控制工程基础第五章 误差分析

机械控制工程基础第五章练习习题及解答

题型:选择题 题目:关于系统稳定的说法错误的是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构和参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构和参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程

题型:填空题 题目:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据又称为 判据。 分析与提示:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据,又称为代数稳定性判据。 答案:代数稳定性 习题二 题型:填空题 题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为 ;各阶子行列式都 。 分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。 答案:正、大于零 习题三 题型:计算题 题目:系统的特征方程为 010532234=++++s s s s 用胡尔维兹判据判别系统的稳定性。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式。 答案:(1)特征方程的各项系数为 10,5,3,1,201234=====a a a a a 均为正值。 (2) 0131>==?a 0714232 4 132<-=-== ?a a a a a a a a 不满足胡尔维兹行列式全部为正的条件,所以系统不稳定 习题四 题型:计算题 题目:单位反馈系统的开环传递函数为 ()()() 125.011.0++= s s s K s G 利用胡尔维兹判据求使系统稳定的K 值范围。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式,反求出K 的范围。 答案:系统的闭环特征方程为 ()()0125.011.0=+++K s s s

2机械控制工程基础第二章答案

习 题 2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x i o o o o 222=++ (2) x tx x x i o o o 222=++ (3) x x x x i o 222o o =++ (4) x tx x x x i o o o 222o =++ 解: 凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要特性就是它满足叠加原理。该题中(2)和(3)是线性系统。 2.2 图(题2.2)中三同分别表示了三个机械系统。求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。 图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有

x m x c x x c i o o 2 o 1 )(=-- 即 x c x c c x m i 1 2 1 o o )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 )1()()(1 x x c k x x o i -=- )2()(2 x k x x c o o =- 消除中间变量有 x ck x k k x k k c i o 1 2 1 o 2 1 )(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x x c o o i o i 2 1 )()(=-+- 即 x k x c x k k x c i i o o 1 2 1 )(+=++ 2.3求出图(题2.3)所示电系统的微分方程。 图(题2.3) 解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 ?+=idt C i R u o 12 2 i R u u o i 1 1=-

控制工程基础第4章习题解答

若系统输入为不同频率ω的正弦函数t A ωsin ,其稳态输出相应为)sin(?ω+t B ,求该系统的频率特性 解:由频率特性的定义有:? ωj e A B j G =)((P119) ---------------------------------------------------------------------------------------------------------------------- 试求下列系统的幅频特性)(ωA 、相频特性)(ω?、实频特性)(ωu 、虚频特性)(ωv (P120, 121) 1 305 )(+= s s G 解:1 305 1305)(+= += ωωωj s j G j )(ωA = 1 90051 3052 += +ωωj )(ω?=1 30arctan )130()5(1 305 ω ωω-=+∠-∠=+∠ j j )(ωj G 可以展开为实部与虚部的形式,即:1 90015051305 )(2+-= += ωω ωωj j j G 所以,实频特性)(ωu = 1 90052 +ω 虚频特性)(ωv =1 9001502+-ωω ---------------------------------------------------------------------------------------------------------------------- 设系统的闭环传递函数为:1 ) 1()(12++=s T s T K s G B ,当输入信号为t R t x i ωsin )(=,试求该系 统的稳态输出。 解:系统的频率特性函数为: ()()) () arctan (arctan 21221212)() 1()1(1 )1(1 )1()(12ωωωω ωωωωωωj G j B T T j j B B e j G e T T K j T j T K s T s T K j G ∠-?=?++= ++= ++= 系统的对于特定频率的输入信号,其稳态输出为:(P118) )](sin[)()(ωωωj G t j G X t x B B i oss ∠+??= 因此,对于该系统,有: ()())]arctan (arctan sin[) 1()1()(122 122ωωωωωT T t T T K R t x oss -+?++?=

