螯合树脂塔再生及降耗措施探讨

螯合树脂塔再生及降耗措施探讨
螯合树脂塔再生及降耗措施探讨

树脂砂生产线

树脂砂生产线是由磁选皮带输送机、震动破碎再生机、离心转子二次二级再生机、砂库、斗式提升机(3移动双臂连续式树脂砂混砂机(菲迪斯玛)套)、移动双臂连续式树脂砂混砂机、脉冲反吹式除尘器等设备组成的。 2工艺流程 震动破碎再生机(菲迪斯玛) 树脂砂生产线工艺流程:浇注后的砂箱及铸件由行车吊至惯性振动落砂机上,经落砂处理后,铸件运到清铲车间,砂箱运至砂箱库备用。大块夹皮,冒口由人工分拣,通过落砂栅格的砂子、砂团以及小块冷铁落至磁选皮带机,经磁选后输送至多功能振动破碎再生机进行破碎、脱膜、筛分,经过筛分后的砂子进1#斗式提升机,由提升机提升至离心转子二级再生机进行强力再生,充分脱膜。混合着微粉、灰尘、树脂膜的再生砂经流砂槽流入流幕式风选机,风选机连接着旋风除尘器及脉冲式反吹除尘器,将微粉、灰尘去除。再生砂再经 2#斗式提升机提升至砂库备用。移动双臂式连续树脂砂混砂机上方进料口由气动闸板与砂库下方出砂口相连,按下混砂机电控箱混砂按扭后,气动闸板自动打开,定好量的砂子由砂库流入混砂机。在混砂机中砂子经螺旋片向前输送至混砂开始端,自近端控制阀加入固化剂,经小叶片搅拢预混至后面的近端阀加入树脂,进入混砂端。固化剂、树脂、再生砂充分混匀后送至前端出料口自动流入准备好的砂箱内用于造型、制芯。此设备由进口PLC(编程可控)控制自动化性能卓越,适用于树脂砂工艺的中小铸造企业。 3基本参数 1、S3305破碎机 2、S524Ⅲ贯通式磁选机 3、S524ⅣC离心转子二次二级再生机 4、S524Ⅶ型斗式提升机 5、S255L移动双臂连续式树脂砂混砂机 6、除尘系统DMC.64 脉冲式反吹除尘器。

4意义 树脂砂生产的意义:(1)最大限度地减少因废砂排除造成的环境污染,使90%以上的废砂可以再生回用。(2)由于再生砂颗粒表面光滑,粒度分布均匀,微粉少,可节约昂贵的树脂20%以上。(3)再生砂热稳定性好,热膨胀少,化学性能稳定,酸耗值降低,树脂砂性能容易控制,有利于提高铸件质量,减少脉纹、机械粘砂等缺陷。呋喃自硬树脂砂的特点:1、型(芯)强度高,溃散性好,能够保证铸件的尺寸精度和表面质量。2、流动性好,能提高型(芯)的充填性,提高型(芯)质量和劳动生产率,减轻工人的劳动强度。3、节约能耗,铸型(芯)只需烘烤,就满足浇注要求。4、旧砂可再生回用,可进一步降低成本。5操作规程 二、生产线的构成 1、落砂系统:主要包括落砂机、震动输送机、磁选机、1#斗提机、1#砂斗上料位。 2、破碎系统:主要包括1#砂斗下料位、振动给料机、破碎机、冷却分离机、提升机、砂库上料位。 3、再生系统:主要包括砂库下料位、磁选机、再生机、风选机、斗提机、砂库上料位。 4、砂调系统:主要包括砂温调节器、冷却塔风机、循环水泵、斗提机、温控仪等。 5、气送系统:主要包括砂库闸门、罐闸门、发送阀、增压器、截止阀等 三、生产操作 首先检查水源、电源、气压是否正常。(电源三相380V,气源压力至少在0.6MP) 1、落砂系统 ⑴、开机前准备 ①、认真检查每台振动电机固定螺栓是否松动;引出线绝缘是否损坏;台面及框架有无断裂;弹簧如断裂应及时更换;电机是否需要补充润滑脂;发现问题应及时处理或汇报有关人员。 ②检查振动输送机电机固定螺栓是否松动、引出线绝缘是否损坏,发现问题应及时处理或汇报有关人员。 ③检查磁选机是否有螺栓松动、皮带松动或跑偏现象。

离子交换树脂的再生

离子交换树脂的再生 一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80% 。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如:钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的 2 倍(用NaCl 量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2% 的稀硫酸再生。 氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH 型强碱阴树脂则用4%NaOH 溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。 为加速再生化学反应,通常先将再生液加热至70~80℃。它通过树脂的流速一般为1~ 2 BV/h 。也可采用先快后慢的方法,以充分发挥再生剂的效能。再生时间约为一小时。随后用软水顺流冲洗树脂约一小时( 水量约4BV) ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止。 一些树脂在再生和反洗之后,要调校pH 值。因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性。而一些脱色树脂(特别是弱碱性树脂) 宜在微

大型铸钢件型砂工艺主要设备规格参数

大型铸钢件型砂工艺及环境治理综合改造项目主要设备规格参数参考

目录 1落砂机 (4) 1.1 主要技术参数 (4) 1.2 技术要求 (4) 1.3 设备安装的要求: (5) 1.4 交货清单 (5) 1.5 设备设计、制造、安装要求及验收执行标准 (5) 1.6 质量保证、质量承诺、技术服务及售后服务: (6) 2移动式双臂连续混砂机 (6) 2.1 主要技术参数 (6) 2.2 技术要求 (6) 2.3 备件要求 (8) 2.4 技术文件、资料的提供 (8) 3移动双臂连续混砂机(铬矿砂用) (9) 3.1 主要技术参数 (9) 3.2 技术要求 (9) 3.3 备件要求 (11) 3.4 技术文件、资料的提供 (11) 4固定双臂连续混砂机 (11) 4.1 主要技术参数 (11) 4.2 技术要求 (11) 4.3 备件要求 (13) 4.4 技术文件、资料的提供 (13) 5砂再生系统 (13) 5.1 设备选用情况 (13) 5.2 生产能力及主要技术参数 (14)

