是脊椎动物进化历程中的一个重要类群.

是脊椎动物进化历程中的一个重要类群.
是脊椎动物进化历程中的一个重要类群.

两栖纲(Amphibia)

是脊椎动物进化历程中的一个重要类群,处于从水生向陆生过渡的中间地位。是硬骨鱼类中的古总鳍鱼类在泥盆纪晚期演化而来。属于四足类中的低等类群,初步完成了由水栖向陆栖的转变,各大系统基本具备了陆生脊椎动物的结构模式,但仍不能脱离水环境而生活。包括无足目、有尾目和无尾目3大类。

第一节从水生到陆生的转变

从水生到陆生是脊椎动物生活的一个巨大的飞跃,也是脊椎动物进化中的一个重大事件,陆生脊椎动物因此构成了一个被称为四足类(tetrapods)的动物类群。水是动物体的重要组成成分,并且所有的细胞活动都是在水中进行。从水环境来到干燥的陆地,由于水、陆环境的巨大反差,由水生鱼类进化而来的两栖类的几乎每一个器官系统的形态结构,在完全不同于水环境的陆地上得到了深刻的演变,但仅仅是初步适应了陆地生活,具有了一些典型的陆生脊椎动物的特征,同时与水生脊椎动物在结构和功能上仍保留了许多基本的相似,处于由水上陆的中间过渡状态。

大约在古生代泥盆纪末期(距今约三亿年前),某些具有肺的古代总鳍鱼类尝试登陆并获得成功。这在脊椎动物演化史上是一个划时代的事件。生命起源于水中,动物躯体结构的绝大部分是水,所有细胞活动也都是在水环境下进行的。具有这种结构和功能的水生动物一旦登陆,首先面临着严峻的环境条件,存在着一系列有待解决的矛盾。

大多数两栖动物对人类是有益的,它们是许多农业有害昆虫的天敌,是多种药物的来源,一些种类是人类的食物;在教学和科学实验中两栖类是良好的实验材料,广泛用于生物和医学的各个领域。

1.水、陆环境的差异

陆地环境与水环境之间存在着巨大差异,除了湿度条件最为明显之外,还有一些重要的不同,例如:

1.1空气含氧量比水中充足

空气中所含氧气至少比水大20倍。水中含氧量为3-9mL/L,而空气含氧为210mL/L,是水的20多倍。水中氧气的扩散和渗透率较低,而陆生动物获得氧气容易得多,但摄取氧气的器官必须进行彻底变革。

1.2 水的密度比空气大

水的密度约比空气大1,000倍,比粘液大100倍。这大约等于动物体的原生质的密度。因而尽管它对于动物运动的阻力比空气大得多,却很容易把动物躯体飘浮起来,因而不存在支撑躯体的矛盾。而陆生动物所面临的关键性问题,首先是如何能把躯体支撑起来并完成运动。

1.3水温的恒定性

水体是由含有巨大热能的介质构成,水环境较为稳定,水温变动幅度较小,一般不超过25~30℃。海洋温度近于恒定。而陆地温度则存在着剧烈的周期性变化,例如四季的变化、冻冰与解冻、加上干旱、冰冻、洪水、飓风

等多样的恶劣条件,都大幅度地造成温差。要求其中的动物在行为和生理上作出适应性变化。

1.4陆地环境的多样性

陆地环境地形复杂、植被多样,例如苔原、针叶林、针阔混交林、热带雨林、草原、沙漠、沼泽、高山、盆地等等,为动物的栖居、隐蔽等提供了较水域优越的条件。

此外,陆地条件对卵和幼体来说,比水中较易受到保护,但同时存在着在陆地发育方面的困难。还有声波、光波的传导介质的改变,陆地生境的复杂多样,如沼泽地、高山、海岛、热带雨林、沙漠、草地、极地等等,这些环境条件的改变使上陆动物面临许多难题和巨大的挑战,但同时陆地生境也为动物的栖息、繁衍提供了许多有利条件。总之水、陆环境的巨大差异使上陆动物的支持结构、呼吸系统、神经系统、感觉器官以及其他系统得到深刻的改造。

2.由水生过渡到陆生所面临的主要矛盾

从水陆环境对比可见,水与陆各自具备着对动物体生存和繁育的有利和不利条件。鱼类是高度适应于水生生活的类群,它的躯体结构和功能对于水生生活是较为完善的。但是从水生过渡到陆生,环境条件的巨大差异,就使登陆动物面临着一系列新的矛盾,主要有:

在陆地支持体重并完成运动。

呼吸空气中的氧气。

防止体内水分的蒸发。干燥的陆地与水环境是完全不同的两种栖息地。

如何在陆地上保存充满水分的有机体、最大限度地减少体内水分蒸发、使生命得以继续是上陆动物首先面临的问题。

在陆地繁殖。

维持体内生理生化活动所必需的温度条件。

适应于陆生的感官和完善的神经系统。

这些矛盾在从两栖类到哺乳类的漫长的演化过程中,通过不断地斗争而加以解决、并日臻完善。矛盾是事物发展的根本原因。在复杂的事物的发展过程中,有许多的矛盾存在,其中必有一种是主要的矛盾,由于它的存在和发展,规定或影响着其它矛盾的存在和发展。对于登陆动物来说,显然在陆上运动是矛盾的主要方面。

3.两栖类对陆生的初步适应和不完善系性

两栖类在适应于陆生的斗争中,基本上解决了在陆地运动、呼吸空气、适宜于陆生的感觉器官和神经系统等方面的问题。这是通过发展新的结构以及对旧有器官的结构和功能加以改造而实现的。例如感知声波装置中的听骨(耳柱骨),就是由相当于鱼类的舌颌骨演变来的。这种“废物利用”的方式在脊椎动物演化历史上几乎随处可见。

新生事物在刚刚出现时,总是不十分完善的。两栖类对于陆生生活的适应也不例外,例如它的肺呼吸尚不足以承担陆上生活所需的气体代谢的需要,必须以皮肤呼吸和鳃呼吸加以辅助。特别是两栖类根本未能解决在陆地生活

防止体内水分蒸发问题(皮肤防止蒸发的抗透水性与两栖类的皮肤呼吸完全对立),以及在陆地繁殖问题(卵必须在水内受精、幼体在水中发育、完成变态以后上陆),因而未能彻底地摆脱“水”的束缚,只能局限在近水的潮湿地区分布或再次入水水栖。皮肤的透性使两栖类在盐度高的地区(例如海水)生活困难因而它是脊椎动物中种类和数量最少的、分布狭窄的一个类群。

第二节主要特征

变温。幼体以鳃呼吸,成体以肺呼吸,并辅以皮肤呼吸。皮肤裸露,出现轻微角质化。具典型的陆生脊椎动物的五指(趾)型四肢,脊柱出现了颈椎和荐椎的分化。心脏的心房出现分隔,血液循环为不完全双循环。出现中耳和在空气中传导声波的耳柱骨,具有犁鼻器。原脑皮。体外受精,体外发育,幼体经变态转为成体。

1.裸露但有轻微角质化的皮肤

在陆地生活首先面临体内水分蒸发的问题。两栖类的皮肤较薄,由多层细胞组成的表皮和真皮组成。皮肤表面已失去了鱼类的骨质鳞(最早的两栖类坚头类体表有骨质板,无足目的蚓螈(Caecilia)真皮内还保留残余的骨质鳞片),其他保护结构还未出现,处于裸露状态。

1.1表皮和真皮

表皮已开始有轻微角质化,并已出现蜕皮现象。表层的1~2层细胞角质化,细胞核仍存在,细胞界限明显,仍为活细胞。这仅在一定程度上防止了水分蒸发问题,因而两栖类只能在潮湿的环境中生活。蟾蜍的角质化程度较高,比较耐旱。真皮较厚而致密,表现出陆生动物真皮的特征。

1.2衍生物

1.2.1多细胞腺体

表皮衍生大量多细胞腺体和色素细胞。腺体下陷入真皮并有管道通向表面,包括2种,一种是粘液腺(mucous gland),分泌粘液使皮肤保持经常湿润,这对保护皮肤并使皮肤参与呼吸有重要意义。另一种是毒腺(poison gland),数量较少,多分布在背部,是一种浆液腺,分泌物为白色,对捕食者具有威慑作用。蟾蜍在两眼后方有一对大毒腺,称耳后腺,是“蟾酥”(一种贵重药材)的原料。

