非牛顿液体的粘度

非牛顿液体的粘度
非牛顿液体的粘度

非牛顿液体的粘度除了与温度有关外,还与剪切速率、时间有关,并有剪切变稀或剪切变稠的变化。纯液体和低分子物质的溶液属于牛顿液体;而大多数液体,如高分子溶液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体系的流动都是非牛顿液体。

在线粘度测量中的流变学问题

丁晓炯广州市博勒飞粘度计质构仪技术服务有限公司

摘要:在线年度测量是目前很多石油、化工、食品、电子、造纸等行业中应用越来越广泛的技术,在线粘度的测量方法很多,主要有毛细管式、旋转式、振动式、注塞式等。而测量的对象也各不相同,流体的流变特性也各不相同,应用面也各不相同。本文从流变学的角度出发,对在线粘度测量的方法、流体的流变学类型进行分析,讨论不同在线粘度测量方法的特点和应用,对一些常见行业应用进行归纳,并对在线粘度测量中的一些常见问题进行流变学分析,并相应提出在线测量中的处理方法。

关键词:在线粘度;流变学;牛顿流体;非牛顿流体;剪切变稀;剪切变稠

目前,随着工艺控制要求的不断提高和测量技术的不断发展,在石油、化工、食品、电子、造纸等行业中在线粘度测量技术应用越来越广泛,不同品牌和不同测量原理的在线粘度计都有使用。在实际应用过程中,有使用效果良好的,也有使用效果不理想的,为何会有不同的效果?除了产品本身的问题,如何根据测量物料的流变特性来选择相应的在线粘度计,如何解释在线粘度测量数据和实验室测量数据的差异,如何获得稳定一致的测量结果,这些都可以从流变学的角度来进行分析并获得解决方案。

1 在线粘度测量技术

1.1 在线粘度测量的应用

在线粘度计的测量技术和应用已经有几十年的历史,许多工业生产过程中都需要进行年度的连续自动测量与控制。

在石油工业中,在减压蒸馏过程,在柴油、润滑油、燃料油等的在线自动调和过程,石油的脱蜡脱沥青过程等,需要进行在线粘度监测来检查原料质量,监视与控制生产、提高产品合格率,实现自动调和及自动切换产品等。

在各种聚合工程中,通过粘度的在线监测来控制反应终点。子啊化纤抽丝钱的熔体粘度在线监测科仪保证纤维的粗细适当、均匀。减少废品率及能耗。

此外,在油墨生产、印刷、油漆喷涂、洗涤剂与化妆品生产,胶囊生产以及浇涂、浸渍、滚涂等各类材料的涂布过程也都要进行在线粘度测量。

1.2 在线粘度计的类型

目前,在线粘度计的类型很多,根据测量原理不同,主要有以下几种类型:

1.2.1 毛细管式

毛细管式在线粘度计是基于泊氏定律,仪器的主体是一段细管,细管与定量泵连接,由定量泵控制流体以恒定的流量进入细管,有压力监测器测量细管两端的压力差,根据泊氏公司计算流体的粘度。这类在线粘度计目前一般使用在石化炼油行业,用来测量成品油的粘度,测量范围一般都不高,在几百cP以下,但有些特殊的在线粘度计对细管进行特殊设计后也可以用来测量高粘度的流体,但应用相对较少。

1.2.2 旋转式

在线粘度测量中,旋转法的应用比其他方法广些,在线旋转粘度计的测量原理与实验室粘度计相同,根据转子和传感器的连接方式,可分为外旋式和内旋式两种,主要是利用转子在流体中以恒定转速旋转,直接测量流体的粘性力大小,计算出粘度。这类在线粘度计是从粘度的物理定义出发,测量范围可以很宽,测量时的剪切率也不高,除了测量牛顿流体外,尤其适合于非牛顿流体的测量。

1.2.3 振动式

振动式的在线粘度测量起步相对较晚,但发展较快。振动法的传感头为一圆柱体,以恒定的振幅振动,当它剪切流体时,流体的粘度对传感头振动振幅有影响,测量维持恒定振幅所输入的功率,计算得到粘度和密度的乘积。这类在线粘度计的理论测量范围也很宽,适合于不同的流体测量,但测量时的剪切率不能精确计算,一般剪切率约在1000 s ,因此实际使用中,需要根据流体的流变学特性正确选用。

1.2.4 注塞式

这类在线粘度计是利用一个在流体中水平或垂直运动的活塞,测量活塞在固定位置内的运动时间来计算出流体的粘度。这类粘度计是断续式的测量,并不是完全意义上的在线测量;同时由于是依靠活塞的运动,因此流体自身的流动将对测量产生一定的影响。

综上所述,各类在线粘度计的测量原理不同,适用的流体和工艺条件也各不相同,需要根据测量流体的流变学特性和现场工艺条件进行选择,不能随意确定,以免造成不必要的损失。

2 流变学和流变类型

2.1 流变学和粘度

流变学研究的是在外力作用下,物体的变形和流动的学科,研究对象主要是流体。为粘度是流变学中一个很重要的基本概念,粘度是

流体流动力对其内部摩擦现象的一种表示,粘度大表现内摩擦力大。分子量越大,碳氢结合越多,这种力量也越大,因此粘度经常用来表征分子量、聚合程度、有效成分含量等。

在实际测量中,往往会发现同一个流体的粘度值会有不同,开始怀疑是不是仪器有问题。其实这是粘度测量中的正常现象,这可以用流变学理论来具体分析。

2.2 流体类型

流体分为牛顿流体和非牛顿流体,牛顿流体是指流体的粘度不随测量时的剪切率条件变化而变化,换一句话说,如果是用同样的测量方法和仪器,在不同的转速下测量,粘度是不变的;而非牛顿流体是指流体的粘度随着测量时剪切率条件变化而变化。常见的牛顿流体或接近牛顿流体的有:水、有机溶剂、汽油、柴油等小分子的流体或溶液。一般这类流体的测量采用毛细管式的居多。目前,实际测量的流体大部分都是非牛顿流体,而非牛顿流体又可按照流变特性(按剪切率的变化)的不同分为:剪切变稀和剪切变稠。见图1、2、3。

2013-7-6 20:19 上传

下载附件(2.07 KB)

2013-7-6 20:20 上传

下载附件(2.21 KB)

2013-7-6 20:20 上传

下载附件(2.1 KB)

图1 牛顿流体图2 非牛顿流体剪切变稀图3 非牛顿流体剪切变稠

而测量的化工产品大部分流体又以剪切变稀的居多,聚合物、高分子材料等的熔体或溶液都是。因此,我们常常说:“粘度不是一个点,而是一条曲线”。既然是一条曲线,那么到底取那个点更合适,或者说测量到底是在哪个点上?这就需要根据仪器的测量原理和测试条件具体分析了。单从流体的流变特性和粘度测量的目的来看,常用的原则是选用低剪切条件下的测量值,这样可以流体在低剪切下测量,剪