6.1 设备选用情况 (14) 6.2 主要技术参数 (14) 7振动破碎再生机 (14) 8搓擦再生机(进口设备) (14) 9风选调温组合单元 (15) 10 气力输送系统 (15) 11 钢结构 (15) 12 电气控制 (16)

1 落砂机 1.1主要技术参数 1.1.1设备型号及名称:L1220D型单质体固定式惯性振动落砂机; 1.1.2落砂机台面尺寸:4000×3000mm(单台) 1.1.3有效载荷:20,000kg(单台) 1.1.4振动电机:采用新兰贝克振动电机 1.1.5功率: 1.1.6转速:~1000r/min 1.1.7栅格孔:Φ65mm,孔距:95mm,栅格板厚:35~40mm,筋板高度50mm 1.1.8落砂机高度:1530mm(含挡砂200mm边框)(单台) 1.1.9数量:2台,并联使用 1.2技术要求 1.2.1振动参数按“远过共振区”单质体落砂机的参数设计。 1.2.2钢结构材料选用Q235C优质钢材,其中台面围板、筋板及栅格采用16Mn。 1.2.3振动电机固定采用高强度螺栓,材质为40Cr,并经调质处理,螺纹精度为2级。 1.2.4弹簧采用60Si2Mn优质弹簧钢,经热处理,抛丸强化处理及表面氧化处理。弹簧出厂附有质量检验报告单。 1.2.5二台落砂机配备一套电控柜并留有与后续振动输送槽、皮带机、磁选机、斗提机设备的连锁接点,保证在输送槽、皮带机、磁选机、斗提机设备任意一台未开启或故障停止时落砂机不得启动或工作中立即停车。设自动、手动转换开关。设有停车能耗制动功能。振动电机具有过载、短路、缺相保护,以确保运行安全。控制面板设有单台起、停,双台起、停按钮,设有急停按钮,设有振动输送槽、皮带机、磁选机、斗提机运行指示灯,还设有落砂机故障报警指示灯。电控系统确保人员和设备安全,动作灵活,维修方便,运行可靠。电器元件采用西门子品牌产品。电控柜具有优良的密封性能。 1.2.6振动电机激振力0~160kN可调。 1.2.7二台落砂机并联后台面四框设有挡砂边框,厚度50mm、高度200mm;二台

螯合树脂

以N为配位原子的螯合树脂的研究进展 caspar 螯合树脂也称高分子螯合剂,是离子交换树脂的一种特殊类型。其高分子骨架上的螯合功能基团能够与金属离子发生配位,螯合物形成时,配位原子有两个或两个以上,形成闭合的环状,并且在一定的条件下,可以将螯合的金属离子脱除。螯合树脂的主要用途为金属离子的浓缩与富集。 螯合树脂相对于其他类型的螯合剂有如下优点:(1)相比于小分子螯合剂,螯合树脂制备简单,价格较低,且由于比表面积较大,使其吸附容量较大,机械性能较好,耐溶剂性较好且易脱附。(2)对有离子交换树脂来说,由于螯合树脂功能基团与金属离子之间既有离子键作用,又有配位键作用,因而螯合树脂与金属的结合强度越高,且配位具有一定的选择性。 螯合树脂的其他特点如下表所示: 表1,关于螯合树脂的其他特点 一般情况下,螯合树脂的分类方式按功能基团或高分子基体的不同进行。分类情况如下所示: ①按照功能基团的的配位原子的不同可以分为:含氮型、含氧型、含硫型、

含砷型、含磷型及多种配位原子共有的混合型。 ②按照功能基的位置不同可以分为:主链型、侧链型及功能基同时存在于主链与侧链的情况。 ③按照高分子基体的来源不同可以分为:人工合成高分子材料如交联聚苯乙烯类、聚丙烯酸类、聚乙烯醇类;天然高分子材料如甲壳质类、淀粉类、纤维素类等。 本文的主要介绍对象为以N为配位原子的螯合树脂。以N为配位原子的螯合树脂是最常见的螯合树脂之一,含氮的功能基团也是最早被应用的功能基团。1935年,英国的Adams和Holmes发现了关于酚醛树脂和苯胺甲醛树脂的离子交换性能,这是发现的第一种离子交换树脂也是最早的功能高分子材料,材料中的氨基即起到了交换阴离子的作用。1959年,陶氏化学公司开始在市场上出售螯合树脂Dowox A-1,标志着实验室中进行检测用的螯合树脂开始市场化。该螯合树脂的功能基团便是含N的功能基团亚胺醋酸。 N原子含有孤对电子且原子体积小,与金属离子具有很强的键合能力。根据软硬酸碱理论,作为配体原子的N原子具有Lewis碱的特性,即电子给体的特性。因而可以提供孤对电子与具有Lewis酸特性的金属提供的空轨道结合。所以可以预测:N原子易于碱土金属与Cu2+、Ag+、Hg2+、Pt2+、Au+、Cd2+、Pd2+、Hg2+及MO等发生配位作用及选择性吸附。 含N的功能基主要包括多胺类(乙二胺、二乙烯三胺、三乙烯四胺等)、酰肼、肟、Schiff碱(席夫碱)、羟肟酸、草酰胺、杂环、偶氮等类型。功能基主要以伯胺或仲胺的形式与金属离子发生螯合。 下面将以基体的区别为依据介绍以N为配位原子的螯合树脂的研究进展情况。 1苯乙烯系 对聚苯乙烯类树脂进行螯合功能化时,最常用的方法为氯甲基化法,其他改性方法如:Mannich胺化法,硝化反应法,酰胺甲基化法等均可对苯乙烯类共聚物进行改性,但由于化学反应效率较低应用不太广泛。 通过氯甲基化法,对交联的大孔氯甲基化聚苯乙烯进行直接胺化,即可得到多胺类螯合树脂。螯合树脂结构如下: 具体改性方法有如下几种方式:

