双焦距立体视觉中的光学成像模型

双焦距立体视觉中的光学成像模型
双焦距立体视觉中的光学成像模型

《透镜成像公式》教案3

透镜成像公式 透镜是光学仪器中最基本的元件,焦距是反映透镜特征的一个重要参量。由于用途不同, 需要选择不同焦距的透镜,因而测定透镜焦距、了解透镜成像的规律是最基本的光学实验。 一 实验目的 1. 了解薄透镜的成像规律; 2. 掌握光学系统的共轴调节及测量薄透镜焦距的基本方法。 二 仪器和用具 光具座, 薄透镜, 光源, 狭缝, 观察屏, 平面反射镜等。 三 实验原理 由于物体距薄透镜的距离不同,通过它所成的像的性质就有所不同。在近轴光线的条件下,薄透镜成像的高斯公式为 f v u 1 11=+ (5-1) 式中u 为物距,恒为正值;v 为像距,当物和像在透镜异侧时v 为正值,在透镜同测时v 为负值;f 为焦距,对凸透镜f 取正值,对凹透镜f 取负值。 1. 薄凸透镜焦距的测定 (1) 自准法(平面镜法): 根据焦距定义,用平行主光轴的平行光照射透镜可直接测量焦距。如图5-1所示,若物AB 正好位于透镜L 的前焦面上,则物上任一点发出的光束经L 后成为平行光,由平面镜M 反射后仍为平行光,再经L 必仍会聚于前焦平面上,得到与原物等大的倒立实像B A ''。此时,物距就等于透镜的焦距。 (2) 物距像距法: 只要f u >,就可得到一个倒立实像,在光具座上分别测出物体、透镜L 及像的位置,就可得到v u ,,由式(5-1)求得f 。 (3) 共轭法(贝塞尔法,位移法): 前两种方法都需要估计透镜光心的位置,而此方法避免了估计光心位置而引起的误差。如图5-2所示,固定物与像屏的间距s ,并设f s 4>,而物与像屏可以互换,移动透镜可以成两次像,一大一小,这就是物像共轭。由图5-2可看出 21l s u -= ,2 11l s u s v +=-=,代入式(5-1)可得 s l s f 42 2-= (5-2)

立体视觉知识补充

现在我们有一架平衡双目摄像机,和一个棋盘和一个待重构的物体或者要拍摄的画面,我们的目的就是利用两个摄像机捕捉同一个画面或者物体图像,然后根据在两幅图像上遍历同一个世界三维点映射到两个图像平面的响应匹配点,然后利用匹配点视差和摄像机相关参数,以及图像二维点的信息就可以得到世界物体的三维坐标。 1、立体标定 cvStereoCalibrate(),利用两个摄像机同时捕获的不同视场来实现标定,同时获得本征矩阵E,基础矩阵F,两摄像机坐标系的旋转矩阵R和平移矩阵T或者摄像机内参数M和畸变系数distCoeffs。 立体标定和单摄像机标定是有区别的。立体标定除了可以计算出摄像机的内参数和畸变系数,还可以计算出本征矩阵E,基础矩阵F,两个摄像机的旋转矩阵R和平移向量T. 立体标定函数参数中需要两个着相机的内参数和畸变系数,它们即可以作为输入,也可以作为输出,这里我们让它们作为输出,由立体标定函数计算它们。 因此,我们就可以手持棋盘,然后用两个摄像机同时捕捉棋盘的不同视场,对于每一个视场,我们两个摄像机都有拍摄的同一棋盘的图像对,对于两个摄像机旋转矩阵R和平移向量T,我们通过一个视场就可以求解出来,然而为了计算结果的稳定,则需要多个视场来优化结果。对于两个摄像机的内参数矩阵和畸变系数,我们至少需要10个视场。因此,我们可以通过手持棋盘,旋转和平移棋盘以获得10个视场,从而获得10幅图像对,来进行立体标定。 在这一步,我们利用极线约束来检查标定的结果。(有了本征矩阵我们就可以得到基础矩阵,有了基础矩阵,我们就可以计算极线) 2、立体校正 cvStereoRetify(),利用相机内参数以及上一步得到R,T,得到两个摄像机极线水平对准的旋转矩阵Rl和Rr,投影矩阵P,重投影矩阵Q,为实现两幅图像水平对准准备数据。