1.2.2色素细胞

表皮和真皮中的色素细胞(chromatophores)决定动物的体色,并可使体色随环境改变。色素细胞含有色素颗粒,并有许多指状突起。当色素颗粒收缩聚集时体色变浅,色素颗粒扩展分散到细胞突起中时体色变深。有3种色素细胞,包括黑色素细胞、虹膜细胞和黄色素细胞,它们相互配合,产生出两栖类的各种体色。体色的改变受到光线和温度及自身内分泌的影响和调节。

两栖类皮肤与皮下肌肉组织连接疏松,其间分布大量淋巴间隙和皮下血管,与皮肤呼吸功能有关。

2.不完善的肺呼吸及不完全的双循环的出现

2.1呼吸的多样化

2.1.1肺呼吸

肺是两栖类成体的呼吸器官,位于胸腹腔内。仅是1对薄壁的囊,囊内壁呈现蜂窝状,以增加与气体交换的面积,但面积仍不大,与体表面积的比仅为2:3。肺囊壁具有丰富的毛细血管,由肺动脉将回心脏的缺氧血送人肺,而由肺静脉将交换后的多氧血送出肺部返回左心房。由于没有胸廓,其呼吸为咽式呼吸,其呼吸动作借助于口咽腔底部的升降,将空气压人肺部来完成,其抽吸空气的原理与拉风箱吹气的原理相同。与肺呼吸相适应的是内鼻孔的出现。两栖类由于内鼻孔位置靠前,没有专门的呼吸道出现,因而口咽腔是空气和食物的共同通道。口咽腔膜有丰富的毛细血管分布,可在此进行部分气体交换。

蛙的雌雄两性均在肺前部的、短的喉头气管室中具有声带,这是陆生脊椎动物的特征之一,而雄性在口腔底部两侧还具有声囊,可发出洪亮的叫声。蟾蜍雌雄均无声囊,且雌性声带不发达,叫声不如蛙洪亮。

2.1.2皮肤呼吸

由于肺呼吸的不完善,皮肤呼吸起着重要作用。皮肤湿润,皮下血管丰富。尤其是在冬季蛰眠期中,皮肤呼吸对生命继续起着重要作用。

2.1.3鳃呼吸

是一些成体和所有幼体的呼吸器官。有的种类不仅有内鳃还有外鳃,如泥螈(Necturus)成体具有3对外鳃,其后有2对鳃裂,充分反映了两栖类的低等状态。

2.2不完全的双循环

由于肺呼吸的出现,循环系统发生相应的显著变化,由1心房、1心室演变为2心房、1心室,静脉窦和动脉圆锥仍存在;循环路线由单循环演变为不完全双循环(即体循环和肺循环)。

2.2.1心脏

心房内出现完全或不完全房间隔,左心房接受从肺静脉返回的多氧血,右心房接受从体静脉返回的缺氧血以及皮静脉返回的多氧血,它们最后均进人心室。

心室将2个心房压人的血液送人肺和身体各部。主要动脉为颈动脉、体动脉和肺皮动脉。心室内壁的肌肉小梁和动脉圆锥中的螺旋瓣对血液分流有一定作用,但由于心室不分隔,多氧血和缺氧血不能完全分开,这种双循环是不完全的。

2.2.2动脉

肺循环出现和鳃循环的被放弃(水生种类尚保留鳃血管),使原有的鳃动脉弓发生重大变革:相当于原始鱼类的第一、二、五对动脉弓消失。第三对动脉弓构成颈动脉,供应头部血液。第四对动脉弓构成体动脉,供应全身血液。第六对动脉弓构成肺皮动脉,供应肺及皮肤血液。从而出现了肺循环与体循环,称双循环。这种模式为四足动物的基本原型。

2.2.3静脉

与鱼类的静脉系统差别较大,肺静脉(pulmonary vein)进入左心房。由一对前大(腔)静脉(precava)、后大(腔)静脉(postcava)以及肝静脉分别汇集头部、体躯、皮肤、肾脏以及肝脏血液注入静脉窦,回右心房。有发达的肝门静脉和肾门静脉,肝门静脉与肾门静脉分别汇集消化道、尾以及后肢血液注入肝脏及肾脏。两栖类的腹静脉也收集后肢、腹壁以及膀胱血液注入肝门静脉。因而后肢血液需经过肾门静脉和肝门静脉始能回心。