各种类型离子交换树脂常用再生剂及其用量(打印)模板

各种类型离子交换树脂常用再生剂及其用量 离子交换树脂性能降解原因 树脂在长期使用中,性能会逐渐下降,表现为出水(即产品)质量降低。影响树脂性能降解的因素很复杂,如树脂体积减少,交换能力下降,球粒裂纹增多,破碎流失等,造成上述现象的原因不外是:(1)胀缩内应力不均。在使用中树脂内部由于溶胀及收缩变化的不均匀,局部结构中应力不平衡,造成断链裂解。 (2)氧化破坏。体系中的氧化剂,包括酸、碱、溶剂等对树脂骨架及功能基的破坏。 (3)杂质污染。水中杂质堵塞了树脂的内部孔道,阻挡交换吸附。

离子交换树脂如何进行预处理 (1)阳离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗)洗至出水清澈无混浊、无杂质为止。而后用4~5%的HCl和NaOH在交换柱中依次交替浸泡2~4小时,在酸碱之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的HCl溶液进行,用量加倍效果更好。放尽酸液,用清水淋洗至中性即可待用。 (2)阴离子交换树脂的预处理步骤 首先用清水对树脂进行冲洗(最好为反洗),洗至出水清澈无混浊、无杂质为止。而后用4 ~5%的NaOH和HCl在交换柱中依次交替浸泡2 ~4小时,在碱酸之间用大量清水淋洗(最好用混合床高纯度去离子水进行淋洗)至出水接近中性,如此重复2~3次,每次酸碱用量为树脂体积的2倍。最后一次处理应用4~5%的NaOH溶液进行,用量加倍效果更好。放尽碱液,用清水淋洗至中性即可待用。 (3)应用于医药、食品行业的树脂,预处理最好先用乙醇浸泡,而后再用酸碱进行交替处理,大量清水淋洗至中性待用。 (4)预处理中最后一次通过交换柱的是酸还是碱,决定于使用时所要求的离子型式。 (5)为了保证所要求的离子型式的彻底转换,所用的酸、碱应是过量的。

树脂砂再生设备

参考资料:https://www.360docs.net/doc/a71710170.html,/ https://www.360docs.net/doc/a71710170.html,/ 树脂砂再生设备 树脂砂再生设备主要由砂块破碎机、磁选机、再生机、风选装置、树脂砂混砂机等组成。 (1)振动破碎再生机:从振动落砂机落下的旧砂必须首先经过破碎,将大小不等的砂块破碎成砂粒,然后经过磁选和过筛去除砂中的铁质和杂物。我厂生产的多功能振动再生机通过安装在底部的两台交叉对称的振动电机,使砂块相互撞击,砂块在振动和输送过程中破碎,同时靠砂块之间的摩擦去掉砂粒表面得树脂膜、烧枯的碳化物质,使旧砂得到再生。这种再生装置兼有破碎和再生两种功能,但一般脱膜率比离心撞击式低。只经过振动破碎再生机再生的过程有时也称为“软再生”。 (2)离心撞击式再生机:又称离心转子再生机,旧砂从上部导管落下,经高速旋转地抛砂盘,将砂子抛向冲击环圈,在冲击环圈中,砂子三次撞击折射,砂粒间相互摩擦、撞击,使小砂团破碎,砂粒表面的惰性膜破裂,达到脱膜目的。一次循环脱膜率达不到要求时,可将旧砂再返回处理或将二、三台同样机组串联使用。 (3)微粉分离设备又称风选器,也称流幕式微粉分离器,工作原理:砂子从砂斗、挡板处流下,从进风口水平方向鼓风,将颗粒小、密度低的微粉及粉尘经抽风口带走,进入沉降室,正常的砂粒直接落下到立挡板上再进行第二次分选。调节挡板可控制砂子流量,通过调节风量、风速可以控制除尘效果。(4)正确选择混砂设备对树脂砂性能影响较大。对混砂机的要求是定量准确

(如树脂、固化剂的流量误差不得超过3%,砂流量误差不得超过5%)、混碾均匀(混砂均匀性不得超过10%,并尽量做到减少头砂、尾砂不均匀现象)、覆膜效果好,混砂过程中型(芯)砂发热少。此外,还应考虑到设备、制造质量使用的可靠性、维修方便、产品价格等因素。 树脂砂混砂机分为单臂和双臂两种,皆为连续式混砂机。 其特点如下: 粘结剂供给系统采用电动变量隔膜泵(意大利进口)和齿轮泵,重量轻、体积结构紧凑、流量稳定可靠。 砂子混制均匀,有效地保证了造型(制芯)的质量。 混砂时间短,无头、尾砂,停机后排料干净。 全开式混砂搅拢臂,便于叶片清理或调整,操作维修方便。 混砂机进口处可根据生产需要配置新旧砂比例调节器,可准确控制旧砂的出砂量及其配比。 电器采用PLC控制,制约保护充分,模拟显示,工作稳定,实现自动化生产。

混床的再生方法步骤和操作要点

混床的再生方法步骤和操作要点 一、分层: 分层是将已经饱和失效(或未再生)的,还呈混合状的混合阳阴离子交换树脂分开,以便再生。一般采用反洗的方法。分层前,可由下而上,以一定流速,通入床内树脂体积1至2倍的5%的NaOH,再行反洗。反洗流速约为4-10m/h,时间约为20分钟。 二、配酸碱: 按照4倍床内树脂体积的要求,分别配置5%浓度的HCl及5%浓度的NaOH,供再生时使用。 三、同步转型: 同步转型是将已经饱和失效的M+型阳离子交换树脂及R-型阴离子交换树脂同时转型成H+型阳离子交换树脂及OH-型阴离子交换树脂,使其恢复离子交换功能。同步转型时,给混床内上半部的R-型阴离子交换树脂通入3—4倍体积5%浓度的NaOH,给混床内下半部的M+型阳离子交换树脂通入3—4倍体积5%浓度的HCl。同步转型时间约60分钟。要点是:调节中排阀,控制中排出水的流量,必须使液位始终保持在上视镜的中部—在阴离子交换树脂表面上约5cm 处。 四、同步置换冲洗: 同步转型完毕,用反渗透淡水继续分别由上、下同步给混床慢速注水,