主动式光学三维成像技术

万方数据

万方数据

万方数据

万方数据

主动式光学三维成像技术 作者:周海波, 任秋实, 李万荣 作者单位:上海交通大学激光与光子生物医学研究所,上海,200030 刊名: 激光与光电子学进展 英文刊名:LASER & OPTOELECTRONICS PROGRESS 年,卷(期):2004,41(10) 被引用次数:6次 参考文献(23条) 1.Noguchi M;Nayar S K Microscopic shape from focus using active illumination[外文会议] 1994(01) 2.Cohen F S;Patel M A A new approach for extracting shape from texture,Intelligent Control,1990 1990 3.Nayar S K;Watanabe M;Noguchi M Real-time focus range sensor[外文期刊] 1996(12) 4.Ghita O;Whelan P F A bin picking system based on depth from defocus[外文期刊] 2003(04) 5.POSDAMER J L;Altschuler M D Surface measurement by space-encoded projected beam systems[外文期刊] 1982(01) 6.WOODHAM R J Photometric method for determining surface orientation from multiple images 1980(01) 7.Miyasaka T;Kuroda K;Hirose M High speed 3-D measurement system using incoherent light source for human performance analysis 2000 8.Carrihill B;Hummel R Experiments with the intensity ratio depth sensor 1985 9.Maruyama M;Abe S Range sensing by projecting multiple slits with random cuts[外文期刊] 1993(06) 10.Caspi D;Kiryati N;Shamir J Range imaging with adaptive color structured light[外文期刊] 1998(05) 11.Horn E;Kiryati N Toward optimal structured light patterns[外文期刊] 1999(02) 12.Rocchini C;Cignoni P;Montani M A low cost 3D scanner based on structured light 2001(03) 13.Inokuchi S;Sato K;Matsuda F Range imaging system for 3-D object recognition 1984 14.Horn B K P;Brooks M Shape from Shading 1989 15.Schubert E Fast 3D object recognition using multiple color coded illumination[外文会议] 1997 16.Pulli K Acquisition and visualization of colored 3D objects[外文会议] 1998 17.Sato K;Inokuchi S Three-dimensional surface measurement by space encoding range imaging 1985(02) 18.Daniel Scharstein;Richard Szeliski High-Accuracy Stereo Depth Maps Using Structured Light[外文会议] 2003 19.Batlle J;Mouaddib E;Salvi J Recent progress in coded structured light as a technique to solve the correspondence problem: a survey[外文期刊] 1998(07) 20.Yoshizawa T The recent trend of moiremetrology 1991(03) 21.Li Zhang;Curless B;Seitz S M Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming[外文会议] 2002 22.Sato T Multispectral pattern projection range finder 1999 23.EL-Hakim S F;Beraldin J A;Blais F A Comparative Evaluation of the Performance of Passive and Active 3-D Vision Systems 1995 本文读者也读过(2条) 1.欧阳俊华.OUYANG Jun-hua近距离三维激光扫描技术[期刊论文]-红外2006,27(3)

第四节 透镜成像公式

第四节 透镜成像公式 一、 透镜成像 透镜成像作图法的基本方法是什么? 取三条特殊光线中的任意两条: ⑴跟主轴平行的光线,折射后通过焦点; ⑵通过焦点的光线,折射后跟主轴平行; ⑶通过光心的光线,经过透镜后 方向不变 。 透镜成像的位置除了用作图法可以得到外,还能用更简捷的办法得到比如用公式。 图1 透镜成像 由图1得:△COF ∽△A 1B 1F △ABO ∽△A 1B 1O F B OF B A CO 111= O B BO B A AB 111= AB CO =

OF=f , B 1F = v -f , BO=u , B 1O=v 由 O B BO F B OF 11=得: 即: 整理得: ——此公式为透镜成像公式 ? 凸透镜:u , f 总取正值; ? u>f 时,v 为正值,像物异侧,实像 ? u1,表示成放大的像,m<1,表示成缩小的像。 注意:实像v 取正,虚像v 取负。 v u f v f =-uv fu fv =+f v u 1 11=+f v u 111 =+

根据 得: ? 当u →∞时,u -f ≈ u , v ≈ f . 意义:太阳射来的平行光经凸透镜折射后再焦点会聚。 ? 当u >2f 时, u -f > f , vu , m=u v >1. 意义:成倒立、 放大的实像,如幻灯机。 ? 当u =f 时,u -f=0 , v →∞ . 意义:不成像或成像于无穷远处。 ? 当u u , m=u v >1. 意义:成正立、 放大的虚像,如放大镜。 总之:当物体自无穷远处向焦点靠近时,物体所成实像在透镜的另一侧自焦点向无穷远处移动;当物体在透镜和焦点之间移动时,物体的虚象在凸透镜的同一侧向远离焦点的方向移动。 四、使用透镜公式解题注意事项 ? ⑴首先要按作图要求画出光路图; ? ⑵在代入数值时,要正确运用像距和焦距的正负号; f v u 111 =+f u uf v -=