切变稀的现象不太明显,使粘度指标的灵敏性得到充分利用,提高监测的灵敏度。

2013-7-6 20:20 上传

下载附件(10.79 KB)

图 4 东菱化工流体产品粘度-剪切率曲线

如图4 所示的是东菱化工的两个不同产品,从流变曲线可以发现,这两个产品是剪切变稀的非牛顿流体,在低剪切时蓝色样品粘度比红色样品要高,而随着剪切率的提高,两者粘度同时下降,但下降趋势不同,在剪切率大于1500 s 后,两者的粘度大小关系正好相反,因此该客户试用振动式在线粘度计时,由于仪器固有的剪切率较高,因此和最终产品的检验结果差异非常大,大小关系也正好相反,而选用旋转式在线粘度计后,测量的结果和最终产品的检验结果相符,同时,在线粘度值作为反应终点判断的灵敏度也很高,获得了预期的在线测量目的。类似的应用实例在国内外的文献中都有阐述。

3 在线粘度计的应用

根据以上的仪器测量原理和流变学的理论和实际现象,本人认为在选用在线粘度测量仪器时,首先需要对测量流体的流变特性有一定的了解,根据被测流体的实际情况来选择相应合适的仪器,而不能随意选用在线粘度计,以免造成不必要的损失。

根据一些行业的实际应用情况,简单做了一些归纳,供大家参考:

A、低粘度流体,一般小于500 mPa*s:这类流体一般为成品油、小分子的聚合物溶液,接近于牛顿流体,最佳的在线测量方法是毛细管式,其次可以使用旋转式、活塞式和振动式。

B、中等粘度流体,一般在几百到10000 mPa*s:这类样品基本都是剪切变稀的非牛顿流体,剪切变稀的倾向十分明显,最佳的在线测量方法是旋转式,其次是活塞式和振动式。

C、高粘度流体,一般在10000 mPa*s 以上:这类样品基本也都是剪切变稀的非牛顿流体,在线测量的结果往往和实验室测量结果差异很大,一方面是由于测量条件的差异,另一方面有时样品是在实验室用溶剂溶解后再测量,这样由于测量条件和方法的不同会导致数据的差异。最佳的在线测量方式是旋转式,其次是特殊的毛细管式和振动式。当然,这些归纳是从流体的类型角度来考虑的,在实际应用中,还需要根据现场的要求,主要考虑安装的要求,是安装在管道上,还是安装在反应釜或容器上;是敞开体系,还是密闭的高温高压体系等;流体是否具有腐蚀性;流体会不会固化等来综合考虑。

4 在线测量中的常见问题

由于流体的流变特性和粘度测量的特性,在线粘度测量过程中经常遇到一些常见的问题,在此我们做一归纳并给出解决方案。

4.1 实验室数据和在线数据的对比问题

在前面我们提到,粘度的测量方法很多,实验室和在线粘度测量的方法和仪器也很多,这样在进行数据对比时一定要注意测量条件的一致性,这个一致性包括了测量方法和测量条件,测量条件又包括了测量温度、压力、流速、仪器的测量条件(剪切率)等,只有这些条件完全一致,测得的结果才会一致。但是实际应用中这些条件很难一致,在这种情况下,很多人会考虑是否可以找到一个相互换算或转

换的方法,这种思路是正确的,但在实施过程中,由于这种关系的摸索需要一定数据的积累,而且最后的结果往往不是线性的,因此会对后续的直接使用造成一定的影响。

2013-7-6 20:19 上传

下载附件(14.28 KB)

图 5 实验室粘度和在线粘度数据对比图(时间-粘度)如图 5 所示,这是用Brookfield 的实验室粘度计DV-II+pro 和在线粘度计TT-100 对同一样品在同一时间和粘度为坐标下的实时曲线,我们可以不必去关心这两者之间的关系如何,只要通过实验室数据(可以是中间产品,也可以是成品)的控制点和上下限,相应地通过时间,找到在线粘度的控制点和上下限,这样就省去了很多复杂的计算,在最短时间内获得在线测量和控制的最佳点。

4.2 温度补偿问题

由于实验室采样测量的温度和现场温度经常是不同的,而且现场的温度也会有波动,因此很多使用者会关心和需要温度补偿,这种需要也是很实际和必要的。目前市场上的在线粘度计产品都会提供温度补偿功能,但在实际使用中还是会有问题,问题到底在哪里呢?目前温度补偿的理论依据是,通过设置参数对粘度进行不同温度点的计算,这在理论上是对的,一般都是根据@@@ D341 进行计算,但是没有注意到的是,这需要先行测量流体的粘度-温度曲线,经过计算才能获得真实的参数,而不是根据公式简单的设置几个参数,需要对测量的流体的粘-温特性有所详细了解后才能设置,不能随意。由于实验室的温度控制精度,一般都要比流程控制精度高,我们建议可以采用 4.1 所介绍的方法只进行几个控制点的直接换算,除了对一些对温度控制和温度敏感性特别高的流体外,没有必要进行温度补偿,如果需要温度补偿就一定要获得完整的粘度-温度曲线。

5 结论

综上所述,随着在线粘度测量技术的应用和发展,在实际使用中也产生了一些问题,这些问题的由来主要是由于对流体的流变特性、实验室粘度测量方法、在线粘度测量方法和在线粘度计的特点了解不够而造成的。在考虑在线粘度测量时,需要对被测流体的流变特性有一个基本了解,这样可以选择合适的在线粘度测量方法,选择相应的在线粘度计;同时在做数据对比时,需要考虑实验室粘度的测量方法,并考虑是否需要进行温度补偿,可以利用 4.1和4.2 所介绍的方法获得相对应的转换。流体粘度的测量需要根据流体的流变特性,选择相应的测试方法和仪器,针对一些成品油、低粘度接近于牛顿流体的物料,采用毛细管在线粘度计;针对一些中、高粘度的流体,需要考察其流变特性,建议选用低剪切的旋转式在线粘度计。

非牛顿型流体的分类

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ???≥-<=y y y σσησσσσγ/)(0& (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γησσ&p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。 特殊地,若流动规律遵从幂律,方程为

n y K γσσ&+= (2-76) 则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与橡 胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。 4.2 假塑性流体 绝大多数高分子液体属假塑性流体。流动的主要特征是流动很慢时,剪切粘度保持为常数,而随剪切速率增大,粘度反常地减少——剪切变稀。 典型高分子液体的流动曲线见图2-17。曲线大致可分为三个区域: 当剪切速率0→γ&时,γσ&-呈线性关系,液体流动性质与Newton 型流体

非牛顿型流体的分类

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 因此具有塑性体的可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ???≥-<=y y y σσησσσσγ/)(0& (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γησσ&p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。 特殊地,若流动规律遵从幂律,方程为 n y K γσσ&+= (2-76)