进行置换冲洗阴、阳离子交换树脂,以延长化学反应时间,节约化学再生剂的用量。同步置换冲洗时间约20分钟。 五、同步冲洗: 置换冲洗完毕,转入同步冲洗,洗掉多余的再生剂。用反渗透淡水继续分别由上、下同步给混床注水,进行冲洗阴、阳离子交换树脂。至中排管出水电导率小于混床进水,同时中排管出水PH接近中性。同步冲洗时间约20分钟。 六、气冲混合: 同步冲洗完毕,转入气冲混合。气冲混合时,由混床下部通入氮气或无油压缩空气,搅拌混床内的阴、阳离子交换树脂,使其混合。气冲混合时间约15分钟。 七、注水: 气冲混合完毕,快速上进水;同时打开排气阀排气,至排气阀出水。排水1分钟关排气阀。 八、淋洗: 注水完毕,转入淋洗。淋洗状态与工作状态相似,只是淋洗时,混床的出水电阻率小于额定值时,需排放掉。淋洗时间约30分钟。 九、工作: 淋洗完毕,混床转入工作或备用。

离子交换树脂的电再生技术(EDI)

离子交换树脂的电再生技术(EDI) 离子交换水处理的主要方式有混床和复床两种,混床和复床树脂的电再生各有不同的特点。下面将在简述混床树脂电再生的基础上,着重讨论复床树脂电再生特点、原理和试验研究结果及电再生器的结构。 1 混床树脂电再生 在EDI过程中,水电离所产生的H+ 和OH-离子,不断地自再生填充在淡水室内的树脂,这一自再生作用是EDI净水设备得以连续出水且出水水质很高的关键因素。因此,如果制造出结构上类似于EDI净水设备而其淡水室不填混床树脂的电再生器,那么设法将失效的混床树脂送入其中,并通电和通纯水,使该电再生器运行一段时间,这些失效的混床树脂就必然得到彻底再生。 在这一电再生器的再生室内,水电离所产生的H+ 和OH-离子不断地电再生失效的混床树脂,从其树脂上置换下来的盐类离子,又受电场作用不断地被迁移至浓水室排出。失效混床阴、阳树脂,从盐基型转为H、OH型树脂,完成了再生过程。由于失效树脂不流动,称这种方式为静态体外电再生。相应地,只要源源不断地将失效混床树脂送入树脂体外电再生器,就有再生好的混床树脂从其中徐徐流出,从而实现了混床树脂的动态体外电再生,其工作原理示意地如图1所示。

图1 混床树脂动态体外电再生原理示意图 1—阴膜;2—阳膜;3—混床树脂电再生室;4—下部失效混床树脂;5—中部已部分再生的混床树脂;6—上部已再生混床树脂。 混床树脂体外电再生是在直流电场作用下,利用水作为再生剂,用它代替酸碱再生失效混床树脂,再生时不必采用分离、再生、混合、清洗等复杂的再生步骤,只需用水力输送法将失效混床树脂送入体外电再生器进行再生,不用酸、碱化学药剂,对环境无污染,只消耗少量电能,使用方便,费用低廉,使传统的离子交换水处理工艺发生根本性的变化。 除了普通混床外,还有凝结水精处理用高速混床,这种混床通常在120 m/h的高流速下工作,树脂失效后要靠水力输送至专门的树脂再生装置进行酸碱化学再生,再生后再回输至原高速混床使用。这时将酸碱化学再生改用体外再生就很方便,因为输送系统是现成的,只需将体外电再生器串联在树脂输送系统中就可,由于电再生时阴、阳树脂不必分离,所以也没有酸碱化学再生时常见的发生交叉污染的忧虑。 为获得电子、医药或其他行业用电导率0.055μS/cm(电阻率18.2

树脂砂设备状况分析处理

树脂砂再生产设备现阶段状况分析报告 就近期质量及生产等部门提出的砂型质量不好垮箱的问题,我部门协同铸造部设备操作人员、维修人员等对设备的进行了专项的检查分析,并向设备厂家进行了沟通。导致垮箱的原因是多方面的,如配比、(固化剂、树脂、砂)的质量特性、天气温湿度、砂型结构、造型工艺、放砂速度、砂温等,现将设备方面存在的主要问题及整改方案进行介绍: 1、再生机脱膜效果不好,砂粘结性差 原因一:一级再生机缺砂控制器,砂进入转子盘时速度及流量不稳定,导致砂再生过程间断不连续,砂脱膜不均匀,质量参差不齐,再生砂进入混砂机后未脱膜的砂粘结性差,砂型夹杂散砂,导致垮箱。解决方法:制作安装砂控制器,目前已经安装完成,初见成效,需继续跟踪验证。 原因二、再生机轴承座漏油,轴承容易损坏,再生机运行不平稳,效率低 解决方法:更换轴承座密封及组件,润滑管路及阀件,确保其可靠润滑,平稳运行,目前已经更换新件。 2、再生砂中粉尘含量较多,砂粒质量不均匀,粘结性差,砂型强度小 原因:除尘效果差,有如下几点: (1)再生机除尘器顶部一反吹风步进电机故障,导致布袋积灰不能循环吹落,除尘效果差,目前已经更换了电机恢复了步进系统。 (2)大磁选机处灰尘较多,但缺一除尘罩,需加装,排风管管径不得小于200。 (3)除尘主管道底部有顽固积灰,不能排除,需在管道底部开10mm左右的孔(不用明火),在开除尘器时插入风管进行吹扫即可排出,计划这周由铸造维修组实施吹灰。 (4)室外除尘仓室多处锈蚀漏气,顶部尤为严重,仓内负压不足,除尘效果差,雨天有水侵入,灰尘沾粘,更不易排出,且大幅缩短布袋等使用寿命;室内除尘管路存在多个漏点,计划进行修补并对室外除尘管道及仓室做防锈涂装。 3、混砂机固化剂、树脂及砂的定量输送问题 目前混砂机运行正常,为彻底解决问题,我们将根据型砂实验室提供的数据,对混砂机的各种泵、阀件、气缸闸门等的控制进行校准和调整,或是更换新件,确保砂的配比准确。 生产部 2013/7/19