(完整word版)光学自由曲面制造的基础研究

项目名称:光学自由曲面制造的基础研究首席科学家:房丰洲天津大学 起止年限:2011.1至2015.8 依托部门:教育部天津市科委

二、预期目标 (1)总体目标 针对国家发展的重大需求对光学自由曲面制造技术的要求,深入研究并解决光学自由曲面制造中的重大关键基础科学问题,揭示自由曲面成型过程中纳观尺度材料迁移新理论,掌握和研究光学自由曲面高效、纳米级精度加工工艺技术及装备的共性基础问题,发展具有自主知识产权、具有国际先进水平的高精度、可控面形的光学自由曲面加工技术,培育我国光学自由曲面加工领域在国际上具有重要影响的学术带头人和创新团队,推动我国制造技术基础理论研究,确立在光学自由曲面制造领域国际竞争中的优势地位,增强光学自由曲面核心关键器件自主创新能力,并将光学自由曲面制造理论向更多领域纵深发展,推动我国科技进步。 (2)五年预期目标 在理论研究方面: 解决光学自由曲面制造中的关键科学问题,为实现高精度、高效率和高可靠性的光学自由曲面制造技术与装备提供理论基础,跻身于国际制造科学研究领域的前沿。 ?揭示光学自由曲面加工装备多体多态动力学行为与精度稳定性的映射规律、时变工况激励下控制系统与机械结构耦合动态特征对加工精度的 扰动规律,建立几何/物理/材料关联约束条件下光学自由曲面的空间机 构构型创新设计与优化理论; ?揭示光学自由曲面非均匀变流向纳观材料迁移规律,建立曲面成形过程中跨尺度材料特性演变、表层及近表层材料结构变化等基础理论; ?揭示光学自由曲面物理再构过程中加工工具在力、热和化学等多场耦合环境下与加工材料之间相互作用和微观力学行为,建立加工工具的失效 形式及其加工性能的演变理论; ?揭示多物理场辅助下纳米切削行为、离子注入表面改性后的硬脆材料切削规律,建立工具磨损抑制及材料学分析测试理论。 在技术应用方面:

高二物理透镜成像公式及其应用练习

透镜成像公式及其应用练习 1. 一个物体在离透镜20cm处,当它向外移动时,其倒立的像移动速度小于物体移动速度,可见此透镜是:() A. 凸透镜,焦距f≤10cm B. 凸透镜,焦距f>10cm C. 凹透镜,f<10 cm D. 凹透镜,焦距f>10cm 2. 一物体放在透镜前20cm处恰能成放大率为3的像,则该透镜的焦距可能为:() A. 15cm B. 30cm C. -15cm D. -30cm 3. 有一个凸透镜,一物体放在镜前某处时,可得到放大6倍的像,若将物体向透镜移动2cm时,可得到放大3倍的像,求该凸透镜的焦距。 4. 有一束会聚光束,通过遮光板上圆孔在孔后相距l=21cm处的光屏上形成一个直径为d2=3cm的光斑,如图4所示,已知圆孔直径d1=5cm,若在遮光板的圆孔上放一个凸透镜,恰好在光屏上出现同样大小的光斑,求该凸透镜的焦距。 图4 5. 物体经焦距为f的凸透镜成像,要得到放大n倍的实像,物体离透镜的距离是:() A. () n f n +1 B. () n f n -1 C. nf n+1 D. nf n-1 6. 测一凸透镜的焦距,把凸透镜固定在某一位置,一支蜡烛放在凸透镜的主光轴上,然后移动光屏,能得到放大3倍的清晰的像,然后沿主光轴移动蜡烛3cm,调整光屏的位置,再次出现清晰的像时,像的长度为蜡烛的5倍,该凸透镜的焦距是_______cm。 7. 会聚光束射到凹透镜上,折射后在主轴上交于距光心为a的一点A,如图5的示。如果移走凹透镜,会聚光束的交点则向原透镜侧移到B点,两点间距离为b,求此透镜的焦距。 图5 8. 某人透过焦距为10cm、直径为4.0cm的薄凸透镜观看方格纸,每个方格的边长为0.30cm,他使透镜的主轴与方格纸垂直,透镜与纸面相距10cm,眼睛位于透镜主轴上离透镜5.0cm处,问他至多能看到一行上几个完整的方格。 9. 有一个焦距为36cm的凸透镜,在主轴上垂直放置一支蜡烛,得到一个放大率为4的虚像。如果想得到放大率为4的实像,蜡烛应向哪个方向移动?移动多少?

光学投影层析三维成像测量实验系统的设计概述

光学投影层析三维成像测量实验系统的设计

摘要 光学投影式三维轮廓测量在机器/机器人视觉、CAD/CAM以及医疗诊断等领域有重要的应用,这种测量方法具有非接触性、无破坏、数据获取速度快等优点,其测量系统是宏观光学轮廓仪中最有发展前途的一种。 本课题拟采用激光光源(或普通卤素灯作为光源),应用光学系统、计算机控制,进行图像采集、图像处理,设计成像系统的断层图像重建及三维图像显示实验系统,并对其成像理论、成像质量及成像误差进行理论分析。该项目完成的光学投影层析三维成像测量实验系统适用于光学教学演示,其理论分析有利于学生积极的汲取现代光学发展的科研成果、思路和方法,从而潜移默化的培养学生的科学素养和创新能力。 关键词:光学投影层析,三维成像,CT技术