2.2.4淋巴

两栖类淋巴系统在皮下扩展成淋巴腔隙。具有二对能搏动的淋巴心(lymph heart)以推动淋巴液回心。两栖类不具淋巴结。

两栖类由于不完全的双循环,血液中的多氧血和缺氧血不能完全分开,因而氧气供应不充分,新陈代谢率较低,产生的热量较低,又不具备完善的体温调节机制,因而属于变温动物,其体温在很大程度上随环境变化而变化。但两栖类在行为上能够部分地避开不利环境,如夏季过热时期常钻入地下进行夏眠;严寒的冬季寻找较合适地点进行蛰眠,此时其新陈代谢水平极低。3.支持和运动系统已基本具备陆生动物的模式

3.1骨骼系统

3.1.1脊柱

由于上陆后的重力作用及运动,其身体的支持和运动系统发生深刻演变。脊柱向四肢传递体重而进一步分化,首次出现了一块荐椎,通过与腰带的关节把体重传给后肢;同时,由于陆地环境的复杂化而向头部灵活转动的方向演化,首次出现了一块颈椎,使整个脊柱分为颈椎、躯干椎、荐椎、尾椎4部分,尾椎愈合形成棒状的尾杆骨(urostyle)。脊椎骨的数目在不同体型的动物中差别较大。首次出现了胸骨,但成体无肋骨。

3.1.2头骨

头骨已脱离了肩带的束缚,有了灵活转动的可能性:数块骨片丢失或愈合,使头骨重量减轻,而骨化程度较低,这在无尾类尤为明显。这对陆地上的运动是必要的。

3.1.3四肢骨及带骨

典型的五趾(指)型四肢出现(图3—144):陆生动物的四肢不像鱼类的偶鳍仅类似桨的作用,而要承受体重,并使身体在地面运动,这由五趾(指)型四肢来完成。两栖类为减轻重量、适应跳跃等运动,四肢骨骼中多有愈合现象,如桡骨和尺骨愈合为桡尺骨等。两栖类的四肢位于躯干侧面,不能完全使身体抬离地面,运动速度极有限。与前肢连接的肩带不再与头骨愈合,这不仅使头部可灵活运动,而且使前肢的多样性活动有了可能。肩带加固,由乌喙骨、肩胛骨、上乌喙骨、锁骨组成;腰带由髂骨、坐骨、耻骨组成,并形成髋臼,与股骨形成髋关节,并与脊柱的荐椎相关节以支撑体重。

3.2肌肉

与运动方式相联系的特点主要有:

3.2.1躯干肌肉在水生种类特化不甚显著

部分肌肉保留原始分节现象:在无足目和有尾目动物中,因其运动主要

是靠躯体收缩摆动,躯干肌肉分节现象明显,在无尾类中仅轴下肌的腹直肌保留分节。陆生种类的原始分节现象已被破坏,改变为纵行的或斜行的长肌肉群,节制头骨及脊柱运动。腹侧肌肉多成片状并有分层现象,各层肌纤维走向不同。轴肌的比例变化:因水平生骨隔位置上移,轴上肌比例减少。腹部的肌肉即轴下肌分化为3层,即腹外斜肌、腹内斜肌、腹横肌,以在陆地上保护和支持内脏。

3.2.2产生了复杂的附肢肌

由于出现五趾(指)型四肢,附肢肌变得强大而复杂:两栖类产生的复杂的附肢肌。附肢肌环绕带骨及肢骨四周分布,使附肢本身可运动,即各节段可作相对的局部运动,如屈腕、伸指、前臂转动等,因而运动功能大为复杂。这种分布方式也利于平衡。

3.2.3鳃肌退化

少部鳃肌节制咀嚼、舌和喉的运动。

4.消化系统的分化较鱼类复杂

两栖类的消化系统由消化道,包括口、口咽腔、食道、胃、小肠(十二指肠、回肠)、大肠(即直肠)、泄殖腔、泄殖腔孔,以及消化腺组成。

4.1消化道

由于开始陆地生活,肺呼吸及中耳出现,相应出现的内鼻孔和耳咽管孔以及喉门均出现在口咽腔内。两栖类的牙齿与鱼类相似,为同型、多出齿,可能出现在上、下领骨及犁骨等处,无咀嚼功能。出现了能动的肌肉质舌,舌根位于口咽腔前端底部,舌向后折叠,舌尖可向外迅速翻出捕捉食物。口腔内还出现了口腔腺,可分泌粘液湿润食物以适应陆地干燥环境,但其间不含消化酶。