控制工程基础程第四章习题答案

2007机械工程控制基础第四章习题答案 第4章 频率特性分析 4.1什么是系统的频率特性? 答:对于线性系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性,将输出的相位之差定义为系统的相频特性。系统的幅频特性和相频特性简称为系统的频率特性。 4.4若系统输入为不同频率ω的正弦t A ωsin ,其稳态输出相应为)sin(?ω+t B 。求该系统的频率特性。 解:由系统频率特性的定义知:?ωj e A B j G = )( 4.5已知系统的单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t x t t o ,试求系统的幅频特性与 相频特性。 解:由已知条件得:s s X i 1)(=,9 8 .048.11)(+++-=s s s s X o 得系统传函为:) 9)(4(36)()()(++== s s s X s X s G i o 得系统频率特性:) 9)(4(36 )(ωωωj j j G ++= ,其中 幅频特性为:2 2 811636 )()(ω ωωω+?+= =j G A 相频特性为:9 arctan 4 arctan )(ω ω ω?--=4.6由质量、弹簧、阻尼组成的机械系统如图(4.6)所示。已知m=1kg ,k 为弹簧刚度,c 为阻尼系数。若外力tN t f 2sin 2)(=,由实验得到系统稳态响应为)2 2sin(π -=t x oss 。试确定k 和c 。 解:由系统结构知系统的动力学方程为: 当m=1时,得系统传函为: k cs s s G ++= 2 1 )(,得系统频率特性为: ω ωωjc k j G +-= 21 )(。 图(题4.6)

(完整版)控制工程基础(第一章)

辽宁科技学院教案 课程名称:控制工程基础 任课教师:杨光 开课系部:机械学院 开课教研室:机制 开课学期:2012~2013学年度第1学期

教学内容备注 一、机械工程控制论的研究对象与任务 机械工程控制论研究机械工程中广义系统的动力学问题。 1、系统(广义系统):按一定的规律联系在一起的元素的集合。 2、动力学问题:系统在外界作用(输入或激励、包括外加控制与外界干扰) 下,从一定初始状态出发,经历由其内部的固有特性(由系统的结构与参数所 决定)所决定的动态历程(输出或响应)。这一过程中,系统及其输入、输出三 者之间的动态关系即为系统的动力学问题。 上式中y(t)为微分方程的解,显然它是由系统的初始条件,系统的固有特性,系统的输入及系统与输入之间的关系决定。 对上例,需要研究的问题可归纳为以下三类:

二、控制理论的发展与应用 控制理论是研究自动控制共同规律的技术科学。从1868年马克斯威尔(J.C.Maxwell)提出低阶系统稳定性判据至今一百多年里,自动控制理论的发展可分为四个主要阶段: 第一阶段:经典控制理论(或古典控制理论)的产生、发展和成熟; 第二阶段:现代控制理论的兴起和发展; 第三阶段:大系统控制兴起和发展阶段; 第四阶段:智能控制发展阶段。 经典控制理论: 控制理论的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制。第二次世界大战期间,为了设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统等基于反馈原理的军用装备,进一步促进和完善了自动控制理论的发展。 ?1868年,马克斯威尔(J.C.Maxwell)提出了低阶系统的稳定性代数判据。 ?1895年,数学家劳斯(Routh)和赫尔威茨(Hurwitz)分别独立地提出了高阶系统的稳定性判据,即Routh和Hurwitz判据。 ?二战期间(1938-1945年)奈奎斯特(H.Nyquist)提出了频率响应理论 1948年,伊万斯(W.R.Evans)提出了根轨迹法。至此,控制理论发展的第一阶段基本完成,形成了以频率法和根轨迹法为主要方法的经典控制理论。 经典控制理论的基本特征: (1)主要用于线性定常系统的研究,即用于常系数线性微分方程描述的系统的分析与综合; (2)只用于单输入,单输出的反馈控制系统; (3)只讨论系统输入与输出之间的关系,而忽视系统的内部状态,是一种对系统的外部描述方法。 现代控制理论: 由于经典控制理论只适用于单输入、单输出的线性定常系统,只注重系统的外部描述而忽视系统的内部状态。因而在实际应用中有很大局限性。 随着航天事业和计算机的发展,20世纪60年代初,在经典控制理论的基础上,以线性代数理论和状态空间分析法为基础的现代控制理论迅速发展起来。 1954年贝尔曼(R.Belman)提出动态规划理论 1956年庞特里雅金(L.S.Pontryagin)提出极大值原理 1960年卡尔曼(R.K.Kalman)提出多变量最优控制和最优滤波理论 在数学工具、理论基础和研究方法上不仅能提供系统的外部信息(输出量和输入量),而且还能提供系统内部状态变量的信息。它无论对线性系统或非线性系统,定常系统或时变系统,单变量系统或多变量系统,都是一种有效的分析方法。 当今世界,控制技术无处不在,世界随处可见控制与反控制。 控制技术融合了信息技术、工程技术,是多种技术的融合。