则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与 橡胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。 4.2 假塑性流体 绝大多数高分子液体属假塑性流体。流动的主要特征是流动很慢时,剪切粘度保持为常数,而随剪切速率增大,粘度反常地减少——剪切变稀。 典型高分子液体的流动曲线见图2-17。曲线大致可分为三个区域: 当剪切速率0→γ&时,γσ&-呈线性关系,液体流动性质与Newton 型流体相仿,粘度趋于常数,称零剪切粘度0η。这一区域称线性流动区,或第

牛顿流体与非牛顿流体的区别

牛顿流体与非牛顿流体的区别 上周我讲了粘度的概念,根据牛顿模型,即公式:粘度=剪切力/剪切率。 这是旋转式粘度计的测量原理。而实验室测量粘度方法基本都是旋转式测量;其他测量粘度方法请参考PPT。 本周我们要说的内容就是流变原理,但是万变不离其宗,还是围绕粘度定义的公式来说。因为粘度的变化多变,这才有粘度计、流变仪的发展空间。下面介绍的内容就是流变学的一部分----流体变化特性。 一、牛顿流体与非牛顿流体: 根据牛顿的理论,流体的粘度值都是恒定不变的,如水、酒精、轻质油等。 实际上,通过后人的研究发现流体的粘度并不是恒定不变的。 牛顿流体的粘度:剪切力/剪切率=恒定值; 非牛顿流体粘度:剪切力/剪切率≠恒定值;即粘度是个变化量;引起其变化的常见的因素是剪切率、时间等。 二、流变曲线: 事实上大多数的流体是非牛顿流体,物料随着剪切率或时间的变化会改变。因此,在一定的条件下测量的粘度值不一样,所测得的粘度值是个曲线而不是一个恒定的常数。 牛顿流体的曲线: 剪切力/剪切率=tanα是个常数; 非牛顿流体的粘度曲线大致分两类,一种是剪切变稠,一种是剪切变稀; 剪切变稀指的是随剪切率的增加粘度减小,物料越剪切越稀,剪切变稠与此相反; 具体分有六种,如下:(imaging all these examples) 1)假塑性:如酱,纸浆等; 特点:粘度随剪切率的增加而减小;粘度随剪切率的减小而增加; 剪切率的变化不管增大或是减少,都在同一条曲线上,这种特性叫假塑性。

2)塑性:如口香糖,焦油等; 特性描述:粘度随剪切率增加而减少; 剪切力达到一定值时方才有剪切率的变化;如图中的yield部分,我们称之为屈服应力。流体克服屈服应力后方才产生流动变形。单向。 口香糖正常状态下是固体,你咬了一口后马上软化,咬下那一口的力就是物料的屈服应力。 3)膨胀性:如花生浆,湿沙子等; 特性:剪切变稠,如湿的沙子,粘度随着剪切率的增加而增大; 剪切率越高,剪切力越大; 4)触变性:如蜜糖,猪油,淀粉等; 特性:粘度随时间变化减少,剪切变稀。 相同剪切率下,剪切率减小时粘度小于剪切率增加时的粘度。

非牛顿流体是受粘度和剪切速率支配的流体

聚丙烯涂覆料生产及应用非牛顿流体是受粘度和剪切速率支配的流体 高粘度的高聚物,都表现非牛顿流体行为。 粘度随剪切速率的增大而降低的非牛顿流体,称之为假塑性流体。另一种非牛顿流体,其粘度随剪切速率的增大而增大,称之为膨胀流体。熔体指数也能间接表征高聚物分子量大小。 高聚物的分子量分布可用熔体流动速率值之比来测定。 聚丙烯的HI值在10~40之间,同时也能反映出高聚物的膨胀比。(SR) 分子量和分子量的分布是高聚物基本结构参数之一,与力学性能密切相关。 许多重要的力学性能,如拉伸强度,冲击强度,弹性模量,硬度、抗应力开裂性以及粘合强度等,都随高聚物分子量的增大而提高。 高聚物的产品加工过程对分子量的依赖性非常大。 某一极限分子量以上时,如果零切边速率下的重均分子量增加10倍,则熔体粘度将增大两千倍。 上面所说非牛顿性,就跟分子量有依赖性。表现在加工中弹性行为离模膨胀,熔体破裂等不稳定流动现象。 了解了高聚物的分子量和分子量的分布,对高分子材料的选择及其加工工艺条件的确定,都能有所帮助。 聚丙烯:根据聚合方法可分为均聚聚丙烯和共聚聚丙烯两大类。复纸类选用均聚,编织布、纸或无纺布可选用均聚或共聚聚丙烯。一

般来说均聚优于共聚,但不是绝对的。 要求: 1、树脂应有优良的熔体流动性。 2、树脂应具有一定的熔体强度。 3、树脂热稳定性较好。用好抗氧剂,防止热氧化降解。 4、树脂中不宜含有过量的润滑剂。 5、树脂中不宜含有“晶点”和外来杂质。 聚丙烯是等规高结晶的高聚物,在塑料扁丝制造中,为了提高晶度以增大扁丝强度,冷却速率必须缓慢,而生产薄膜时或复合时,为了降低结晶,或达到透明性,则应采取急冷(猝冷)。 我们现在所使用涂膜料延伸性的问题上发生的问题,几乎很少发生,那就说明我们使用的树脂熔体张力小,熔体指数大而膨胀比小。 对于缩颈,树脂的膨胀比是决定性因素,但熔体指数也有影响。膨胀比是表示树脂熔体弹性效应的尺度之一。 膨胀比变大,就表明对模头出处熔体引出方向上作用的力加大,因而缩颈变小。通常膨胀比大而且熔体指数愈小的树脂,其缩颈愈小。 因而在分子结构上,分子量分布宽、长链支链多而且分子量大的树脂是适宜涂布复合用树脂。 密度高的树脂,分子量分布窄,长链支链数目少,膨胀比倾向于变小,延伸性与缩颈密度影响是表现的是伴随密度变化而使膨胀比变化的结果。熔体指数和密度的数据推定延伸性和锁紧的水平,则记住密度一项最方便。

(完整版)非牛顿流体的分类

姓名:高墨尧学号:20150614 专业:农业机械化 非牛顿流体的分类 根据非牛顿流体的粘度函数是否和剪切时间有关,可以把非牛顿流体分成两大类:非时变性非牛顿流体和时变性非牛顿流体。 1、非时变性非牛顿流体 这类流体的切应力仅与剪切速率有关,即粘度函数仅与应变速率或(切应力)有关,而与时间无关。非时变性非牛顿流体主要包括: 假塑性流体:粘度随剪切速率的增大而降 低。特点: (1)在直角坐标系中,其流变曲线为凹向 剪切速率轴的且通过原点的一条曲线。 (2)τ和γ&是一一对应的,即受力就有流 动,但τ与γ&的变化关系不成比例(即不符合 牛顿流体内摩擦定律,故为非牛顿流体)。随着γ&的增加,τ的增加率逐渐降低。 胀塑性流体:粘度随剪切速率的增大而增 大。特点: (1)在直角坐标系中,膨肿性流体的流变 曲线为通过坐标原点且凹向剪切应力轴的曲线, 如图所示。 (2)一受力就有流动,但剪切应力与剪切 速率的不成比例,随着剪切速率的增大,剪切 应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性。因此,膨肿性流体具有剪切增稠性。 宾汉流体:理想粘塑性流体,存在一定程度的屈服应力。特点: (1)流变曲线如图所示,为一条直线,但直线不通过坐标原点,而是与剪τ处相交。 切应力轴在 B