树脂砂再生砂应具备如下几项主要性能

树脂砂再生砂应具备如下几项主要性能: 1)粒度 旧砂反复再生回用后,在粒度变化上存在变粗和变细的两种可能。变粗是因为除尘去掉一部分细粒及微粉,砂粒表面残存有机物固化层等;变细是因为砂粒的破碎等。总的来说当原砂耐破碎强度较好,二种因素基本可以抵销,使粒度分布变化不大。 2)灼烧减量 所谓灼烧减量(LOI)是砂中有机物残留量的一种度量,灼减量和发气量之间几乎呈直线关系,可通过灼减量来推算发气量。旧砂回用中,每次混砂后有粘结剂积累,但浇注和再生以及加入新砂都可“冲淡”有机物残留量的比例,通过10~15次的反复回用,可使旧砂中的灼烧减量稳定在一定的水平上,即这时每次加入的粘经剂量与浇注、再生、新砂所减少的粘结剂量相平衡。如灼烧减量增大,则铸件易产生气孔缺陷。 3)微粉含量 这也是监测再生砂的主要指标,微粉除了破碎的砂粒以外最主要的有再生时剥下的树脂膜及涂料成分、燃烧过的有机物灰尘,将大大增加灼减量、降低强度、影响透气性。 4)其他 再生砂与新砂相比,耗酸量大大降低,甚至呈负值。由于石英经过浇注时,发生α、β相变,以及表面的残留树脂的缓冲作用,其热膨胀系数有所降低,有助于减轻铸件机械粘砂及脉纹。使用同样的树脂,再生砂也比新砂的强度高,再生砂的水份含量也很低。相反含氮量将会增加。 树脂砂造型工艺以其生产的铸件表面轮廓清晰、光洁,几何精度、尺寸精度高;生产工艺简单易于控制,而越来越为铸造企业接受和应用。这几年随着机械产品质量要求的不断提高,包括材质、尺寸精度,尤其是表面质量要求的提高,树脂砂这一较先进工艺得到了大力的推广。另外随着对原砂的处理及树脂、催化剂、混砂设备、工艺等方面的改进,树脂砂成本得到降低,也大大促进了树脂砂技术的推广。 树脂砂造型的特点: 1、成品率高 铸铁件成品率一般情况下≥92%,较高情况可达96~98%。 2、表面光洁 比普通湿型粘土砂造型高2~3个等级,表面粗糙度可达Ra12.5。 3、尺寸精度高 由于型砂强度较高,铸件尺寸精度比一般潮模砂高2个级别,可达IT8~10级。后续加工余量可减少,刀具磨损小。 4、工艺简洁,易于控制 树脂砂造型工艺属自硬型,工艺要点由设备保证,只要掌握好工艺参数,就完全可以保证铸件质量,所以对操作工的技术素质要求较低,且节省劳动力,减轻劳动强度,车间单位面积的铸件产量比粘土砂烘模工艺翻一番,清砂效率也有大幅提高。同时扬尘点与散落砂少,所以工作环境较整洁。 5、高的工作效率 采用树脂砂造型提高了工作效率,单位面积的工作量提高,节约了车间面积。

说说二次盐水精制所用的树脂塔

说说二次盐水精制所用的树脂塔,再生酸碱洗的时候为什么酸要顺流,碱要逆流? 酸洗的时候,树脂已经转化到氢型,体积比较小,而在碱洗过程中转化为钠型,体积要增大,如果碱从上向下,与树脂膨胀的方向相反,会不利于树脂全面转化。如果碱从下向上流动,不仅可以将树脂均匀鼓起,能够充分转化,还会与树脂膨胀方向一致,减少树脂破碎。 碱从下往上很好理解,在经过酸洗后,树脂体积比正常体积小,进行碱洗时,树脂溶胀,碱液从下部开始往上充入,下部树脂充分溶胀,蓬松上部树脂,当溢流后,破碎树脂随碱液一起流出树脂塔,碱液比重大,从下部进入流量稳定,不易将树脂冲出。 至于酸从上往下,我理解是酸洗主要是将树脂里面的钙镁离子置换出来,盐酸比重比氯化钙,氯化镁比重小,盐酸进入后,下部废液也是顺流进入废水池,因此,更容易将里面的杂质去除。 第一步是吸附,螯合树脂也是一种离子交换树脂,与普通的交换树脂不同的是,它吸附金属离子后形成环状结构。以亚胺基乙酸为例,吸附金属离子发生以下反应:CH2-COONa CH2-COO R-N +M2+ R-N M+2Na+ CH2-COONa CH2-COO 第二步是脱吸,在一定的外界条件下(如PH值和浓度温度)改变金属螯合物的平衡条件而使金属离子离解开,本装置采用浓度为5%左右的高纯盐酸对树脂进行漂洗。以亚胺基乙酸为例,脱洗金属离子发生以下反应: CH2-COO CH2-COOH R-N M +2H+ R-N +M+ CH2-COO CH2-COOH 第三步是再生,在已经洗脱金属离子的“H”型树脂中加入4%的NaOH溶液,调节PH值为14,由于溶液中的H+大量减少,使平衡向右移动,树脂由H型变为钠型。以亚胺基乙酸为例,发生如下反应: CH2-COOH CH2-COONa R-N +2NaOH R-N +2H2O CH2-COOH CH2-COONa 树脂又回到吸附前的状态。 盐水二次精制包括盐水中的阳离子被螯合树脂选择吸附进行交换和失去交换能力的螯合树脂进行再生处理两个部分。 (1)、螯合树脂离子交换反应原理: 螯合树脂是带有活性离子交换基因,并具有螯合结构的有机高分子聚合物,并带有固定的负电荷,这些固定的负电荷和带有正电荷的离子有相对亲和力。由于螯合树脂对盐水中的多价阳离子的吸附能力大于对一价离子的吸附能力,故含有Ca2+、Mg2+的盐水流经螯合树脂塔时,其中的Ca2+、Mg2+离子将取代树脂中的Na+,从而发生下列离子交换反应。(以CR -11螯合树脂吸附Ca2+、Mg2+ 为例):