目录 1.引言 (1) 2.CT原理及重建算法 (2) 整个实验用到的理论相关联名称 2.1 CT技术原理 (3) 2.2 OPT原理简介 (4) 3.1 滤波反投影算法的快速实现 3. 光学投影层析三维成像测量实验系统 (5) 3.1实验系统的设计 (6) 3.2 光学投影层析三维成像测量实验系统 3.3 影响图像重建质量的因素分析 (7) 4. 结论 (11) 5. 参考文献 (13)

图表清单

1.引言 2002年4月英国科学家Sharpe在《Science》上首次报道了光学投影层析技术(optical projection tomography,OPT),这是一种新的三维显微成像技术,是显微技术和CT技术的结合。光学投影层析巧妙的利用了光学成像中“景深”的概念,实现了光学CT,和其它光学三维成像技术相比,结构简单、成本较低、成像速度快,在对成像分辨率要求不高的情况下,容易建立起光学投影层析三维成像测量系统。 光学三维成像代表着光学领域的前沿技术,这些技术涉及光学、计算机和图像处理等相关领域的知识,通过本项目--光学投影层析三维成像测量实验系统的设计,将是基础光学通向现代光学科技的不可多得的窗口之一,不仅显示基础知识的生命力,也反映基础知识的时代性,而且本项目实现所需成本较低、物理思想清晰,适用于物理实验教学,并适合作为大学生的综合设计性物理实验项目进行开发研究,同时对于激发大学生的学习兴趣、开阔大学生的视野和思路、培养综合科研素养均有很大的帮助。 2 CT技术原理及重建算法 2.1 CT技术原理 CT(计算机断层成像,mography ComputerTo的缩写)技术的研究自20世纪50至70年代在美国和英国发起,美国科学家A.M. Cormark和英国科学家G. N. Hounsfield在研究核物理、核医学等学科时发明的,他们因此共同获得1979年的诺贝尔医学奖。第一代供临床应用的CT设备自1971年问世以来,随着电子技术的不断发展,CT技术不断改进,诸如螺旋式CT机、电子束扫描机等新型设备逐渐被医疗机构普遍采用。除此之外,CT技术还在工业无损探测、资源勘探、生态监测等领域也得到了广泛的应用。 与传统的X射线成像不同,CT有自己独特的成像特点。下面以一个一般的图示来说明。 如图1所示,假设有一个半透明状物体,如琼脂等,在其内部嵌入5个不同透明度的球,如果按照图1中(a)所示那样单方向地观察,因为其中有2个球被前面的1个球挡住,我们会误解为只有3个球,尽管重叠球的透明度比较低,但我们仍无法确定球的数目,更不可能知道每个球的透明度。而如果按照图1(b)

凸凹透镜成像光路图规律总结

凸凹透镜成像规律光路图总结 实像可用承接物接收到,虚像承接不到,只能眼睛看到。 一、透镜 凸透镜:中间厚边缘薄的透镜; 凹透镜:中间薄边缘厚的透镜。 焦点:平行光线(太阳光)通过透镜后会聚的点,或通过透镜后发散光线的反向延长线的会聚点。(焦点一般有两个,并且一般关于透镜对称) 焦距:焦点到光心的距离。 凸透镜对光线有会聚作用,凹透镜对光线有发散作用 光心:透镜的几何中心 *三条特殊光线 1.平行于主光轴的光线,通过凸透镜后会聚于焦点;通过凹透镜后,反向延长线会聚于焦点。 2.通过焦点的光线通过凸透镜后平行于主光轴;正向延长线通过焦点的光线 通过凹透镜后平行于主光轴。 3.通过光心的光线通过透镜后方向不变。 二、凸透镜成像规律 1、u>2f 2、u=2f f u2 v , = 2= >,f < v f 2< f f u2 在异侧成倒立、缩小的实像在异侧成倒立等大的实像

3、2f>u>f 4、u=f f v f u f 2,2><< 5、u<< 在异侧成倒立、放大的实像 f u = 不成像

自由曲面光学镜片的设计

自由曲面光学镜面的设计 摘要 光学自由曲面具有非对称面形、灵活的空间布局、丰富的设计自由度等特性。自由曲面是应用最广泛的曲面形状之一,如能改善人类视觉质量的渐进多焦点眼用镜片,就是自由曲面技术在眼用光学镜片中的成功应用。本文通过设计渐进多焦点眼用镜片,并以之为例研究自由曲面光学镜片的性质及特点。 渐进镜片(英文progressive addition lenses 简称PAL)是针对老视症状的一种有效的解决手段,与各类传统老视镜片相比较具有许多优点,本文对这种镜片的设计和评价进行研究。 首先,介绍渐变镜片的渐变结构特征和矫正原理,比较分析软设计和硬设计之间的区别。 其次,介绍渐进多焦点眼用镜片的基本结构。应用基于狄利克雷原则的软设计方法,阐述渐进多焦点眼用镜片子午线设计的基本原理,构建子午线多项式,给出子午线设计需满足的条件。在子午线设计的基础上,设计渐进多焦点眼用镜片等屈光度轮廓线,在此基础上设计镜片矢高,确定镜片面形。 然后,根据曲面的微分几何理论,给出渐变镜片的性能评价方法,即计算镜片的球面度及柱面度。 关键词渐进镜片;老视;软设计;子午线

