 (17) 5.4.2 该钢板的主要工艺参数性能 (17) 5.4.3 壁厚的计算 (17)

5.5 选择换热器的封头 (19) 5.6 选择容器法兰 (20) 5.6.1 选择法兰的型式 (20) 5.6.2 确定法兰相关尺寸 (20) 5.6.3 选用法兰并确定其标记 (21) 5.7 选择管法兰和接管 (22) 5.7.1 热流体进出口接管 (22) 5.7.2 冷流体进出口接管 (22) 5.7.3 选择管法兰 (23) 5.8 选择管箱 (23) 5.9 折流档板的设计 (24) 5.10 支座的选用 (24) 5.11 拉杆的选用和设置 (25) 5.11.1 拉杆的选用 (25) 5.11.2 拉杆的设置 (26) 5.12 确定管板尺寸 (26) 5.13 垫片的选用 (27) 5.13.1 设备法兰用垫片 (27) 5.13.2 管法兰用垫片 (28) 6 数据汇总 (29) 7 总结评述 (30) 8 参考文献 (32) 9 主要符号说明 (33) 10 附表 (35)

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

化工原理课程设计(循环水冷却器设计说明书)

齐齐哈尔大学 化工原理课程设计 题目循环水冷却器的设计 学院化学与化学工程学院 专业班级制药工程 学生姓名夏天 指导教师吕君 成绩 2016年 07月 01日 目录

摘要.......................................................................................错误!未定义书签。Abstract..........................................................................................错误!未定义书签。第1章绪论 (1) 1.1设计题目:循环水冷却器的设计 (1) 1.2设计日任务及操作条件 (1) 1.3厂址:齐齐哈尔地区 (1) 第2章主要物性参数表 (1) 第3章工艺计算 (2) 3.1确定设计方案 (2) 3.2核算总传热系数 (4) 3.3核算压强降 (6) 第4章设备参数的计算 (8) 4.1确定换热器的代号 (8) 4.2计算壳体内径DⅠ (9) 4.3管根数及排列要求 (9) 4.4计算换热器壳体的壁厚 (9) 4.5选择换热器的封头 (11) 4.6选择容器法兰 (11) 4.7选择管法兰和接管 (13) 4.8选择管箱 (14) 4.9折流挡板的设计 (15) 4.10支座选用 (16) 4.11拉杆的选用和设置 (16) 4.12垫片的使用 (18) 总结评述 (20) 参考文献 (21) 主要符号说明 (22)

附表1 (24) 附表2 (25) 致谢 (26)

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计(浮阀塔)

板式连续精馏塔设计任务书 一、设计题目:分离苯一甲苯系统的板式精馏塔设计 试设计一座分离苯一甲苯系统的板式连续精馏塔,要求原料液的年处理量 为 50000 吨,原料液中苯的含量为 35 %,分离后苯的纯度达到 98 %, 塔底馏出液中苯含量不得高于1% (以上均为质量百分数) 二、操作条件 厂址拟定于天津地区。 设计内容 1. 设计方案的确定及流程说明 2. 塔的工艺条件及有关物性数据的计算 3. 精馏塔的物料衡算 4. 塔板数的确定 5. 塔体工艺尺寸的计算 6. 塔板主要工艺尺寸的设计计算 7. 塔板流体力学验算 8. 绘制塔板负荷性能图 9. 塔顶冷凝器的初算与选型 10. 设备主要连接管直径的确定 11. 全塔工艺设计计算结果总表 12. 绘制生产工艺流程图及主体设备简图 13. 对本设计的评述及相关问题的分析讨论 1. 塔顶压强: 2. 进料热状态: 3. 回流比: 加热蒸气压强: 单板压降: 4 kPa (表压); 101.3 kPa (表压); 塔板类型 浮阀塔板 四、 生产工作日 每年300天,每天 24小时运行。 五、 厂址

一、绪 论 二、设计方案的确定及工艺流程的说明 2.1 设计流程 2.2 设计要求 2.3 设计思路 2.4 设计方案的确定 三、全塔物料衡算 3.2 物料衡算 四、塔板数的确定 4.1 理论板数的求取 4.2 全塔效率实际板层数的求取 五、精馏与 提馏段物性数据及气液负荷的计算 5.1 进料板与塔顶、塔底平均摩尔质量的计算 5.4 液相液体表面张力的计算 目录 5.5 塔内各段操作条件和物性数据表 11 六、塔径及塔板结构工艺尺寸的计算 14 6.1塔径的计算 14 6.2塔板主要工艺尺寸计算 15 6.3 塔板布置及浮阀数目与排列 17 5.2 气相平均密度和气相负荷计算 10 5.3 液相平均密度和液相负荷计算 10 11