食道很短,通向胃部的贲门。胃内壁具多条纵褶,胃壁粘膜层里含有大量管状胃腺。胃以幽门接小肠。小肠分化为十二指肠和回肠,大肠(即直肠)很短。成体两栖类的食物多以昆虫为主,肠的长度较短,如成体蛙的肠总长仅为体长的2倍,而植食性的蝌蚪肠总长可达体长的9倍。

4.2消化腺

有独立的肝脏和胰脏。肝脏分泌的胆汁流入胆囊,经胆管人十二指肠。胰脏位于十二指肠与胃之间的肠系膜上。

5.神经系统仍处于与鱼类相似的较低水平

两栖类的脑基本上与鱼类似。脑的5部分分化不高,仍处于同一平面上,但两栖类的大脑半球(cerebral hemisphere)分化较鱼类明显,但神经物质开始向大脑顶部转移,顶壁出现一些零散的神经细胞,称为原脑皮(archicerebrum)。仍司嗅觉。中脑视叶发达,仍是神经系统的最高中枢。已具备发育完备的植物性神经系统。小脑不发达,与运动方式简单有关。

脊髓与鱼类无显著区别,但有缩短的趋势。此外由于四肢出现,肩及腰部脊神经集聚成神经丛。

6.感觉器官

由于传导声波、光波以及化学颗粒的介质由水变为空气,感觉器官发生深

刻演变,但水生的幼体仍保留水生动物感觉器官的特点。

6.1听觉

除内耳外,出现中耳,用于传导声波。中耳由中耳腔(即鼓室tympanic cavity)、鼓膜(tympanic membrane)和耳柱骨组成。耳柱骨是由鱼类舌弓上的舌颌骨演变而来。鼓膜位于皮肤表面,没有任何保护。内耳结构与鱼类相似,但出现了真正感音的部位瓶状囊(lagena)。

6.2视觉

已具有一系列与陆生生活相适应的特征。角膜凸出,晶体稍扁平,晶体距角膜较远,适于远视。具有泪腺,下眼睑可活动,以湿润眼球(眼睑是皮肤的皱褶,覆盖于眼球之前。眼睑有上下之分,两栖类只有下眼睑)。两栖类还有瞬膜。瞬膜为上、下眼睑内侧的一个透明皮褶,由内向外覆盖和湿润角膜。

6.3嗅觉

出现陆生四足类的两个特化结构:出现内鼻孔,使鼻腔具嗅觉功能的同时也是空气进出的通道;出现犁鼻器(vomeronasal organ),是鼻腔腹内侧的一对盲囊,能感知进入口腔的空气或物体的化学性质。

6.4侧线

水生的幼体均具有侧线,结构和功能与鱼类相似,变态后视生活环境而定,如终生水生的中国大鲵成体保留侧线神经丘,蛙和蟾蜍的成体侧线消失。7.排泄器官对陆生适应的不完善

7.1肾脏

青蛙具一对肾脏(中肾),位于体腔后部,脊柱的两侧,为暗红色的长形分叶体,在其外缘靠近后端处各连有一条输尿管(中肾管),通入泄殖腔的背壁。在雌性,中肾管仅作输尿之用,在雄性,中肾管除输送尿液之外,还兼充输精管之用。

7.2膀胱

蛙的膀胱壁很薄,而容积很大,在发生上属于泄殖腔膀胱(cloacal bladder),系由泄殖腔腹壁突出而成。蛙的输尿管与膀胱并不直接相通,因此尿液经输尿管先送入泄殖腔,泄殖腔孔靠括约肌的收缩平时为关闭状态,尿液由泄殖腔倒流入膀胱,当膀胱内充满尿液时,由于膀胱肌的突然收缩,同时伴随着泄殖腔孔的张开,将尿液排出体外。巨大的膀胱一方面作为聍存尿液之用,一方面执行重吸收水分的功能。

7.3渗透压调节

肾脏除了有泌尿的功能之外,还有调节体内水分,维持渗透压平衡的作用。两栖类皮肤裸露,当处在水中时体内渗透压高于体外,大量水分渗入体内;肾脏中的肾小球滤过效率很高,具有很强的泌尿功能,可排出多余水分,每天排出的尿液约等于蛙体重的三分之一(人只有1/50),使体内的水分得以维持恒定。