τ时,宾汉 (2)当对流体施加的外力τ< B 姆流体并不产生流动,体积只产生有限的变形, τ时,体系才产生流动。且流动后 只有当τ> B τ是使体系产生流动所需 流体具有剪切稀释性。 B 要的最小剪切应力,即使流体产生大于0的剪切 速率所需要的最小剪切应力,称之为屈服值。屈 服值的大小是体系所形成的空间网络结构的性质所决定的。 凡是具有屈服值的流体均称为塑性流体,外力克服其屈服值而产生的流动称为塑性流动。 2、时变性非牛顿流体 这类流体的粘度函数不仅与应变速率有关,而且还与剪切持续时间有关。大致可分为两类: 触变性和流凝性流体:随着切应力作用时间的延长,表观粘度越来越小的流体叫做触变性流体随着切应力作用时间的延长,表观粘度越来越大的流体叫做流凝性流体,这种流体在实际中非常少见。其特点: (1)流体的表观粘度随剪切时间而下降 (2)流体的表观粘度随时间而增长 (3)反复循环剪切流体可得滞回环 (4)无限循环剪切流体可得到平衡滞回环 粘弹性流体:粘弹性流体同时具有粘性液体和弹性固体的性质,哪种性质的表现程度如何要取决于外力作用时间的快慢长短。其现象: (1)爬杆现象 (2)挤出胀大现象 (3)同心套管轴向流动现象 (4)回弹现象 (5)无管虹吸现象 (6)汤姆孙减阻效应 以上就是非牛顿流体的分类,而我们平时接触的大多数物料也都是非牛顿流

非牛顿流体力学研究进展

非牛顿流体力学研究进展 摘要 对非牛顿流体流变学特性的正确理解程度直接影响我们对非牛顿流体本质特性的理解,所以研究非牛顿流体的流变学特性有助于人类更好的驾驭非牛顿流体,对建立非牛顿流体的本构方程、从数学上描绘非牛顿流体具有重要的意义。近来,国内外学者从非牛顿流体不同的应用范围对非牛顿流体的流变特性开展了大量的研究。比如对聚合物和表面活性剂溶液流变特性的研究、对食品生产辅助材料流变特性的研究、以及对聚合物溶液和石油等流变特性的研究等。 关键词:非牛顿流体;本构方程;流变特性

前言 非牛顿流体是不服从粘度的牛顿定律的流体。非牛顿流体力学是研究非牛顿流体的本构方程,材料参数(函数)的测量和非牛顿流体的流动等的学科。在国内由于国民经济的急需,非牛顿流体力学日益受到科技界的重视,不少单位从应用的角度出发进行了这方面的研究工作。 1978年全国力学规划认为非牛顿流体力学是必须重视和加强力量的薄弱领域,此后非牛顿流体力学有了很大的发展。1979年后在北京、成都、青岛等地举办了多次讲习班。许多国外非牛顿流体力学家、流变学家访问了中国并举办了讲座。1982年4月召开的第2届全国多相流体力学、非牛顿流体力学和物理一化学流体力学学术会议,同第l届会议相比,非牛顿流体力学方面的研究进展显著。1983年10月第2届亚洲流体力学会议上,中国宣读了8篇非牛顿流体力学方面的论文。1985年11月在长沙召开的第3届全国流体力学会议和第1届全国流变学会议上,宣读了非牛顿流体力学论文几十篇。目前在北京、上海、成都等地正逐渐形成非牛顿流体力学研究和教学的基地。

非牛顿流体力学研究进展 自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。应该指出的是,在自然界和工程技术界,还存在一系列形形色色的非牛顿流体,比如油漆、蜂蜜、牙膏、泥浆、煤水浆、沥青和火山熔岩等,它们往往具有与牛顿流体不同的本构方程和流动特性。此外,随着科学技术的发展,某些原本被认为是牛顿流体的介质在精细的观测或特殊的情况下也被发现存在非牛顿流体的特性。 以血液在毛细管中的流动为例,Poiesulell于19世纪初的研究结果认为它具有牛顿流的特征;1942年CoPIey的测量却表明它存在剪切稀化的非牛顿流特性;1972年Huang等人的进一步实验测定了血液的迟滞环和应力衰减特性,定量给出了描述血液触变性的曲线。再比如,在水锤这一类瞬变运动中,由于特征时间非常短,水也会在瞬间呈现出弹性等非牛顿流体才可能存在的特征。在微流动中,当特征尺度非常小时,水分子旋转效应对流动的影响也会使水呈现出微极性流体所具有的非牛顿流特征。 当前,国际上非牛顿流体力学中重要的研究领域有以下几个方面。 (一)本构方程 本构方程最好用张量形式写出,它不但能满足对坐标系具不变性的原则,而且形式简练。对于不可压和各向同性的流体,其应力张量S可写成:S=pI十T,` 式中p为标量,I为单位张量,T为偏应力张量。非牛顿流体力学与牛顿流体力学不同,由于它不能用一种本构方程来适用各种流动情况,所以发展了各式各样的本构方程。 (1)广义牛顿流体这种流体没有弹性,但其粘度是剪切速率的函数,其本构方程如下: T=η(Ⅱ)A, 其中A为里夫林一埃里克森张量(应变率张量的两倍);Ⅱ一1/2trA2,为A的第二个不变量;η(Ⅱ)为各种粘度函数。 (2)具有屈服应力的流体石油工业中的钻井泥浆和牙膏等物质具有一屈服应力τy。当剪应力低于τy时,流体静止;当剪应力超过τy时,流体流动。此种流体也称为粘塑性流体。 (3)触变性流体当施加剪切速率γ0于凝胶漆等物质时,剪切应力达到τ0。当γ0保持

什么是非牛顿流体

什么是非牛顿流体

在上述简单剪切实验中,对于许多非牛顿流体,比值是的函数,所以和之间的关系式可写成 式中称为表观粘度。对于聚合物熔体和聚合物溶液,是的递减函数,这 样的流体被称之为剪切变稀(假塑性)流体。对于浓缩的固体悬胶液,是的递增函数,称这类流体为剪切增稠(胀塑性)流体。 下图就是两种不同的非牛顿流体:剪切变稀和剪切变稠型。他们本来都是粘稠液体,但是遇到固体表面摩擦,性质迥然。 在美剧《生活大爆炸》第二季第三集中出现过一个在音响上“跳舞的小人”,Leonard关掉音响时,小人瞬间变成一滩冒泡的液体(如下图)。 我当然不知道电视剧中的液体是什么成分,但是在“果壳网”上找到了类似的试验。 把玉米淀粉和水以3:1的比例在碗里混合均匀就可以制成和电视剧中性质相同的液体。在混合的时候如果用各种不同的速度搅动筷子,可以感受到这种胀塑性混合物的特性,试验发现这种流体有吃软不吃硬的性质,如果用力过大,