Design of free-form surface optical lenses Abstract Free-form lens has asymmetric surface shape, flexible space layout, extensive design freedom and other characteristics. Free surface is one of the curved shapes which are most widely applied. For instance, the progressive addition lenses(PAL) which can improve the quality of human vision are a successful example that the free-form technology is applied to optical lenses. In this paper, the design of the progressive addition lenses is introduced, and the nature and characteristics of the optical lenses will be researched through it. The progressive addition lenses is a new kind of effective solution to presbyopia, it has many advantages over other lenses dealing with presbyopia. Investigation of its design and evaluation method is shown in this paper. Various kinds of presbyopia lens is reviewed and compared. The basic feature and principle of the PAL are introduced and the difference between the characteristics of hard design and soft design is described as well. The structure of progressive addition lenses is introduced, and the soft method based on Dirichlet principle is given in detail. The principle of designing meridional power laws for progressive addition lenses is expounded based on polynomial, and the criterion of designing meridional power laws is given out. On the basis of designing meridional power laws, the vector height and the isopower contours are designed in order to determine the surfaces of progressive addition lenses. According to the differential ge ometry theory of curving surfaces, PAL’s performances are evaluated, and the mean surface power and the constant surface astigmatism are calculated. Keywords progressive addition lenses, presbyopia, soft design,meridian line

推荐-三维成像声纳1 精品

三维成像声纳 专业:光电子技术与科学 院校:长春理工大学光电信息学院

目录 摘要 第一章声呐 1.1 声呐的概述 1.2 三维成像技术 1.3 三维成像声呐的发展现状 第二章三维成像声呐的工作原理 第三章三维成像声呐的应用 第四章三维成像声纳的选择 第五章结论和展望 摘要 声纳的发展背景: 海洋蕴藏着丰富的矿产和能源,同时又具有重要的军事地位,海洋开发日益受到人们的重视。首先,全球能源日益紧张,所以开发新的能源和空间十分必要,海洋是个巨大的能源宝库,具有很大的开发潜力。其次,我国海岸线绵长,海域辽阔,了解海域特点、海底地形地貌状况对维护国家安全很有必要。 从上面可以看到成像声纳有着十分广泛的用途,不仅关系到军事方面,而且还关系到国民经济生活发展的很多方面,所以研究和发展成像声纳十分必要和迫切。三维成像声纳所使用的可视化技术,将大量枯燥的数据以生动的立体图形图像的方式表现出来,使人们能够对声纳数据进行更直观的解释和分析,提高水下探测的工作效率。 借助成熟的三维显示技术,三维图形可被缩放、移动和转动、测距,以便工作人员可以从各种视角更好地进行观察和理解,提供准确、科学的依据。 1.1声呐的概述

声呐是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的电子设备。它有主动式和被动式两种类型,属于声学定位的范畴。声呐是利用水中声波对水下目标进行探测、定位和通信的电子设备,是中应用最广泛、最重要的一种装置。 声呐是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声呐技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。 1.2三维成像技术 通常我们说一个客观的世界是三维的,客观世界的三维图像通过某种技术把它记录下来然后处理、压缩再传输出去,显示出来,最终在人的大脑中再现客观世界的图像,这个过程就是三维成像技术的全过程。 1.3 三位成像声纳的发展现状 三维成像声纳与普通的多波数声纳的区别,在于它具有更高的分辨率,从而可以提供水下目标外形轮廓的更多细节描述。高分辨率成像声纳在对水下目标进行成像时,能够提供非常优秀的图像质量,从而可以对目标进一步地跟踪和识别。目前最前沿的三维成像声纳是以声透镜技术为基础,它能提供目标的实时动态视频图像,质量小、尺寸小,可以装载到各种AUV、ROV上进行水下作业。 声视觉导航:给出目标物尺寸和方位信息 海底地貌检测:提供海底的等高线图和地理参考数据,海图的绘制。 残骸搜索:提供失事船只残骸的详细信息 堤坝的检测:提供堤坝的裂缝信息 管道检测:对海底油气输送管道进行安全检查 桥墩探伤:检测受损桥墩的险情 海港检测:给出水下目标的回声及运动轨迹和速度 海床检测:矿产资源和能源勘探