但是,当蛙在陆地上时,由于肾小管较短而不能很好解决失水问题。肾小管中相当于亨氏袢(Henles loop)的一段较短,对水的重吸收能力不强,在这种情况下,膀胱重吸收水分的功能,对于蛙体水分的保持具有十分重要的意

义。

两栖类与鱼类一样肾脏是其排泄器官,排尿管道在雄性兼输精,并具有由泄殖腔壁突出形成的泄殖腔膀胱。泄殖腔膀胱有一定的重吸收水分的功能,但不能补偿体表水分蒸发造成的失水,因而两栖类虽然上陆但不能长时间

离开水源。

8.离不开水环境的生殖方式

8.1生殖系统结构

8.1.1雄性生殖系统结构

雄蛙具有一对卵圆形的精巢,颜色呈淡黄色(形状及颜色因个体及季节的不同而有变化),位于肾脏之内侧。蟾蜍的精巢呈长柱状,颜色呈淡黄色或灰黑色。由精巢发出许多细小的输出精管(vasa efferentia)通入肾脏的前端,连接中肾管。蛙不具单独的输精管,中肾管兼作输尿和输精之用。中肾管在进入泄殖腔之前膨大成储精囊(seminal vesicle),为储存精液之用。雄性蟾蜍仍保留着很清楚的输卵管,这是退化状态的牟勒氏管(Mullerian duct)。蟾蜍在精巢的前端具有毕氏器(Bidder’s Organ),其中含有未分化的大细胞,类似不成熟的卵。如果人工地摘除精巢,约在二年后,毕氏器发展成为具有产卵功能的卵巢,而原来存在的退化输卵管,这时在雌性激素的影响下,发展成为子宫。这种雄性转变为雌性的现象,在生物学上称为性逆转(sex reversal)。在胚胎期,毕氏器是普遍存在的。胚胎期的精巢分为前,后两部:前部即称毕氏器,一般在性成熟之前即行消失;后部则形成精巢,产生精子。雄性蟾蜍的毕氏器则一直保留到成体。

青蛙和大多数两栖类一样,是行体外受精的,雄性不具交配器。无足类和一部分有尾类则是体内受精的,如蚓螈(Caecilia),雄性的泄殖腔甚长,可以向外突出,将精液直接输入雌体泄殖腔内,可以视为是一种交配器。无尾类中的尾蟾(Ascaphus)也是体内受精的,雄性具有一个由泄殖腔伸出的管状交配器,形似一条尾巴,故名尾蟾。

8.1.2雌性生殖系统结构

雌性的生殖器官包括一对卵巢,其形状和大小随季节而不同,在生殖时期,卵巢内因含大量黑色卵子而胀大,卵排出后即缩小成多褶皱的形状。输卵管一对,位于体腔之两侧,为白色迁迥的管道,沿此管向前追索至肺底的两旁,每管在此各有一带纤毛的喇叭状开口,名喇叭口(ostium),输卵管的后端向泄殖腔开口。卵成熟后穿破卵巢壁落人体腔内,靠腹肌的收缩以及喇叭口纤毛的作用,使卵子进入喇叭口,沿输卵管下行。输卵管壁富含腺体,当卵子通过输卵管时即被腺体所分泌的胶状物质所包裹,再下行入子宫(uterus)内暂时聍存。等到交配时,始排出体外。

8.1.3脂肪体(fat body or copora adiposa)

雌雄两性皆有脂肪体(fat body or copora adiposa),位于生殖腺前方,为一对黄色呈指状的突起物,内含有大量脂肪,为聍存营养的结构。脂肪体的大小随季节而有变化。在深秋,当渐近蛰眠期时,脂肪体最大,至来年春暖时,生殖细胞迅速增长发育,脂肪体就变得很小了。摘除脂肪体会引起生殖腺的