就会被拦住,而轻柔的动作却可以搅动这些流体。玉米淀粉浓浆对剪切速率有很强烈的反应,因为恰当配制的玉米淀粉浆是一种胀塑性流体,其粘度随着剪切速率的增加而增加。当流体被猛烈搅动时(剪切速率高),液体来不及填满微粒之间的缝隙,微粒之间的摩擦力急剧增加,继而粘性也急剧增加。 3.2 具有屈服应力流体 已经知道许多物质,比如泥浆、牙膏,具有屈服应力。所以在简单剪切实验中,只要小于某个有限的值,则流体不运动,当超过。时,流体才流动。下图画出了对于的曲线,通常将具有屈服应力的物质称之为Bingham物质。 3.3 弹性液体 上面给出的液体的本构方程都不具有弹性特性。粘弹性流体既具有弹性特性也具有粘性特性,并且表现出象弹性反跳等现象。也说这类流体具有记忆特性,现在的应力状态依赖于这流体过去形变的历史。因此本构方程是很复杂的,但在某些流动条件下,可将其化简。 包括小振幅震动流动,在这种流动里,应力、应变和应变率都很小,所以线性粘弹性流体的方程可能就足够了;低速流动,如果流动是很慢的,并且流动的变化也很慢。比如绕经光滑物体(例如球体)的蠕变流动,我们可以选取微分型的本构方程来描述这类流体。我们指出,将蠕变流动看作线性粘弹性流体可能是不满足要求的;复杂流动,如果流动是急剧变化的,比如包含几何形状突然变化的流动,我们通常选取隐含型本构方程,或者选取积分型本构方程。 爬杆效应 1944年Weissenberg在英国伦敦帝国学院,公开表演了一个有趣的实验:在一只有粘弹性流体(非牛顿流体的一种)的烧杯里,旋转实验杆。对于牛顿流体,由于离心力的作用,液面将呈凹形;而对于粘弹性流体,却向杯中心流动,并沿杆向上爬,液面变成凸形,甚至在实验杆旋转速度很低时,也可以观察到这一现象。

用旋转式粘度计测定非牛顿流体的粘度

精心整理本文由linanzhezb贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 一一…?f7:一- , ≯ 用旋转 柏道发 提要 一 , 概 述 体.非牛顿流体的牯度与切应力和切变速度有关,在不同的r,.D下粘度不同.非牛顿

流体 大致可以分三类,实际的类型是较多的,流体性质变化也不规律,因此给测定非牛顿流体的牯度带来困难.本文介绍用ND卜1型旋转式牯度计测定巧克力流体(非牛顿流体)牯度的情况.属 测定粘度时必须首先知道被测流体的性质和种类,判定是牛顿流体,非牛顿流体.非牛 类,. . 体. 度}. 二, 如图1 旋转. 2内摩 定律由下式表示 ,,=H..t 式中 (r=≈)或或.D ,——内摩擦力,s——流层接触面税,

r—应(一})—切力r{)f—)l,_D—变度D)—切速(一}, n——粘度(称动力粘度,滞系数,也牯内摩擦系数).牛顿流体的粘度与切应力和切变速度 无关 一 圈1 f 2一2 粘度. 慢下降. 按下指针控制杆,开启电机,再放松指针控铆 三,测定所需要的设备及材料 1经计量部门检定合格的ND卜1型旋.转式粘度计} 2DL51型超级恒温槽,恒温精度.0 ±0.~1Cj

杆,使转子转动.察指针指示格数(转角)观偏, 只要大约在3~900格之间就可以了.如果不 在此范围内,就按下指针控制杆,停电机后将 变速旋钮置于合适的转速再开电机,放松指 针控制杆,转子继续转动,待指针稳定,就进行读数.慢转速,可以不停机,直接读数快转速,就必须按下指针控制杆,停电机后,再 3 · 读数. 5. 6 复测定 度值. 7 四, 把巧克力流体倒入50高型烧杯中,0ml投入超级恒温槽内,水面高于巧克力流体面1rm.在S0aO±01C下恒温,用玻棒不断搅..拌,以便加速巧克力藏体温度的均匀.当用温 为了使读者便于用牛顿流体与非牛顿流体进行比较,以加深对测非牛顿流体的认识,因此,就按上述测定方法,测定一个甲基硅油的粘度(牛顿流体)是. 五,计算测定结果

非牛顿流体的流动解析

非牛顿流体的研究性学习 非牛顿流体 科技名词定义 中文名称:非牛顿流体 英文名称: non-Newtonian fluid 定义:黏度系数在剪切速率变化时不能保持为常数的流体。所属学科:机械工程(一级学科);分析仪器(二级学科);物性分析仪器-物性分析仪器一般名词(三级学科) (本内容由全国科学技术名词审定委员会审定公布) 牛顿1687年发表了以水为工作介质的一维剪切流动的实验结果。 实验是在两平行平板间充满水时进行的(图1),下平板固定不动,上平板在其自身平面内以等速U向右运动。此时附于上下平板的流体质点的速度分别为U和0,两平板间的速度呈线性分布。由此得到了著名的牛顿粘性定律 相关理论 斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性、流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及现被广泛应用的纳维-斯托克斯方程。后来人们在进一步的研究中知道,牛顿粘性实验定律(以及在此基础上建立的纳-斯方程)

对于描述像水和空气这样低分子量的流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间已不再满足线性关系。为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。 早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。人身上的血液、淋巴液、囊液等多种体液以及像细胞质那样的“半流体”都属于非牛顿流体。现在去医院作血液测试的项目之一,已不再说是“血粘度检查”,而是“血液流变学检查”(简称血流变),这就是因为对血液而言,剪应力与剪切应变率之间不再是线性关系,已无法只给出一个斜率(即粘度)来说明血液的力学特性。 非牛顿流体及其奇妙特性 现在去医院作血液测试的项目之一,己不再是“血黏度检查”,而是“血液流变学捡查”(简称血流变),为什么会有这样的变化呢?这就要从非牛顿流体谈起。 英国科学家牛顿于1687年,发表了以水为工作介质的一维剪切流动的实验结果。实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是黏度系数。由此得到了著名的牛顿黏性定律。 斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量