机械控制工程基础第五章 练习习题及 解答

习题一 题型:选择题 题目:关于系统稳定的说法错误的就是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点就是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在就是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点就是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面就是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构与参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构与参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统就是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统就是稳定的;反之,若系统的零输入响应发散,则系统就是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程 习题一 题型:填空题 题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为判据。 分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,又称为代数稳定性判据。 答案:代数稳定性 习题二

控制工程基础第2章答案资料

第2章系统的数学模型(习题答案) 2.1什么是系统的数学模型?常用的数学模型有哪些? 解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。常用的数学模型有微分方程、传递函数、状态空间模型等。 2.2 什么是线性系统?其最重要的特性是什么? 解:凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要的特性就是它满足叠加原理。 2.3 图( 题2.3) 中三图分别表示了三个机械系统。求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。 题图2.3 解:①图(a):由牛顿第二运动定律,在不计重力时,可得 整理得 将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得

[] 于是传递函数为 ②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。引出点处取为辅助点B。则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程: 消去中间变量x,可得系统微分方程 对上式取拉氏变换,并记其初始条件为零,得系统传递函数为 ③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程: 移项整理得系统微分方程

对上式进行拉氏变换,并注意到运动由静止开始,即 则系统传递函数为 2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。 +-+- u ) t f C ) +- +- f )(a ) (b ) (c ) (d R 题图2.4 【解】:)(a 方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组: ???? ?=+=?i R u u dt i C u c c r 1 消去中间变量,整理得: dt du RC u dt du RC r c c =+

控制工程基础考卷带答案复习资料

控制工程基础考卷带答案复习资料

一、填空题:(每空1分,共20分) 1.对控制系统的基本要求一般可归结为_________稳定性,准确性,快速性____、____________、___________。 2.自动控制系统对输入信号的响应,一般都包含两个分量,即一个是瞬态响应分量,另一个是____________响应分量。 3.在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为_________________。 4.若前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则闭环传递函数为__________________ 。 5 函数f(t)=的拉氏变换式是 _________________ 。 6 开环对数频率特性的低频段﹑ 中频段﹑ 高频段分别表征了系统的 稳定性,动态特性,抗干扰能力 ﹑ ﹑ 。 7.Bode 图中对数相频特性图上的-180°线对应于奈奎斯特图中的___________。 8.已知单位反馈系统的开环传递函数为: 20 ()(0.51)(0.041) G s s s = ++求出系统在单位阶跃输入时的稳 态误差为 。 9.闭环系统稳定的充要条件是所有的闭环极点 t e 63-

均位于s 平面的______半平面。 10.设单位反馈控制系统的开环传递函数为 10()1 G s s = +,当系统作用有x i (t ) = 2cos(2t - 45?)输入 信号时,求系统的稳态输出为_____________________。 11.已知传递函数为2 ()k G s s =,则其对数幅频特性 L (ω)在零分贝点处的频率数值为_________ 。 12 在系统开环对数频率特性曲线上,低频段部分主要由 环节和 决定。 13.惯性环节的传递函数11+Ts ,它的幅频特性的数学式是__________,它的相频特性的数学式是____________________。 14.已知系统的单位阶跃响应为()1t t o x t te e --=+-,则 系统的脉冲脉冲响应为__________。 一、填空题 (每空1分,共20分): 1 稳定性,准确性,快速性;2 稳态;3 反馈; 4 ) ()(1) (s H s G s G ±;5 3 ()6 F s s = + 6 稳定性,动态特性,抗干扰能力; 7 负实轴; 8 1 21 9 右半平面; 10