萎缩,由此可以看出脂肪体与生殖腺的正常发育是密切相关的。

8.2受精、胚胎发育和变态

青蛙的生殖期是4—5月间。蛙类行体外受精,受精一般在体外和水中进行。较鱼类进步之处是具有“抱对”(amplexus)现象。“抱对”持续数小时,甚至多达数日之久,雌蛙在抱对的刺激下,随即排出聍存在子宫里的成熟卵子,与此同时,雄蛙也将精液排出,在水中完成受精作用。抱对可刺激雌性排卵并提高受精率。其生学意义在于保证了卵子和精子的同时排出。观察表明,没有抱对,雌蛙的正常产卵就不能实现。此外,由于雄性在拥抱雌性时,两性的泄殖腔孔紧相靠近,因此精液可直接排在卵上,这就会增加了卵的受精机会。蛙一次排卵可达5,000粒。少数种类如无足目和少部分有尾类(如蚓螈Caecilia,尾蟾Ascaphus)体内受精,雄性泄殖腔突出可将精于送入雌性体内。一些有尾类的雄性以精包的形式排出精子,雌性的泄殖腔再将精包纳人体内完成受精。

青蛙的卵外包被着胶质膜,遇水即膨胀,且彼此相连,结成大团的卵块,蟾蜍的卵则包在长条状的胶质膜内,状似长串的“粉条”。胶质膜能起保护卵的作用,又能使卵有较为良好的发育条件。柔韧的胶质膜是对机械性刺激的最好的缓冲物,特别当卵粘附成大团时,还可以避免被动物所吞食,胶质膜也阻碍卵与卵之间的接近,因而使卵有更充分的氧气条件,透明的胶质膜可以聚集阳光的热量,提高了卵孵化时的温度。因此,胶质膜是一种适应于水中繁殖的进步性结构。

受精卵的发育必须在水中进行。受精卵在水中发育,孵化出结构与鱼类相似的蝌蚪(无四肢、鳃呼吸、单循环等)。在生长到一定阶段时开始变态(metamorphosis),各个系统进行深刻变化,由适应水生转变为初步适应陆生的成体阶段(具四肢、肺呼吸、不完全双循环)。

参考知识从蝌蚪的变态看由水上陆的进化

蛙的受精卵孵化成与鱼类结构和生活习性均十分相似的蝌蚪,在生长到一定阶段开始变态。此间,其内外几乎各个器官、系统发生了机能和结构的深刻改造,即由适应水生转变为适应陆生。最显著的变化是尾缩短消失、成对附肢出现、鳃和鳃孔消失和代之以肺呼吸等。变态完成后,具有四肢的幼蛙即可上陆生活。蛙的个体发育反映了脊椎动物的系统发生过程中由水生到陆生的这一过程的存在和具体结构的改造,反映了由鱼类到陆生动物的进化。

蛙的生活史

第三节两栖纲的多样性

全世界现存的两栖类动物约4 300种,分为3个目,即无足目、有尾目和无尾目。

1.无足目(Apoda)

又称蚓螈目(Caeciliformes)或裸蛇目(Gynmophiona)。因营地下穴居生活而鲜为人知,并很容易被误认为是蚯蚓。早期无足类具四肢但在穴居适应中失去,在两栖类中处于最原始的地位。具有:真皮内仍存在退化的骨质鳞、无荐椎、无胸骨及房间隔不完全等原始特征。并由于穴居生活而极其特化:无四肢,眼退化,眼和鼻之间有一可伸缩的触角帮助捕食。脊椎骨达60~280多块,体长10cm~1.5m多。体内受精。

本目约有160多种,分布于美洲、非洲和亚洲的热带森林中。我国仅有

一种即版纳鱼螈(Ichthyophis bannanicus)。

2.有尾目(Urodela或Caudata)

结构类似最早的两栖类,很少特化,多数种类终生水生。具有长度大约相等的、与躯干成直角的四肢、长尾和侧线,腰带与脊柱的连接部位不固定,心房间隔具穿孔而不完整,皮肤呼吸占有重要地位,一些种类甚至缺少肺和鳃。多为体外受精,少数体内受精的种类的雌性将雄性排出体外的精包纳人体内以完成受精。

本目约有380种,主要分布于北半球。我国特有的中国大鲵(Andrias davidianus)是世界上现存最大的两栖动物,终生水生。泥螈(Necturus maculatus)成体具3对外鳃,终生水生,产于北美洲。

3.无尾目(Anura或Salientia)

是两栖类中最高等、种类最多、分布最广的一目。无尾,体型宽短,四肢发达,尤其是后肢,适于跳跃,后趾间具蹼也适于水中游泳。成体对陆地生活有较好的适应:皮肤分布大量粘液腺,具可活动的上下眼睑和瞬膜,肺呼吸,无外鳃和鳃裂。具胸骨但无肋骨。其中的蟾蜍类皮肤角质化程度更高,能在较干燥的环境生活。体外受精,幼体为蝌蚪,鳃呼吸,经明显的变态转变为肺呼吸的成体。全世界约3 800种,遍布热带、亚热带地区,极少数种类在北极圈内。代表动物如黑斑蛙(Rana nigromaculata),大蟾蜍(Bufo bufo gargarizans)。