非牛顿体及其奇妙特性

非牛顿流体及其奇妙特性 王振东 现在去医院作血液测试的项目之一,己不再是“血黏度检查”,而是“血液流变学捡查”(简称血流变),为什么会有这样的变化呢?这就要从非牛顿流体谈起。 英国科学家牛顿于1687年,发表了以水为工作介质的一维剪切流动实验结果。实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内等速V 向右运动。此时,附着于上、下平板的流体质点的速度,分别是V 和0,两平板间的速度成线性分布,斜率是粘度系数。由此得到了著名的 粘性定律。 dV dy τμ= 式中,τ是作用在上平板流体平面上的剪切应力,dV dy 是剪切应变率,斜率μ是粘度系数。 两块相对运动平板间的流体 斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的纳维-斯托克斯方程(简称:纳斯方程)。 后来人们在进一步的研究中知道,牛顿黏性实验定律(以及在此基础上建立的纳斯方程),对于描述像水和空气这样低分子量的简单流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。 为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。因为对血液而言,剪应力与剪切应变率之间己不再是线性关系,己无法只测一个点,给出斜率(即黏度)来说明血液的力学特性,只好作血流变学测试,测三个点,给出剪应力与剪切应变率之间的非线性曲线关系。 形形色色的非牛顿流体 早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。人身上的血液、淋巴液、囊液等多种体液,以及像细胞质那样的“半流体”,都属于非牛顿流体。 近几十年来,促使非牛顿流体研究迅速开展的主要动力之一,是聚合物工业的发展。聚乙烯、聚丙烯酰胺、聚氯乙烯、尼龙6、PVS 、赛璐珞、涤纶、橡胶溶液、各种工程塑料、化纤的熔体、溶液等,都是非牛顿流体。 石油、泥浆、水煤浆、陶瓷浆、纸浆、油漆、油墨、牙膏、家蚕丝再生溶液、钻井用的洗井液和完井液、磁浆、某些感光材料的涂液、泡沫、液晶、高含沙水流、泥石流、地幔等也都是非牛顿流体。 非牛顿流体在食品工业中也很普遍,如番茄汁、淀粉液、蛋清、苹果浆、菜汤、浓糖水、酱油、果酱、炼乳、

非牛顿液体的粘度

非牛顿液体的粘度除了与温度有关外,还与剪切速率、时间有关,并有剪切变稀或剪切变稠的变化。纯液体和低分子物质的溶液属于牛顿液体;而大多数液体,如高分子溶液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体系的流动都是非牛顿液体。 在线粘度测量中的流变学问题 丁晓炯广州市博勒飞粘度计质构仪技术服务有限公司 摘要:在线年度测量是目前很多石油、化工、食品、电子、造纸等行业中应用越来越广泛的技术,在线粘度的测量方法很多,主要有毛细管式、旋转式、振动式、注塞式等。而测量的对象也各不相同,流体的流变特性也各不相同,应用面也各不相同。本文从流变学的角度出发,对在线粘度测量的方法、流体的流变学类型进行分析,讨论不同在线粘度测量方法的特点和应用,对一些常见行业应用进行归纳,并对在线粘度测量中的一些常见问题进行流变学分析,并相应提出在线测量中的处理方法。 关键词:在线粘度;流变学;牛顿流体;非牛顿流体;剪切变稀;剪切变稠 目前,随着工艺控制要求的不断提高和测量技术的不断发展,在石油、化工、食品、电子、造纸等行业中在线粘度测量技术应用越来越广泛,不同品牌和不同测量原理的在线粘度计都有使用。在实际应用过程中,有使用效果良好的,也有使用效果不理想的,为何会有不同的效果?除了产品本身的问题,如何根据测量物料的流变特性来选择相应的在线粘度计,如何解释在线粘度测量数据和实验室测量数据的差异,如何获得稳定一致的测量结果,这些都可以从流变学的角度来进行分析并获得解决方案。 1 在线粘度测量技术 1.1 在线粘度测量的应用 在线粘度计的测量技术和应用已经有几十年的历史,许多工业生产过程中都需要进行年度的连续自动测量与控制。 在石油工业中,在减压蒸馏过程,在柴油、润滑油、燃料油等的在线自动调和过程,石油的脱蜡脱沥青过程等,需要进行在线粘度监测来检查原料质量,监视与控制生产、提高产品合格率,实现自动调和及自动切换产品等。 在各种聚合工程中,通过粘度的在线监测来控制反应终点。子啊化纤抽丝钱的熔体粘度在线监测科仪保证纤维的粗细适当、均匀。减少废品率及能耗。 此外,在油墨生产、印刷、油漆喷涂、洗涤剂与化妆品生产,胶囊生产以及浇涂、浸渍、滚涂等各类材料的涂布过程也都要进行在线粘度测量。 1.2 在线粘度计的类型 目前,在线粘度计的类型很多,根据测量原理不同,主要有以下几种类型: 1.2.1 毛细管式 毛细管式在线粘度计是基于泊氏定律,仪器的主体是一段细管,细管与定量泵连接,由定量泵控制流体以恒定的流量进入细管,有压力监测器测量细管两端的压力差,根据泊氏公司计算流体的粘度。这类在线粘度计目前一般使用在石化炼油行业,用来测量成品油的粘度,测量范围一般都不高,在几百cP以下,但有些特殊的在线粘度计对细管进行特殊设计后也可以用来测量高粘度的流体,但应用相对较少。 1.2.2 旋转式 在线粘度测量中,旋转法的应用比其他方法广些,在线旋转粘度计的测量原理与实验室粘度计相同,根据转子和传感器的连接方式,可分为外旋式和内旋式两种,主要是利用转子在流体中以恒定转速旋转,直接测量流体的粘性力大小,计算出粘度。这类在线粘度计是从粘度的物理定义出发,测量范围可以很宽,测量时的剪切率也不高,除了测量牛顿流体外,尤其适合于非牛顿流体的测量。 1.2.3 振动式 振动式的在线粘度测量起步相对较晚,但发展较快。振动法的传感头为一圆柱体,以恒定的振幅振动,当它剪切流体时,流体的粘度对传感头振动振幅有影响,测量维持恒定振幅所输入的功率,计算得到粘度和密度的乘积。这类在线粘度计的理论测量范围也很宽,适合于不同的流体测量,但测量时的剪切率不能精确计算,一般剪切率约在1000 s ,因此实际使用中,需要根据流体的流变学特性正确选用。 1.2.4 注塞式 这类在线粘度计是利用一个在流体中水平或垂直运动的活塞,测量活塞在固定位置内的运动时间来计算出流体的粘度。这类粘度计是断续式的测量,并不是完全意义上的在线测量;同时由于是依靠活塞的运动,因此流体自身的流动将对测量产生一定的影响。 综上所述,各类在线粘度计的测量原理不同,适用的流体和工艺条件也各不相同,需要根据测量流体的流变学特性和现场工艺条件进行选择,不能随意确定,以免造成不必要的损失。 2 流变学和流变类型 2.1 流变学和粘度 流变学研究的是在外力作用下,物体的变形和流动的学科,研究对象主要是流体。为粘度是流变学中一个很重要的基本概念,粘度是