机械控制工程基础第四章习题解答

题目:线性定常系统对正弦信号(谐波输入)的 称为频率响应。 答案:稳态响应 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:以下关于频率特性、传递函数和单位脉冲响应函数的说法错误的是【 】 A . ω ωj s s G j G ==)()( B . [])()(t F s G ω= C . [])()(t L s G ω= D . [])()(t F j G ωω= 分析与提示:令传递函数中ωj s =即得频率特性;单位脉冲响应函数的拉氏变换即得 传递函数;单位脉冲响应函数的傅立叶变换即为频率特性。 答案:B 题目:以下说法正确的有 【 】 A .时间响应只能分析系统瞬态特性 B .系统的频率特性包括幅频特性和相频特性,它们都是频率ω的函数 C .时间响应和频率特性都能揭示系统动态特性 D .频率特性没有量纲 E .频率特性反映系统或环节对不同频率正弦输入信号的放大倍数和相移 分析与提示:时间响应可分析系统瞬态特性和稳态性能;频率特性有量纲也可以没有量纲,其量纲为输出信号和输入信号量纲之比。 答案:B 、C 、E 题目:通常将 和 统称为频率特性。 答案:幅频特性、相频特性 题目:系统的频率特性是系统 响应函数的 变换。 答案:脉冲、傅氏 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:已知系统的单位阶跃响应为()()0,8.08.1194≥+-=--t e e t x t t o ,试求系统的幅 频特性和相频特性。 分析与提示:首先由系统的输入输出得到系统传递函数;令s=ωj 即可得到频率特性,进而得到幅频特性和相频特性。 答案:由已知条件有 ()()9 18.0418.11, 1 +++-= =s s s s X s s X o i 传递函数为 ()()()()() 9436++== s s s X s X s G i o 则系统的频率特性为 ()()() 9436 ++= ωωωj j j G

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

机械控制工程基础习题集_第5章

第5章 系统的稳定性 一、填空题 1.稳定系统其自由运动模态随时间增加而逐渐(消失) 2.对于二阶系统,加大增益将使系统的(稳定性)变差。 3.若闭环系统的特征式与开环传递函数)()(s H s G 的关系为)()(1)(s H s G s F +=,则 )(s F 的零点就是(系统闭环极点) 。 4.Ⅰ型系统跟踪阶跃信号的稳态误差为(0)。 5.线性定常系统的偏差信号就是误差信号的条件为(反馈传递函数H(s)=1)。 6.控制系统含有的积分个数多,开环放大倍数大,则系统的(稳态性能)愈好。 7.降低系统的增益将使系统的稳态精度(变差)。 8.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的(开环极点)数。 9.统在前向通路中含有积分环节将使系统的稳定性严重(变差)。 10.系统开环频率特性的相位裕量愈大,则系统的(稳定性)愈好。 11.控制系统的误差是期望输出与(实际输出)之差。 12.降低系统的增益将使系统的(快速性或稳态性)变差。 三、名词解释题 1.穿越:是开环极坐标曲线穿过实轴上(-∞,-1)的区间。 2.相位裕度:在系统的开环幅频特性等于1时,其相应的相频特性距离-180°的相位差。或:极坐标曲线在幅值穿越频率处的相頻特性距离-180°的相位差。 3.幅值裕度:相頻穿越频率处开环幅频特性的倒数。 4.劳斯判据:利用系统闭环特征方程的系数建立劳斯系数表,根据劳斯表中第1列系数的符号变化判断系统稳定性即:劳斯表中第1列系数无符号变化则系统处于稳定状态,否则系统处于临界稳定或不稳定状态。 5.奈奎斯特稳定判据:闭环系统稳定的充分必要条件是其开环极坐标频率特性曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的开环极点数。 四、简答题 1.简述闭环特征函数的特点。 答:1)特征函数的零点就是系统的闭环极点;2)特征函数的极点就是系统的开环极点; 3)特征函数的分子和分母的阶次相同;4)特征函数与系统开环传递函数只差常数1。 2.简述积分、微分及惯性环节对最小相位系统稳定性的影响。

定位误差的分析与计算

华北航天工业学院教案 教研室:机制工艺授课教师:陈明

第十章机床夹具的设计原理 第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用?D表示。 一、定位误差的组成 1.基准不重合误差 如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。因此选择定位基准时应尽量与设计基准相重合。当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。 设计夹具时,应当使定位基准与工序基准重合。当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用?B表示。工序基准与定位基准之间的尺寸就称为定位尺寸。 2.基准位移误差 工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用?Y表示。 基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。 当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即 ?Y = ?i 当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即 ?Y = ?i cos a 二、各种定位方式下定位误差的计算 1.定位误差的计算方法 如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。计算时,先分别算出?B和?Y,然后将两者组合而成?D。组合方法为:如果工序基准不在定位基面上:?D =?Y + ?B 如果工序基准在定位基面上:?D = ?Y±?B 式中“+”、“-”号的确定方法如下: 1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。 2)2)当定位基面直径作同样变化时,设定位基准的位置不变动,分析工序基准的变动方向。 3)3)两者的变动方向相同时,取“+”号,两者的变动方向相反时,取“-”号。 2.工件以圆孔在心轴(或定位销)上定位 (1)(1)定位副固定单边接触 当心轴水平放置时,工件在重力作用下与心轴固定单边接触,此时