循环水冷却器设计

循环水冷却器设计 [摘要]:传热过程是化工生产过程中存在的及其普遍的过程,实现这一过程的换热设备种类繁多,是不可缺少的工艺设备之一。由于使用条件不同,换热设备可以有各种各样的型式和结构。其中以管壳式换热器应用更为广泛。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中仍处于主导地位。 循环水冷却器是换热设备中的一种,是企业生产中的重要设备。它的作用是通过温度相对较低的水来把其他设备所产生的热量带走,从而使设备部分的温度保持在一个生产所需要的水平,使设备正常工作。因此,循环水冷却器的设计对企业的生产是很重要的,它很可能影响企业的经济损失,对其的设计具有很强的实际意义。 本设计是对管壳式换热器中固定管板式换热器的研究。固定管板式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。在本设计中以GB 150-2011《压力容器》、GB 151-1999《管壳式换热器》等标准和《固定式压力容器安全技术监察规程》为依据,并参考《换热器设计手册》,首先通过方案的论证,确定物料的物性参数,再结合工作条件,选定换热器的形式。根据设计任务,完成对换热面积、总换热系数等工艺参数的确定,同时进行换热面积、壁温和压力降的核算。再根据工艺参数进行机械设计,机械设计主要包括对筒体、管箱、管板、折流板、封头、换热管、鞍座及其它零部件,如拉杆、定距管等的计算和选型等,并进行必要的强度核算,最后运用AutoCAD绘制固定管板式换热器的装配图及零部件图,并编写说明书。 [关键词]:换热器、换热面积、管板、换热管。

循环水冷却器

化工原理课程设计 ————循环水冷却器设计 学院:化工学院 专业班级:高分子061班 姓名:李猛 学号: 2006016050 指导教师:徐功娣 时间:2009年6月25-30日 目录 1 设计任务书1 2 设计摘要2 3 主要物性参数表4 4 工艺计算5 4.1 确定设计方案5 4.1.1 选择换热器的类型5 4.1.2 计算热负荷和冷却水流量5 4.1.3 计算两流体的平均温差,确定管程数6 4.1.4 工艺结构尺寸6 4.2 核算总传热系数8 4.2.1 管程对流传热系数Ai8 4.2.2 壳程流体传热系数9

4.2.3 计算总传热系数K010 4.3 核算压强降12 4.3.1 管程压强降12 4.3.2 壳程压强降校核13 5 设备参数的计算16 5.1 确定换热器的代号16 5.1.1 换热器的代号16 5.1.2 确定方法16 5.2 计算壳体内径16 5.3 管根数及排列要求16 5.4 计算换热器壳体壁厚17 5.4.1 选适宜的壳体材料17 5.4.2 该钢板的主要工艺参数性能17 5.4.3 壁厚的计算17 5.5 选择换热器的封头19 5.6 选择容器法兰20 5.6.1 选择法兰的型式20 5.6.2 确定法兰相关尺寸20 5.6.3 选用法兰并确定其标记21 5.7 选择管法兰和接管22 5.7.1 热流体进出口接管22

5.7.2 冷流体进出口接管22 5.7.3 选择管法兰23 5.8 选择管箱23 5.9 折流档板的设计24 5.10 支座的选用24 5.11 拉杆的选用和设置25 5.11.1 拉杆的选用25 5.11.2 拉杆的设置26 5.12 确定管板尺寸26 5.13 垫片的选用27 5.13.1 设备法兰用垫片27 5.13.2 管法兰用垫片28 6 数据汇总29 7 总结评述30 8 参考文献32 9 主要符号说明33 10 附表35

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计

化工原理课程设计 ──板式塔的工艺设计 学院 专业班级 姓名 学号 指导老师 成绩 学年第二学期

目录 1.任务书 ····························································· - 3 - 2.任务要求 ····································错误!未定义书签。 3.设计过程 ·························································· - 3 - 3.1塔板工艺尺寸计算········································ - 4 - 3.2塔板流体力学验算········································ - 8 - 3.3塔板负荷性能图··········································- 10 - 3.4数据汇总···················································- 14 - 3.5心得体会与总结··········································- 15 -

1.任务书 拟建一浮阀塔用以分离甲醇——水混合物,决定采用F1型浮阀(重阀),试根据以下条件做出浮阀塔的设计计算。 已知条件: 2.任务要求: 1.进行塔的工艺计算和验算 2.绘制负荷性能图 3.绘制塔板的结构图 4.将结果列成汇总表 5.分析并讨论

3.设计过程 3.1塔板工艺尺寸计算 (1)塔径:欲求塔径,先求出空塔气速u,而 u =安全系数?m ax u ; 最大允许速度m ax u 计算公式为:m ax u =V V L C ρρρ- 式中C 可由史密斯关联图查出,横坐标的数值为: h h V L 5.0??? ? ??V L ρρ=0.09681.018191.8820.00640.5 =???? ??; 取板间距;45.0m H T =取板上液层高度m h L 06.0=; 那么,图中的参数值为:m h H L T 39.006.045.0=-=-; 根据以上的数值,查史密斯关联图可得0.078m/s C 20=; 因为物系的表面张力为m mN /38因此需要按照下式进行校正: 2 .02020??? ??=σC C 所以校正后得到C 为: 0.0887m/s 20380.0780.2 =? ?? ? ???=? ?? ? ??=2 .02020σC C ; 取安全系数为0.6,则空塔气速为: m ax u = 2.524m/s 1.01 1.01 8190.0887=-?=-V V L C ρρρ; 1.51m/s 2.5240.6u 0.6u max =?=?=; 塔径D 为: 1.26m 1.51 3.141.881 4πu 4V D S =??== ; 按照标准塔径圆整为m D 4.1=;则 塔截面积为:

闭式循环水冷却器

你知道拼装式板式换热器在辐射供冷暖中的应用吗? 辐射供冷暖空调系统在欧洲和北美已有多年的使用和发展历史,与传统对流式空调系统不同的是,辐射供冷暖空调系统中,辐射换热量占总热交换量的50%以上,属于低温辐射传热为主的空调系统,其工作原理是夏季向辐射末端内输入18℃左右的冷水,形成冷辐射面;冬季则向辐射末端提供45℃左右的热水,形成热辐射面,依靠辐射面与人体、家具以及围护结构其余表面的辐射热交换进行降温(供暖)。若冷热源提供的冷热水温度过低或过高,不能满足辐射末端温度要求时,通常采用板式换热器或其他方法(如混水等)使冷(热)媒水温度达到系统设计要求。 在辐射供冷中的应用 辐射供冷时,辐射末端内冷水温度不宜过低,否则在辐射表面处易产生凝结水,造成结露现象.通常,采用控制辐射末端冷水进水温度的方法,使辐射板表面温度高于空气露点温度1~2℃,以防止结露.辐射供冷系统使用的冷水温度(16~18℃)通常高于常规空调系统(7℃),较高的冷水温度为蒸发冷却等天然冷源的使用提供了选择[6-8],但也使得常规的冷水机组产生的冷冻水(供回水温度为7/12℃)不能直接满足辐射供冷系统对对冷水温度的要求,通常可采用混水的方法得到辐射供冷所需的高温冷水,但为了防止冷水直接通入显热换热末端(特别是毛细管)后在换热器内表面产生水垢而堵塞,也可采用高效板式换热器将冷水机组产生的冷水进行逆流换热后再送入显热末端.辐射供冷时显热末端常用的进口水温为16~18℃,回水温度一般为21~23℃。 在辐射供暖中的应用 板式换热器在低温辐射供热中的应用分为水-水换热工况和汽-水换热工况2种.当采用蒸汽为热源时,蒸汽须采用低压饱和蒸汽,工程中常用的压力为:表压0.3MPa或者表压0.4MPa,此时的蒸汽温度分别为144℃和152℃.当采用热水为热源时,所采用的热水供回水温度一般为95/70℃.辐射供暖时,供给辐射末端的热水温度也不宜过高,一般不超过60℃,其主要原因是: 1、由于辐射面积较大,水温无需太高即可达到室温设计要求; 2、人体舒适要求地面温度不能过高; 3、较高水温下,辐射供暖常用的塑料管材寿命大大降低.根据建筑保温及居住者的不同要求,地面温度通常控制在24~30℃范围内,温度过高影响舒适性,造成不必要的浪费;温度过低则达不到采暖要求.

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

循环水冷却器

化工原理课程设计 设计题目: 循环水冷却器设计 设计时间:2013.6.23-2013.7.1 设计班级:食安班 设计者: 学号: 2010 指导教师: 设计成绩:

目录 1 设计任务书 (3) 2 设计摘要 (4) 3 主要物性参数表 (5) 3.1循环水 (5) 3.2冷却水 (5) 4 估算传热面积 (5) 4.1 换热器的热负荷 (5) 4.2 平均传热温差 (5) 4.3 冷却水用量 (6) 4.4 传热面积 (6) 5 工程结构尺寸 (6) 5.1 管径和管程流速 (4) 5.3 平均传热温差校正及壳程数 (5) 5.4传热管排列和分程方法 (5) 5.5 壳体内径 (5) 5.6 折流板 (6) 5.7 附件 (8) 5.8 接管 (8) 6 换热器的核算 (9) 6.1传热能力核算 (9) 6.1.1管城传热膜系数 (9) 6.1.2污垢热阻和管壁热阻 (9) 6.1.3壳程对流传热膜系数 (10) 6.1.4总传热系数K (10) 6.1.5传热面积 (11) 6.2换热器内流动的流动阻力 (11) 6.2.1管程流动阻力 (11) 6.2.2壳程阻力 (12) 7换热器主要结构尺寸和计算结果表 (12) 8 设备参数计算 (14) 8.1壳体壁厚 (14) 8.2接管法兰 (14) 8.3设备法兰 (14) 8.4封头管箱 (14) 8.5设备法兰垫片 (14) 8.6管法兰用垫片 (14) 8.7管板 (15) 8.8支垫 (15) 8.9设备参数总表 (15) 9 学习心得 (16)

10参考文献 (17) 11重要符号说明 (18)

化工原理课程设计报告(换热器) (2)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

相关文档
最新文档