第七章 非牛顿流体的流动

第七章 非牛顿流体的流动 第一节 非牛顿流体的流变性和流变方程 一、牛顿流体与非牛顿流体 1、牛顿流体 流体流动时切应力和速度梯度之间的关系符合牛顿内摩擦定律的流体。 dy du μ τ±= 2、非牛顿流体 流体流动时切应力和速度梯度之间的关系不符合牛顿内摩擦定律的流体。 3、非牛顿流体的分类 粘弹性流体 动之中的、弹性变形寓于粘性流震凝性流体触变性流体流体、流变性与时间有关的膨胀性流体屈服假塑性流体屈服膨胀流体 假塑性流体 塑性流体流体、流变性与时间无关的非牛顿流体???? ???? ?? ???????? ??? ??????????--321 二、流变性、流变方程和流变曲线

流变性:流体流动和变形的特性。 流变方程:描述切应力与速度梯度之间关系的方程式。 流变曲线:在直角坐标中表示流体切应力和速度梯度之间变化关系的实验曲线。 1、牛顿流体(A ) 流变方程: dy du μ τ±=特点: (1)受到外力作用就流动; (2)在恒温恒压下,τ与dy du 的比值为常数即粘度为常数; (3)流变曲线是通过原点的直线,其斜率为动力粘度的倒数,即μα1 tan = 2、塑性流体(B ) 流变方程(宾汉公式):) 适用于流变曲线直线段(0dy du p ηττ+= 特点: (1)塑性流体的流变性与牛顿流体不同,受力后,不能立即变形流动。 (2)流动初期切应力与速度梯度之间呈曲线关系,粘度随切应力增大而降低,随速度梯度的增大,切应力逐渐减弱,最后接近牛顿流体,成直线关系,流体的粘度不再随切应力的增加而变化,称为塑性粘度。 (3)塑性流体存在两个极限应力 极限静切应力---使塑性流体开始流动的最小切应力。 极限动切应力---塑性流体流变曲线直线段的延长线与横坐标轴的交点对应的切应力,是塑性流体流动时经常克服的与粘度和速度梯度无关的定值切应力。 (4)塑性流体的塑性粘度和视粘度

非牛顿型流体的分类

4. 非牛顿型流体的分类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用方程(2-2)来描述的流体,统称为非牛顿型流体。 在高分子液体畴,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bingham 因此具有塑性体的可塑性质。只有当外界施加的应力超过屈服应力y σ,物体才能流动。 流动方程为: ???≥-<=y y y σσησσσσγ/)(0 (2-74) 说明:有些Bingham 塑性体,在外应力超过y σ开始流动后,遵循Newton 粘度定律,流动方程为: γ ησσ p y += (2-75) 称为普通Bingham 流体,p η为塑性粘度。 有些Bingham 塑性体,开始流动后,并不遵循Newton 粘度定律,其剪切粘度随剪切速率发生变化,这类材料称为非线性Bingham 流体。

特殊地,若流动规律遵从幂律,方程为 n y K γσσ += (2-76) 则称这类材料为Herschel-Bulkley 流体。 图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系形成某种三维结构。如CaCO 3形成堆砌结构,而碳黑则因与橡 胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。

加工过程中非牛顿型流体的类型及流动曲线

1、加工过程中非牛顿型流体的类型及流动曲线;举例分析。 假塑性流体:在一般的剪切速率下,随r′增加η下降,例如高聚物熔体、高聚物溶液及悬浮液等;膨胀性流体:固体含量较大的悬浮液如PVC糊悬浮液,少数含固体填充物的聚合物熔体,流动中产生结晶的聚合物熔体;宾汉流体:所有高聚物在其良溶剂中形成的浓溶液行为与其相近。 2、哪些高聚物在成型加工过程中其表观粘度对剪切速率敏感?哪些高聚物表观粘度对温度敏感性?哪些高聚物表观粘度粘度对压力敏感性?哪些高聚物为热敏性树脂?举例说明。 对剪切速率:聚合物熔体的一个显著特征是具有非牛顿行为,其粘度随剪切速率的增加而下降,敏感性较明显的有LDPE,HDPE,PP,PS,HIPS,ABS,不敏感PPS,PA6PC,PBT,POM;温度:分子链刚性、极性大或有较强极性取代基团的高聚物,如PMMA,PC,PS,PET,PVC等;压力:支化的LDPE比线性的HDPE自由体积大,分子堆砌较松,可压缩性大,PS,PMMA侧基大,自由体积较大,以上说明对某些聚合物单纯通过增大压力来提高熔体的流速并不适当,过大的压力还会造成能耗过大和设备的更大磨损。 3、牛顿流体的特点;牛顿流体的种类;何谓非牛顿性? 特点:液体的应变随压力作用时间线性增加;牛顿流体中的应变具有不可逆性质,应力解除后应变以永久形变保持下来。种类:低分子化合物的液体或溶液,如水和甲苯等;极少数聚合物熔体(如PC);在一定r’范围内大多数的聚合物熔体。四、 1、聚合物老化及影响因素?稳定化助剂? 老化:高分子材料随着时间延长逐渐变化;外观变化:变色变暗,变硬变脆,龟裂变形,出现斑点,分层脱落;力学性能:拉伸强度、伸长率、冲击强度、硬度、耐磨性降低。因素:结构因素,物理因素:光热电高能辐射和机械应力,化学因素:氧、臭氧、水、盐碱、盐及腐蚀性气体,生物因素:微生物、昆虫、海生物等。防止方法:共聚(引入功能基团)、对活性基团消活、添加稳定剂。稳定化助剂:热温度剂、坑氧剂、光稳定剂。 2、常用热稳定剂及其作用机理 主热稳定剂:盐基性铅盐类、金属皂类、有机锡类、稀土类热稳定剂;辅助热稳定剂:亚磷酸酯、环氧化物等。作用机理:吸收氯化氢、消除不稳定氯原子(置换分子链中活泼的烯丙基氯原子,形成稳定化学剂)、与共轭双键进行双烯加成。 3、抗氧剂、光稳定剂的类型及作用机理。 抗氧剂类型有酚类抗氧剂(主)、胺类(主)、硫代酯(辅助)、亚磷酸酯(辅);机理:①捕获自由基,②过氧化物分解剂。光稳定剂及其作用机理:①作用:A 屏障和吸收紫外线B猝灭激发态分子C分解过氧化物D捕获自由基E钝化重金属离子②分类A光屏蔽剂B紫外线吸收剂C光猝剂。 4、高速混合机、开炼机、挤出机主要混合作用机理及应用; 高速混合机用于初混合,适用固态混合和固液混合,更适于配置粉料;开炼机用于混合塑炼,适用于橡胶的塑炼和混炼,塑料的塑化和混合,填充与共混改性物的混炼,压延机连续供料,母料的制备等。 5、初混合?塑化?二者区别? 塑料的混合:这是物料的初混合,是一种简单的混合,在低于流动温度和较为缓和的剪切速率下进行的一种混合。混合后,物料各组分是我物理和化学性质无变化。只是增加各组份颗粒的无规则排列程度没有改变颗粒的尺寸。初混合的目的