控制工程基础第5章习题解答

5.7 系统的传递函数方框图如图所示,已知25.0,1.021==T T , 试求: (1)系统稳定时K 值的取值范围; 解: 由题意可以写出系统的闭环传递函数为: ()()()()K s s T T s T T K s T s T s K s T s T s K s G B ++++=+++++=2213212121)(11111)( 系统的特征方程为:0)(221321=++++K s s T T s T T 即:04040141)(232 121221213=+++=++++K s s s T T K s T T s T T T T s 由特征方程写出 根据Routh 判据,系统闭环稳定的充要条件为: ? ??>>-040040560K K 即: 014>>K 5.9试根据下面开环频率特性,使用Nyquist 判据分析相应的闭环系统的稳定性 ()()1 10110)(++=ωωωωj j j j G K 解:使用Nyquist 判据要求画出开环频率特性)(ωj G K 的Nyquist 轨迹 )(ωj G K 的幅频特性函数与虚频特性函数分别为:

)1100()1(10 )(22++=ωωωωj G K 1 10arctan 1arctan 20)(ωωπω--- =∠j G K 将)(ωj G K 表示成下式: )1100)(1() 10100(110)1100)(1(10 )101)(1()(22222++-+-=++?--?-=ωωωωωωωωωωωj j j j j G K 可得其实频特性函数与虚频特性函数分别为: )1100)(1(110)}(Re{22++-=ωωωω ωj G K )1100)(1() 10100()}(Im{222++-=ωωωωωj G K 考虑ω的几个特殊值 当0=ω: ∞=)(ωj G 2 )(πω-=∠j G 当∞=ω: 0)(=ωj G πω2 3)(-=∠j G 由于当ω从0变化至∞,)(ωj G ∠从2π-变化至2 3π-,因此该系统的Nyquist 轨迹必然从复平面的第三象限移动至第二象限,也即轨迹必然与负实轴相交。 令0)1100)(1()10100()}(Im{222=++-= ωωωωωj G K ,即101=ω 此时: 9) 110)(11.0(110)1100)(1(110)}(Re{22-≈++-=++-=ωωωω ωj G K 即Nyquist 轨迹与负实轴相交点为(-9,j0) 由此可以做出)(ωj G K 的Nyquist 轨迹图,如下:

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

控制工程基础---第四章传递函数

第四章传递函数 第一节传递函数 一、定义:系统初始状态为零,系统输出与输入的拉氏变换之比。 ) () ()]([)]([)()()()(s R s Y t r L t y L s G s G t y t r = =,则为,系统传递函数 、系统输入、输出分别为 二、求法: 1、由微分方程求取。 若系统的微分方程为 ) ()()()()()()()(01) 1(1) (01) 1(1)(t x b t x b t x b t x b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 对微分方程的两端求拉氏变换 11 1011 1011 1011 1011 1011 1)() ()() ()() ()() ()()()()()()()(a s a s a s a b s b s b s b s X s Y s G s X b s b s b s b s Y a s a s a s a s X b s sX b s X s b s X s b s Y a s sY a s Y s a s Y s a n n n n m m m m m m m m n n n n m m m m n n n n +++++++==+++=++++++++=++++------------

例1:系统微分方程为)()() ()(2 2t f t kx dt t dx c dt t x d m =++,求系统的传递函数。 解:由给定的微分方程, k cs m s s F s X s G s F s X k cs m s s F s kX s csX s X m s t f t kx dt t dx c dt t x d m ++= ==++=++=++2222 21 )()()()()()()()()()()()() ()( 例2:求R-C 电路的传递函数。 解: 1 1 )()()()1()()()(00000+= =+=+=+Rcs s G s U s U Rcs s U s U s RcsU u u dt du Rc i i i 三、性质 1、系统的传递函数取决于系统的本身,与系统的输入、输出及其它外界因素无关。 2、对于实际的物理系统,m n ≥ 四、概念 1、零点、极点: 零点:系统传递函数分子s 多项式为零的根。 极点:系统传递函数分母s 多项式为零的根。 2、传递系数: 值定义为传递系数)0(G 。 3、特征方程:传递函数分母s 多项式。 4、阶:系统特征方程s 的最高指数。 例3、以例1、例2的结果为例。 第二节典型环节及其传递函数