离子交换树脂的再生

第13卷第5期环境监测管理与技术2001年10月 4一氨基安替比林溶液提纯两法 顾爱东 (启东市环境监理站,江苏启东226200) 中图分类号:0652.4文献标识码:C文章编号:1006—2009(2001)05—0038一lA 《水和废水监测分析方法(第3版)》介绍了4一氨基安替比林固体试剂的提纯方法,操作时间较长。今采用对4一氨基安替比林溶液进行提纯,同样达到提纯效果,且操作简便易行。 方法一:称取2.3g4一氨基安替比林,加无酚水100mL,使其完全溶解,倒入250mL分液漏斗中,加入氯仿1.5mL,剧烈振荡3min,静置分层,弃其下层萃取溶剂。重复萃取1次即可。 方法二:称取2.5g4一氨基安替比林,用无酚水100mL使其溶解,加lg活性炭,搅拌混匀,静置数分钟,将上清液过滤即得。 用提纯后4一氨基安替比林溶液按萃取光度法测定挥发酚的步骤作空白试验,空白值的吸光值均能控制在0.060以下,校准曲线的斜率、截距、相 关系数和测定标准样品的准确度与精密度均符合要求,试剂在冰箱内保存,至少可稳定10d,结果见表1。 表1两种提纯方法不同时间 空白吸光值测定结果(咒=3) 收稿日期:2000—09—09;修订日期:2001一05—15 作者简介:顾爱东(1971~),男,江苏启东人,工程师,学士,从事环境监测监理工作。 ..●●_....●●●t...●●●...._●●....●●‘t..--●●....●●●?. 离子交换树脂的再生 朱家骥 (赣榆县环境监测站,江苏赣榆222100) 中图分类号:o652.3文献标识码:C文章编号:1006—2009(2001)05—0038一lB 离子交换树脂的再生,一般是各个树脂柱分别进行,各个柱子逐一再生,操作起来较麻烦费事。今结合新树脂的处理原理,采取如下方法再生,用蒸馏水作为原水制得的去离子水,其电导率可稳定在0.6肛s/cm以下。 (1)强酸性阳离子交换树脂。先用1.6nlol/L~3.2mol几盐酸浸泡半天,将树脂移到布上,放在水盆里,不断搅拌,反复用蒸馏水浸洗直至中性(pH6.5~7.5),将树脂连水一起装入柱中。 一38一 (2)强碱性阴离子交换树脂。树脂用40g几~60g几氢氧化钠溶液浸泡半天,以下步骤同(1)。 (3)将交换柱按顺序连接起来,平放,小心摇匀,赶尽气泡,用蒸馏水作为原水,经交换的出水的电导率在1弘s/cm以下即可。 收稿目期:2000—12—30;修订日期:2001—06—30 作者简介:朱家骥(1972一),男,江苏赣榆人,助理工程师,学士,从事环境监测工作。 本栏目责任编辑李延嗣  万方数据

螯合树脂

HYC-500胺基膦酸树脂 1.树脂物化指标 出厂型式 Na型 官能团 -NHCH 2PO 3 Na 2 体积交换容量≥1.8mmol/ml 含水量 50-60% 湿真密度 1.10-1.20g/ml 湿视密度 0.70-0.80g/ml 渗磨圆球率≥90% 转型膨胀率(H Na)≤40% 2.选择性顺序: Pb2+ >Cu2+>Fe2+>Zn2+>Ca2+ >Cd2+>Ni2+>Co2+ >Sr2+ >Ba2+ 3 4.交换过程(柱法) 根据需要调整流速为5-30倍体积,将料液通过交换柱,重金属离子与Na型树脂上携带的Na+交换,通液至重金属离子泄漏超过指定值,交换过程完成。 5.再生: 交换过程结束后,通5-10%的盐酸或硫酸2-3BV,流速为2BV/小时,通完后浸泡30-60min,水洗至出水PH为5.5左右运行结束。 6.转型 逆流通4%NaOH 2-4BV。使树脂为Na型,水洗至8-9左右,即可进行下一周期运行。 注:BV为倍树脂体积 HYC-300巯基树脂

一、树脂物化指标: 1.官能团:-SH 2.出厂型式:H型 3.湿视密度:0.65-0.75g/ml 4.湿真密度: 1.02-1.18 g/ml 5.体积交换容量:≥2.0mmol/ml 二、选择性顺序: Hg2+>Ag+>Cu2+>Pb+>Cd2+>Ni2+>Co2+>Fe3+>Ca2+>Na+ 三、使用参考数据: 1.通液流速:5~20BV/hr 2.工作交换容量:0.3~1.5mmol/ml 3.再生剂:HNO3 、HCL 、H2SO4 4.再生剂浓度:1~5 mol/l 5.再生速度:1~3BV/hr 四、应用举例: 1.处理工业废水中汞:汞存在形式:Hg 0、Hg+、Hg2+及甲基汞。含量5~50PPM,以5BV/hr通过树脂柱,出水含量在5ppb以下。通液量:120BV,树脂用于 3mol/lHCL或HNO3再生。 2.从照相定影中回收银:将照相定影液(组成:Ag=10g/l,(NH4)2S2O3=150g/l)以通液速度6m/h的流速处理时,处理液中银浓度为25ppm以下。 HYC-100胺基羧酸螯合树脂

树脂砂安全操作规程

编号:SM-ZD-35935 树脂砂安全操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

树脂砂安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、首先检查水源、电源、气压是否正常。(电源三相380V,气源压力至少在0.6MP) 二、落砂系统 1、开机前准备 ①、认真检查每台振动电机固定螺栓是否松动;引出线绝缘是否损坏;台面及框架有无断裂;弹簧如断裂应及时更换;电机是否需要补充润滑脂;发现问题应及时处理或汇报有关人员。 ②检查振动输送机电机固定螺栓是否松动、引出线绝缘是否损坏,发现问题应及时处理或汇报有关人员。 ③检查磁选机是否有螺栓松动、皮带松动或跑偏现象。 ④检查1#斗提机进料口是否通畅,打开检查门,检查内部是否卡阻或堵料;检查料斗是否跑偏和碰撞机壳,检查环链螺栓是否松动,传动皮带是否松弛。