光学透镜公式

§ 6薄透镜 6.1焦距公式 我们研究了单个球面的折射,反射成像的物象距公式。横向放大率公式及规定的 符号法则 f =亠 n - n ―n"r f = ---------- n - n ns y ns y 反射: 1 1 2 _ +— = ____ SS r 透镜: 如图:透镜是由两个折射球面组成的光具组,两球面间是构成透镜的媒质(通常是玻璃),其折射率为∏L。透镜前后媒质的折射率(物象方折射率)分别为n和n,在多数场合下,透镜置于空气中,则n = n丄1. 在轴上一物点Q经Σ1折射成像于Q, Q作为Σ 2虚物经第二次折射成像于Q, 两次成像可分别写出两折射成像的物象公式 主上=1 —虽V1「竺 第一次S I S I ∏L-∏∏L S1 n n n - n _ +一 = _______ SS r S 及共轴球面光具组成像用逐次成像的方法 F面我们研究薄透镜成像问题 图6-1

1 11 f 1 ∏L f/ f 2 f 1 n F n ? ∏L f ■ 1 1 f 2 n f 2 ∏ I 2 将单个球面焦距公式代入得 ∏L A 1 - ∏L - n 第二次 2 2 S 2 S 2 n - ∏L ns 2 ∩L S 2 n Q n -∏L 设 A 1A 2 =d 则-s 2 = s 1 - d d 为透镜的厚度,d 很小的透镜称为薄透镜 在薄透镜中A 和A ,几乎重合为一点,这个点叫透镜的光心记为 O 薄透镜的物距S 和像距S 都是从光心算的。 于是,对薄透镜S :"s 1, S : s 2,s 2 = - s 1 ,代入上式得 —=1 S 1 2 =1 -S l S 推出 f 1 2 S 1 ■ -^1 = -S l S 两式相加消去S 2,S 1得 M r f 1 (6,1) =∞或 S = 一 f/f ; ^ f 2 f 1 1 I S 据焦距定义s = f,s ∣1 f 2 f 1 ,S= ∞ 推出 ∏L

双目立体视觉中的三维重建

西安邮电大学 毕业设计(论文)题目:双目立体视觉中的三维重建 系别:自动化学院 专业:测控技术与仪器 班级:测控0802班 学生姓名:吕海斌(07) 导师姓名:江祥奎职称:讲师 起止时间:2012年3月8日至2012年6月20

诚信声明书 本人声明:我将提交的毕业论文《双目立体视觉中的三维重建》是我在指导教师指导下独立研究、写作的成果,论文中所引用他人的无论以何种方式发布的文字、研究成果,均在论文中加以说明:有关教师、同学和其他人员对本文的写作、修订提出过并为我再论文中加以采纳的意见、建议,均已在我的致谢中加以说明并深致谢意。 论文作者吕海斌时间:2012年6 月7 日 指导教师已阅时间:年月日

西安邮电大学 毕业设计(论文)任务书 学生姓名吕海斌指导教师江祥奎职称讲师 院别自动化学院专业测控0802 题目双目立体视觉中的三维重建 任务与要求 本题目要求在搭建双目立体视觉平台的基础上,通过OpenGL和MATLAB联合编程实现三维重建功能。具体任务分解如下: 1.查找文献,学习和掌握三维重建方法; 2.完成三维重建的MATLAB编程,并对实验数据进行相关分析;3.通过OpenGL,实例编程实现三维重建; 4.通过OpenGL和MATLAB联合编程,完成三维重建; 开始日期2011年12月10日完成日期2012年6月25日 院长(签字) 2012 年12 月日

西安邮电大学 毕业设计 (论文) 工作计划 学生姓名__吕海斌_指导教师__江祥奎__职称__讲师_ 院别____自动化学院____专业____测控0802___ 题目_____ 双目立体视觉中的三维重建 工作进程

凸透镜成像规律推导过程

凸透镜呈像规律推导方法 凸透镜的成像规律是1/u+1/v=1/f(即:物距的倒数与像距的倒数之和等于焦距的倒数。)一共有两种推导方法。分别为“几何法”与“函数法” 几何法 【题】如右图,用几何法证明1/u+1/v=1/f。 几何法推导凸透镜成像规律 【解】∵△ABO∽△A'B'O ∴AB:A'B'=u:v ∵△COF∽△A'B'F ∴CO:A'B'=f:(v-f) ∵四边形ABOC为矩形 ∴AB=CO ∴AB:A'B'=f:(v-f) ∴u:v=f:(v-f) ∴u(v-f)=vf ∴uv-uf=vf ∵uvf≠0 ∴(uv/uvf)-(uf/uvf)=vf/uvf ∴1/f-1/v=1/u 即:1/u+1/v=1/f