2机械控制工程基础第二章答案

习 题 2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x i o o o o 222=++ (2) x tx x x i o o o 222=++ (3) x x x x i o 222o o =++ (4) x tx x x x i o o o 222o =++ 解: 凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要特性就是它满足叠加原理。该题中(2)和(3)是线性系统。 2.2 图(题2.2)中三同分别表示了三个机械系统。求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。 图(题2.2)

解: (1)对图(a)所示系统,由牛顿定律有 x m x c x x c i o o 2 o 1 )(=-- 即 x c x c c x m i 1 2 1 o o )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 )1()()(1 x x c k x x o i -=- )2()(2 x k x x c o o =- 消除中间变量有 x ck x k k x k k c i o 1 2 1 o 2 1 )(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x x c o o i o i 2 1 )()(=-+- 即 x k x c x k k x c i i o o 1 2 1 )(+=++ 2.3求出图(题2.3)所示电系统的微分方程。 图(题 2.3) 解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 ?+=idt C i R u o 1 2 2

最新定位误差计算解析

323 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工 序图则是设计专用夹具的主要依据。 由于在夹具设计、制造、使用中都不可能做到完美精确, 故当使用夹具装夹加工一批工件时, 不可避免地会使工序的加工精度参数产生误差, 定位误 差就是这项误差中的一部分。 判断夹具的定位方案是否合理可行, 夹具设计质量是否满足工 序的加工要求,是计算定位误差的目的所在。 1. 用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设 计图上确定几何要素的位置所依据的基准; 工艺基准是指在工艺过程中所采用的基准。 与夹 具定位误差计算有关的工艺基准有以下三种: (1) 工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单 地理解为工序图上的设计基准。 分析计算定位误差时所提到的设计基准, 是指零件图上的设 计基准或工序图上的工序基准。 (2) 定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹 具定位元件定位工作面接触或配合的表面。 为提高工件的加工精度,应尽量选设计基准作定 位基准。 (3) 对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工 刀具位置所依据的基准。 必须指出,对刀基准与上述两工艺基准的本质是不同, 它不是工件 上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等) 。 如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图 3.3中,刀具的高 度尺寸由对导块 2的工作面来调整,而对刀块2工作面的位置尺寸 7.85土 0.02是相对夹具体 4的 上工作面(相当支承板支承工作面)来确定 的。夹具体 4的上工作面是对刀基准, 它确定了 刀具在高度方向的 位置,使刀具加工出来的槽底 位置符合设计的要求。图 3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴 线, 对刀基准 则为夹具上定位圆柱销的轴线。再如图 3.21所 示,轴套件以内孔定位, 在其上加工一直径为 0 d 的 孔,要求保证0 d 轴线到左端面的尺寸 L 1及 孔中心线对 内孔轴线的对称度要求。尺寸 L 1的 设计基准是工件左端面 A 对刀基准是定位心 轴的台阶面A ; 0 d 轴线对内孔轴线的对称度的 设计基准是内孔轴 线, 对刀基准是夹具定位心轴 2的轴线00。 2. 定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起 该批工件某加工精度参数(尺寸、位置) 的加工误差, 称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计 算,其值为设计基准在加工精度参数方向上 的最大变动 量,用."■:dw 表示。 a) b 图3.21 钻模加工时的基准分析

控制工程基础_课后答案

控制工程基础习题解答 第一章 1-5.图1-10为张力控制系统。当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。画出该控制系统的框图。 由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。 当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。 框图如图所示。 1-8.图1-13为自动防空火力随动控制系统示意图及原理图。试说明该控制系统的作用情况。 题1-5 框图 电动机 给定值 角位移 误差 张力 - 转速 位移 张紧轮 滚轮 输送带 转速 测量轮 测量元件 角位移 角位移 (电压等) 放大 电压 测量 元件 > 电动机 角位移 给定值 电动机 图1-10 题1-5图

该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统 获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。 跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。 瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。 控制工程基础习题解答 第二章 2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (3). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (5). ()?? ? ? ?+ =35sin πt t f 图1-13 题1-8图 敏感 元件 定位伺服机构 (方位和仰角) 计算机指挥仪 目标 方向 跟踪环路 跟踪 误差 瞄准环路 火炮方向 火炮瞄准 命令 - - 视线 瞄准 误差 伺服机构(控制绕垂直轴转动) 伺服机构(控制仰角) 视线 敏感元件 计算机 指挥仪

相关文档
最新文档