2、操作 ①、手动操作:将〈落砂系统手动/自动〉旋钮开关调至“手动”位置,按〈开车报警〉→启动落砂除尘风机→1#斗提机→磁选机→振动输送机→振动给料机→落砂机。停机时待落砂完后先停落砂机→振动给料机→振动输送机→磁选机→1#斗提机→落砂除尘风机。*(其间隔时间由操作者自己控制,一般要求大电机启动后视电网压降情况来定)注:正常情况下严禁使用手动。 ②自动操作:将〈旧砂系统手动/自动〉旋钮开关调至“自动”位置,按〈开车报警〉→启动落砂除尘风机→启动〈自动启动〉即可。停车时按下〈自动停止〉即可。 3、注意事项 ①落砂机严禁频繁起动和制动,间隔周期应大于5min,否则制动变压器易烧。 ②严禁振动电机周围堆积热砂,落砂后的热砂应及时清理,否则电机无法散热易损坏。 ③落砂后的热砂应及时运走,严禁在砂斗内储存热砂。 ④落砂速度与输送速度要相匹配。当落砂量大于输送量

树脂再生原理

树脂进行离子交换反应的性能和再生问题 一、交换能力氢型阳离子交换树脂在水中可解离出氢离子(H+),当遇到金属离子或其它阳离子,就发生互相交换作用,但交换后的树脂,就不再是氢型树脂了。例如,当水中的阳离子如钙离子、镁离子的浓度相当大时,磺酸型的阳离子交换树脂中的氢离子,可和钙、镁离子进行交换,而形成「钙型」或「镁型」的阳离子交换树脂,如下式: 2R-SO3H + Ca2+ → (R-SO3)2Ca + 2H+ (钙型强酸性阳离子交换树脂) 2R- SO3H + Mg2+ → (R-SO3)2Mg + 2H+(镁型强酸性阳离子交换树脂)氢型阳离子交换树脂的交换能力与被交换的阳离子的价数有密切关系。在常温下,低浓度水溶液中,交换能力随离子价数增加而增加,即价数越高的阳离子被交换的倾向越大。此外,若价数相同,离子半径越大的阳离子被交换的倾向也越大。如果以自来水中经常出现阳离子列为参考对象,则氢型阳离子交换树脂的交换能力顺序可表示如下:强酸性:Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+>H+ 弱酸性:H+>Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+>K+>NH4+>Na+ 由上述交换能力顺序可知:强酸性与弱酸性阳离子交换树脂的母体,对阳离子交换能力顺序完全相同,唯一的差异是:两者对H+的交换能力不同,强酸性对氢离子的亲和力最弱,弱酸性对氢离子的亲和力最强,这个特性可能会深深影响它们在水草缸的作用与功能。虽然氢型弱酸性阳离子交换树脂对氢离子的亲合力最强,但氢离子(H+)与氢氧离子(OH-)结合成水(H2O)的亲合力更强,所以在碱性水质中,弱酸性阳离子交换树脂中的H+会快速被OH-所消耗,OH-主要来自KH硬度(HCO3-)的水解反应: HCO3- + H2O ←→ H2CO3 + OH- H+所遗留之「活性位置」再改由其它阳离子如Fe3+>Fe 2+>Mn2+>Ca2+>Mg2+……等依序取代,一直持续到HCO3-完全被消除为止(KH=0)。因此弱酸性阳离子交换树脂的主要作用区间是在于pH=5 ~ 14的水质。由于HCO3-为暂时硬度的阴离子,因此当HCO3-完全被消除后,它的「当量阳离子」,如如钙、镁等离子也同时完全被取代,故能消除所有暂时硬度的「当量阳离子」。氢型强酸性阳离子交换树脂对氢离子(H+)的亲合力最弱,使它在任何pH之下,它都具有交换能力,因此可以完全除去GH硬 度(暂时硬度及永久硬度)。 二、交换容量离子交换树脂进行离子的交换反应的性能,主要由「交换容量」表现出来。所谓交换容量是指每克干树脂所能交换离子的毫克当量数,以m mol/g为单位。当离子为一价时(如K+),其毫克当量数即为其毫克分子数,对于二价(如Ca2+)或更多价离子(如 Fe3+),其毫克当量数即为其毫克分子数乘以其离子价数。交换容量又分为「总交换容量」、「操作交换容量」和「再生容量」等三种表示方法。「总交换容量」表示每克干树脂所能进行离子交换反应的化学基总量,属于理论性计量。「操作交换容量」表示每克干树脂在某一定条件下的离子交换能力,属于操作性计量,它与树脂种类、总交换容量,以及具体操作条件(如接触时间、温度)等因素有关,可用于显示操作效率。「再生容量」表示每克干树脂在一定的再生剂量条件下,所取得的再生树脂之交换容量,可用于显示树脂再生效率。由于树脂的结构不同(主要是活性基数目不同),强酸性与弱酸性阳离子交换树

Ni树脂再生之详细步骤word版本

镍柱琼脂糖树脂(Ni-NTA resin)再生方法 摘要: 镍柱纯化是为了纯化带有6个组氨酸(碱性氨基酸)标签的重组蛋白而设计,具有高度的亲和力和选择性。当Ni-NTA琼脂糖的颜色由浅蓝色变成灰褐色或白色时,需彻底再生后才能使用。再生方法总体可分为除去柱上残余蛋白、除镍、挂镍等三个步骤。先用变性剂和乙醇除去残余蛋白和脂类,再用EDTA与金属镍离子螯合去除镍,然后用NiSO4进行挂镍。 蛋白中的组氨酸残基可以和许多金属离子,例如锌、铜、镍、铁等形成复合物。因此,带有金属离子的柱料能选择性螯合具有组氨酸残基的蛋白质。半胱氨酸和络氨酸残基也能和固定化金属螯和,但是亲和力比组氨酸要弱。金属螯和柱料主要是由亚氨基的乙酰乙酸成分耦联琼脂糖柱料。 镍柱纯化是为了纯化带有6个组氨酸标签的重组蛋白而设计的,Ni柱中的硫酸镍(NiSO4)可以与碱性蛋白结合。镍柱纯化系统设计了镍柱琼脂糖对串联排列的6-His(碱性氨基酸)残基有高度的亲和力和选择性。用咪唑洗脱目的蛋白时,咪唑会竞争性结合Ni,目的蛋白被洗脱下来。 如果纯化同一种蛋白,Ni-NTA resin不需要再生,可以重复使用3-5次。通常在使用3-5次后,结合效率有所下降,需用0.5M NaOH洗涤,也可用6M盐酸胍加500mM咪唑洗5-6个柱体积,然后用结合缓冲液平衡后即可再使用。但是,当Ni-NTA琼脂糖的颜色由浅蓝色变成灰褐色或白色时,则镍离子已经从柱子中丢失,Ni-NTA树脂需彻底再生后才能使用。再生方法总体可分为除去柱上残余蛋白、除镍、挂镍等几个步骤,具体方法如下: 一、所需试剂: 再生缓冲液:6M盐酸胍+ 0.2M乙酸 2% SDS(m/V) 25%、30%、50%、75%、100%的乙醇(V/V) 100mM EDTA(pH8.0)溶液 100mM NiSO4溶液 二、镍柱(Ni-NTA)树脂再生步骤: (1)从层析柱下端流干所有溶液,用2倍NTA树脂体积的再生缓冲液洗。 (2)用2倍体积的去离子水洗。 (3)用3倍体积的2% SDS洗。 (4)用1倍体积的25%乙醇洗。 (5)用1倍体积的50%乙醇洗。 (6)用1倍体积的75%乙醇洗。 (7)用5倍体积的100%乙醇洗。 (8)用1倍体积的75%乙醇洗。 (9)用1倍体积的50%乙醇洗。 (10)用1倍体积的25%乙醇洗。 (11)用1倍体积的去离子水洗。