函数法 【解】一基础 右图为凸透镜成像示意图。 其中c为成像的物体长度,d为物体成的像的长度。u为物距,v为像距,f 为焦距。 步骤 (一)为便于用函数法解决此问题,将凸透镜的主光轴与平面直角坐标系的横坐标轴(x轴)关联(即重合),将凸透镜的理想折射面与纵坐标轴(y轴)关联,将凸透镜的光心与坐标原点关联。则:点A的坐标为(-u,c),点F的坐标为(f,0),点A'的坐标为(v,-d),点C的坐标为(0,c)。 (二)将AA’,A'C双向延长为直线l1,l2,视作两条函数图象。由图象可知:直线l1为正比例函数图象,直线l2为一次函数图象。 (三)设直线l1的解析式为y=k1x,直线l2的解析式为y=k2x+b 依题意,将A(-u,c),A'(v,-d),C(0,c)代入相应解析式得方程组:

c=-u·k1 -d=k2v+b c=b 把k1,k2当成未知数解之得: k1=-(c/u)k2=-(c/f) ∴两函数解析式为: y=-(c/u)x y=-(c/f)x+c ∴两函数交点A'的坐标(x,y)符合方程组y=-(c/u)x y=-(c/f)x+c ∵A'(v,-d) ∴代入得: -d=-(c/u)v -d=-(c/f)v+c ∴-(c/u)v=-(c/f)v+c=-d ∴(c/u)v=(c/f)v-c=d cv/u=(cv/f)-c fcv=ucv-ucf fv=uv-uf ∵uvf≠0 ∴fv/uvf=(uv/uvf)-(uf/uvf) ∴1/u=1/f-1/v 即:1/u+1/v=1/f

现代光学三维测量原理

现代光学三维测量原理 第1章光学三维测量基础知识 光学三维测量就是指用光学原理来采集物体表面三维空间信息的方法和技术,与传统的接触式测量相比,它非接触式的。近二十年来,随着光学技术、数字摄像技术及计算机技术的迅速发展,光学三维测量技术也获得了极大的发展,新的理论与方法不断被发现和开发,逐步解决了许多过去阻碍实际应用的问题。在1994年的国际光学学会的以信息光学的年会上,首次将光学三维测量列为信息光学前沿七个主要领域和方向之一。 1.1 光学测量的基本概念 1)光学测量——就是利用光学图像进行的测量,通过图像处理分析对目标的位置、尺 寸、形状和目标间的相互关系等参数进行测量。 2)摄影测量——通常不包括利用特殊的光学手段、如全息干涉、栅格线法等进行的光 学测量。用航空或卫星照片进行的大地测量则习惯上称为摄影测量。近景摄影测量 通常指对几十厘米到几十米距离物体的摄影测量,通常也属三维测量的范畴。 3)光学三维测量——利用光学手段和图像处理分析方法并运用计算机图形学的理论 来数字化再现物体的三维形态,在此基础上,从而可获取物体各部分间任意的相互 尺寸关系。 1.2 三维光学测量常用的方法 光学三维测量的基本方法可以分为两大类:被动三维测量和主动三维测量。 被动三维测量采用非结构光照明方式,它根据被测空间点在不同位置所拍摄的像面上的相互匹配关系,来解算空间点的三维坐标。采用双摄像机的系统与人眼双目立体视觉的原理相似,因此,该方法常用于对三维目标的识别、理解,以及位置、形态的分析,即在机器视觉(计算机视觉)领域中广泛应用。 主动三维测量采用结构光照射方式,由于三维面形对结构光场的调制,可以从携带有三维面形信息的观察光场中解调得到三维面形数据。这种方法具有较高的测量精度,因此大多数以三维面形测量为目的的三维测量系统都采用主动三维测量方式。结构光通常采用调制过的扇面激光光源和以白光为光源的投影光栅方式,又分别称为激光法三维测量和投影光栅法三维测量。激光光源具有亮度高、方向性强和单色性好,易于实现调制等优点,所以在三维测量领域得到广泛应用;白光光源的结构光照明方式具有成本低、结构简单的优点,特别在面结构光照明的三维测量中得到越来越多的应用。 1.图像分析法(Image Analysis Methods) 一个物体在两个不同位置上拍摄图像,通过确定物体同一点在不同像面上的相互匹 配关系,来获得物体空间点的三维坐标。由于匹配精度的影响,图像分析法对形状 的描述主要是用形状上的特征点、边界线与特征描述物体的形状,故较难精确地描 述复杂曲面的三维形状。

立体视觉匹配.