什么是非牛顿流体

什么是非牛顿流体 1 非牛顿流体的定义 自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,熊老师在上课时讲过,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律或胡克定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。但是,还有不少材料既不是虎克固体,也不是牛顿流体。这些材料同时具有固体和流体的性质,哪种性质为主决定于进行观察时间的长短以及材料变形的大小。有许多真实的材料样子像流体,即它们在受到应力时连续地改变它们的形状,但它们不能用牛顿关于常粘度的定律来描述,这类流体叫做非牛顿流体。 现在去医院作血液测试的项目之一,己不再是“血粘度检查”,而是“血液流变学捡查”(简称血流变),产生这样的变化就是因为血液不是牛顿流体,恒定不变的“粘度”不是它的一种属性。 牛顿于1687年发表了以水为工作介质的一维剪切流动的实验结果。实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是粘度系数。由此得到了著名的牛顿粘性定律。斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的N·S方程。后来人们在进一步的研究中知道,牛顿粘性实验定律,对于描述像水和空气这样低分子量的简单流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。 2 常见的非牛顿流体 早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。人身上的血液、淋巴液、囊液等多种体液,以及像细胞质那样的“半流体”,都属于非牛顿流体。 近几十年来,促使非牛顿流体研究迅速开展的主要动力之一,是聚合物工业的发展。聚乙烯、聚丙烯酰胺、聚氯乙烯、尼龙6、PVS、赛璐珞、涤纶、橡胶溶液、各种工程塑料、化纤的熔体、溶液等,都是非牛顿流体。 石油、泥浆、水煤浆、陶瓷浆、纸浆、油漆、油墨、牙膏、家蚕丝再生溶液、

关于牛顿液体和非牛顿液体的表述以及粘度测定

有关于牛顿液体和非牛顿液体的表述很多,其实严格地讲,并没有绝对的牛顿液体的存在,绝对值也是相对的,但为了在某个特定的环境和条件下能够对很多流体的把握,才导出这些概念,下面先对这些概念做个描述: 液体有牛顿液体和非牛顿液体之分。牛顿液体的粘度只和温度有关,随温度升高而降低。非牛顿液体的粘度除了与温度有关外,还与剪切速率、时间有关,并有剪切变稀或剪切变稠的变化。纯液体和低分子物质的溶液属于牛顿液体;而大多数液体,如高分子溶液、胶体溶液、乳剂、混悬剂、软膏以及固-液的不均匀体系的流体都是非牛顿液体。没有数据处理功能的普通数显粘度计测得的都是某一点(在某一特定温度、时间剪切速率下)的粘度值,如果被测试样是牛顿液体,那么在恒定的温度下粘度值是不变的,某一点的数值即代表了该液体的粘度。但是如果测量的是粘度随转速、转子、时间的不同而不同的非牛顿液体,要得到一个准确的数值就困难的多了。普通粘度计可测牛顿液体,但对非牛顿液体就力不从心了。因为普通粘度计在测试非牛顿液体时,粘度数据是时时变化的,很难得到一个准确的数值。 实验室测定粘度的原理一般大都是由斯托克斯公式和泊肃叶公式导出有关粘滞系数的表达式,求得粘滞系数。粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。因此,要测定粘度,必须准确地控制温度才有意义。粘度参数的测定,对于预测产品生产过程的工艺控制、输送性以及产品在使用时的操作性,具有重要的指导价值,在印刷、医药、石油、汽车等诸多行业有着重要的意义。1845年,英国数学家、物理学家斯托克斯(G. G. Stokes, 1819-1903)和法国的纳维(C.L.M.H. Navier)等人分别推导出粘滞流体力学中最基本的方程组,即纳维-斯托克斯方程,奠定了传统流体力学的基础。1851年,斯托克斯推导出固体球体在粘性介质中作缓慢运动时所受的阻力的计算公式,得出在重力的作用下,阻力与流速、粘滞系数成比例,即关于阻力的斯托克斯公式。纳维-斯托克斯方程是数学中最为难解的非线性方程中的一类,寻求它的精确解是非常困难的事。直至今天,大约也只有70多个精确解,只有大约一百多个特解被解出来,是最复杂的、尚未被完全解决的世界级数学难题之一。

非牛顿型流体的分类

非 牛 顿 型 流 体 的 分 类 非牛顿型流体是一大类实际流体的统称。一般地说,凡流动性能不能用 方程(2-2 )来描述的流体,统称为非牛顿型流体。 在高分子液体范畴内,可以粗略地把非牛顿型流体分为: 纯粘性流体,但流动中粘度会发生变化,如某些涂料、油漆、食品等。 粘弹性流体,大多数高分子熔体、高分子溶液是典型的粘弹性流体,而 且是非线性粘弹性流体。一些生物材料,如细胞液,蛋清等也同属此类。 流动性质有时间依赖性的流体。如触变性流体,震凝性流体。 4. 1 Bingham 塑性体 Bin gham 塑性体的主要流动特征是存在屈|服应力 ,因此具有塑性体的 可塑性质。只有当外界施加的应力超过屈服应力 y ,物体才能流动。 流动方程为: 0 ( y" 说明:有些Bingham 塑性体,在外应力超过 y 开始流动后,遵循Newton 粘度定 律,流动方程为: y p 称为普通Bingham 流体,p 为塑性粘度。 切粘度随剪切速率发生变化,这类材料称为非线性 Bin gham 流体。 特殊地,若流动规律遵从幕律,方程为 2-76) 则称这类材料为 Herschel-Bulkley 流体。 (2-74) (2-75) 有些Bingham 塑性体,开始流动后,并不遵循 Newton 粘度定律,其剪

图2-16 Bingham 流体的流动曲线 牙膏、油漆是典型Bingham 塑性体。油漆在涂刷过程中,要求涂刷时粘度要小,停止涂刷时要“站得住”,不出现流挂。因此要求其屈服应力大到足以克服重力对流动的影响。润滑油、石油钻探用泥浆,某些高分子填充体系如碳黑混炼橡胶,碳酸钙填充聚乙烯、聚丙烯等也属于或近似属于Bingham 流体。 填充高分子体系出现屈服现象的原因可归结为,当填料份数足够高时,填料在体系内形成某种三维结构。如CaCO3 形成堆砌结构,而碳黑则因与橡胶大分子链间有强烈物理交换作用,形成类交联网络结构。这些结构具有一定强度,在低外力下是稳定的,外部作用力只有大到能够破坏这些结构时,物料才能流动。 混炼橡胶的这种屈服性对下一步成型工艺及半成品的质量至关重要。如混炼丁基橡胶挤出成型轮胎内胎时,碳黑用量适量,结构性高,则混炼胶屈服强度高,内胎坯的挤出外观好,停放时“挺性”好,不易变形、成摺或拉薄。 4.2 假塑性流体 绝大多数高分子液体属假塑性流体。流动的主要特征是流动很慢时,剪切粘度保持为常数,而随剪切速率增大,粘度反常地减少——剪切变稀。 典型高分子液体的流动曲线见图2-17 。曲线大致可分为三个区域: 当剪切速率0时,呈线性关系,液体流动性质与Newton型流体

相关文档
最新文档