离子交换树脂的电再生法

离子交换树脂的电再生法 清华大学热能工程系王方 1概述 目前,离子交换水处理已成为发电、电子、制药、化工等行业制备高纯水除盐水处理系统中的主导关键工艺。在离子交换水处理工艺中,通常采用阴、阳离子交换树脂,其交换反应为 (1) (2) (3) 式中,R——阳离子交换树脂母体骨架; R’——阴离子交换树脂母体骨架。 离子交换树脂失效后,需要用酸和碱来再生,即发生式(1)、(2)的逆反应,为使逆反应尽可能的完全,还需要采用过量的酸和碱。因而再生时形成大量废酸碱,严重污染环境。 随着人们环境意识的提高,迫切需要一种对环境无污染的再生方法,譬如说,能不能利用式(3)的逆反应产生H+ 离子和OH-离子来再生,即利用水作为再生剂。如此,树脂再生时就不再污染环境了. 利用水作为再生剂再生离子交换树脂是一个富有吸引力的令人感兴趣的课题[1,2]。人们对此已作了不少研究,有的用高温水进行树脂的热再生,有的用靠电极反应由水产生H+ 离子与OH-离子来再生,还有人将阳极插入阳树脂和阴极插入阴树脂来再生,并作了中试试验。也有借助于离子交换膜对H+ 离子与OH-离子的选择透过性,而不让树脂与电极接触。这种方法再生耗电量大,电极腐蚀严重,树脂再生不均匀,未得到推广使用。 作者在研究电去离子净水技术时发明了一种将水电离来再生失效离子交换树脂的新方法[3,4],这种再生方法利用水作为再生剂,只消耗电能,称为离子交换树脂的电再生法。 2 水的电离 纯水是一种弱电解质,能微弱的电离,即发生式(3)的逆反应 (3’)

水在22℃时的电离常数 (4) 水的电离度很小,将其浓度[H2O]看作固定常数 [H2O]== 55.56 由式(4)得 [H+][OH-]=K[H2O]=1.8×10-16×55.56=10-14(5) 因此,在室温条件下水的离子积常数K w=[H+][OH-]=10-14水的电离是一种吸热反应(吸热57.3 kJ/mol),温度升高会使离子积常数迅速增长,当水温増到100℃时,其离子积常数增长为室温(22℃)时的74倍。 由上述讨论可知,水的电离很弱,加强其电离,需要很小一点能量。稍提高温度,就能大大加强。所以,失效离子交换树脂放在中性的水中,可以得到部分再生,但再生程度很低,只有特殊的热再生树脂才能再生至实用的程度。失效树脂放在中性热水中不能得到良好再生的结症是水中H+ 离子与OH-离子的浓度相等,且电离过程是一个可逆动平衡,H+ 离子与OH-离子,不断产生,不断复合,两者同时同地存在,无法分离。总体上水仍然呈中性。 有没有什么办法,能实现水电离产生的H+离子与OH-离子的分离呢?下面从电渗析器的极化[5]着手讨论这一问题。 电渗析器运行中,由于阳膜只选择通过水中阳离子,使其在膜中迁移速度比水中快得多,结果在淡水室阳膜表面滞流层中出现“离子亏空”,即滞流层中阳离子浓度c′低于主体水溶液中的阳离子浓度c(见图1)。同样,对阴膜也有此现象。这种“离子亏空”要靠主体水溶液中的离子向滞流层扩散来补充。处于稳定状态时,离子的迁移和扩散达到平衡。若逐渐增大通过膜的电流密度,则离子迁移量逐渐增大,必然会造成膜表面离子浓度c′逐渐减小。当电流密度达到某一数值,就会有c′→0。如果再稍微提高电流密度值,则由于离子扩散供应不及,在膜界面处引起水的电离,就靠电离生成的H+ 离子与OH-离子分别透过阳膜和阴膜来传递电流。这种膜界面现象称为极化现象,淡水室中膜表面滞流层中的离子浓度接近于零时的电流密度称为极限电流密度。一般电渗析器都避免发生极化现象,发生极化会增加电能消耗,引起膜表面结垢。因而根据处理水质,控制电渗析器在操作电流密度为70~90 %极限电流密度下运行。 因此,如果电渗析器在接近其极限电流密度下运行,而且在淡水室中的水是初级除盐水,即水中可充当传递电流的离子不多,那么,在电渗析器投运后不久,淡水室中剩余能传递电流的离子极少。此时,为能继续导电,就必须有水电离出H+ 离子与OH-离子,由它们充当传递电流的离子,完成导电任务。应该注意到,此时水电离产生的H+ 离子与OH-离子,受直流电场的作用,彼此迁移的方向相反,从而实现了H+ 离子与OH-离子的分离。可见,电渗析器的极化是实现水电离并使其电离产物H+ 离子与OH-离子分离的先决条件。 离子交换树脂是一种反应性高分子电解质,具有立体网状交联结构,一部分是支撑整

相关文档
最新文档