立体视觉匹配 4分 开放分类:人工智能图像处理计算机视觉 收藏分享到顶[2] 目录 ? 1 背景 ? 2 发展与现状 ? 3 问题描述 ?展开全部 摘要纠错编辑摘要 立体视觉匹配(Stereo Correspondence)的目标是从不同视点图像中找到匹配的对应点。 立体视觉匹配(Stereo Correspondence)是计算机视觉中的一个重要而又非常困难的问题,它的目标是从不同视点图像中找到匹配的对应点。 立体视觉匹配- 背景 人类的双目立体视觉系统是一个非常智能的系统。场景中的光线在人眼这个精密的成像系统中被采集,通过神经中枢被送入包含有数以亿计的神经元的大脑中被并行的处理,得到了实时的高清晰度的准确的深度感觉信息。凭借着大脑的智能与人类的知识,即使是高度近视的人,在摘掉眼镜之后仍然能够得到比较准确的深度感。这样智能的系统,使得人类对环境的适应能力大大提高,很多复杂的动作能够得以完成:如行走、体育运动、驾驶车辆以及进行科学实验等。 相比之下,机器的立体视觉系统则要落后得多。相机采集到的图像数据中可能存在较大的噪声,相机参数也有可能不对称;用于处理图像的计算机大部分还是冯~$\cdot$~诺依曼结构的串行计算机,处理能力与人脑相差甚远。计算机视觉的研究历史也不长:上世纪七十年代末之前的视觉研究主要集中于生理学和心理学上;在大卫·马尔提出了视觉计算模型以后,人们才慢慢的开始利用计算机和数学模型进行视觉处理。早期的立体视觉,由于受限于硬件条件,只能对图像上的特征点进行匹配,得到离散点的深度信息。然而,计算机硬件的发展非常迅速,正如摩尔定律所指出的,每 18 个月,计算机的硬件价格就下降一半,而性能则提高一倍。当计算机的处理能力不断提高的时候,人们开始尝试计算整幅图的稠密对应关系,同时也开始采用一些更加复杂更加准确的数学工具进行计算。 当前计算机立体视觉的水平与人类的双目视觉水平还相距甚远,对它的研究仍然是一个非常活跃的领域。大量的学校、公司以及研究机构的研究人员仍然在进行着对计算机立体视觉的研究,这是因为计算机立体视觉与人眼立体视觉相比,主要有以下不可替代的优点:

立体视觉

第十九章立体视觉 目录 1. 引言 2. 双目立体视觉(Binocular Stereo Vision) 2.1 双目立体视觉模型 2.2 匹配基元 2.3 匹配算法 2.4 双目立体视觉系统 3. 结构光方法(Structured Light) 4. 激光雷达与程距数据(Range Data)处理 5. 视觉临场感系统 作业 1. 引言 立体视觉是计算机视觉领域的一个重要课题,它的目的在于重构场景的三维几何信息。立体视觉的研究具有重要的应用价值,其应用包括移动机器人的自主导航系统,航空及遥感测量,工业自动化系统等。 一般而言,立体视觉的研究有如下三类方法: (1) 直接利用测距器(如激光测距仪)获得程距(range data)信息,建立三维描述的方法; (2) 仅利用一幅图象所提供的信息推断三维形状的方法; (3) 利用不同视点上的,也许是不同时间拍摄的,两幅或更多幅图象提供的信息重构三维结构的方法。 第一类方法,也就是程距法(range data method),根据已知的深度图,用数值逼近的方法重建表面信息,根据模型建立场景中的物体描述,实现图象理解功能。这是一种主动方式的立体视觉方法,其深度图是由测距器(range finders)获得的,如结构光(structured light)、激光测距器(laser range finders) 等其他主动传感技术(active sensing techniques)。这类方法适用于严格控制下的环境(tightly controlled domains),如工业自动化的应用方面。 第二类方法,依据光学成象的透视原理及统计假设,根据场景中灰度变化导出物体轮廓及表面,由影到形(shape from shading),从而推断场景中的物体。线条图的理解就是这样的一个典型问题,曾经引起了普遍的重视而成为计算机视觉研究领域的一个焦点,由此产生了各种各样的线条标注法。这种方法的结果是定性的,不能确定位置等定量信息,该方法由于受到单一图象所能提供信息的局限性,存在难以克服的困难。 第三类方法,利用多幅图象来恢复三维信息的方法,它是被动方式的。根据图象获取方式的区别又可以划分成普通立体视觉和通常所称的光流(optical flow)两大类。普通立体视觉研究的是由两摄像机同时拍摄下的两幅图象,而光流法中研究的是单个摄像机沿任一轨道运动时顺序拍下的两幅或更多幅图象。前者可以看作后者的一个特例,它们具有相同的几何构形,研究方法具有共同点。双目立体视觉是它的一个特例。 立体视觉的研究由如下几部分组成: (1) 图象获取(image acquisition), 用作立体视觉研究的图象的获取方法是多种多样的,在时间、视点、方向上有很大的变动范围,直接受所应用领域的影响。立体视觉的研究主要集中在三个应用领域中,即自动测绘中的航空图片的解释,自主车的导引及避障,人类立体视觉的功能模拟。不同的应用领域涉及不同类的景物,就场景特征的区别来分,可以划分成两大类,一类是含有文明特征(cultural