第四节两栖类的起源和进化

两栖类是具有内鼻孔和肉状鳍的总鳍鱼类(Crossopterygii)的后代。在晚泥盆纪时期,气候潮湿温暖,大量植物生长,水中的落叶和残枝增多并不断地腐烂,致使水中缺少氧气。生活在淡水中的鱼类面临缺氧和干旱,促使具有内鼻孔和肉质偶鳍的古总鳍鱼类上岸寻找新的有利环境,经过长期在不同水塘之间的爬行,鳃演变成肺,偶鳍演变成四足(古总鳍鱼鳍骨排列与四足类骨骼排列相似),最终演变出最早期的两栖动物。最早的两栖类化石即鱼石螈(Ichthyostega)发现于距今3.5亿年前的泥盆纪晚期地层,是迄今发现的最早的能在地面上运动的首批脊椎动物,结构上具有鱼类和两栖类的特征:头骨被真皮骨覆盖,有带鳍条的鱼尾和鳃盖骨,体表覆以小鳞片。但同时具有有关节的五趾(指)型四肢(骨片排列与总鳍鱼的偶鳍相似,头骨与肩带失去联系等。随之而来的温暖潮湿的石炭纪使两栖类得以迅速地辐射发展,产生了多样化的种类,总称为坚头类(S(Segocephalia),分为迷齿类(Iabydnthodontia)和壳椎类(Lepospondyli),在三叠纪前绝灭。在侏罗纪出现的现生两栖类,据推测可能是从坚头类中的迷齿类产生。

参考知识四足类起源之争

以瑞典古生物学家Jarvik为代表的学者认为:总鳍鱼中已绝灭的扇鳍鱼类(rhipidisfian)是四足类的祖先。泥盆纪时期气候干燥,水中周期性缺氧,这一类动物由于具有内鼻孔和肉状偶鳍而逐渐向陆地转移。在长期的进化过程中

演化出早期四足类即两栖类。但20世纪80年代我国著名古生物学家张弥曼院士对骨鳞鱼化石杨氏鱼(Yangolepis)的研究证实它们不具有内鼻孔,对四足类的祖先提出质疑。1981年Rosen等人提出肺鱼是四足类的祖先,因为肺鱼与四足类之间在解剖学、生理学、胚胎学和行为学上有许多令人惊奇的相似。这样对四足类祖先的争论多年来悬而未决。

近年来由于分子生物学技术的应用,四足类祖先的争论又进一步深化。其中一部分学者对线粒体DNA基因、核糖体RNA基因、血红蛋白序列等进行测序分析,认为肺鱼与四足类之间的亲缘关系密切,为肺鱼—四足类支系的成立提供了大量的分子生物学数据。目前研究和争论仍在继续。

小结

两栖类是变温的、具有典型五指(趾)型四肢的、水陆两栖的脊椎动物,是低等四足类在由水生向陆生环境转变的过程中,产生了许多对陆生环境的适应特征,两栖类大多数以肺作为呼吸器官,但同时辅以皮肤呼吸,有的终生水生的种类终生具有鳃。两栖类发展了陆生动物所具有的骨骼结构,包括在脊柱、四肢、肩带、腰带方面的改造。嗅、视、听器官的变化和脑的相应的发达有利于在复杂的陆生环境中生活。但由于结构的不完善,至少在繁殖期要走向水中,身体不能抵抗寒冷、干旱等,限制了它们的生活环境,不能完全脱离水环境。

现代两栖类包括3个主要类群:无足类是小型热带五四肢的类群,身体细长,适于穴居生活。有尾类具尾,并具有几乎等长的四肢。无尾类是现代两栖类中最大的类群,无尾、身体粗短和后肢发达,特化为适合于跳跃运动方式。

大多数两栖类在其生活史中具有变态阶段,幼体为水生的蝌蚪,蝌蚪结构似鱼以鳃呼吸,经变态后产生陆生的以肺呼吸的成体。在繁殖期返回水中产卵。无足类和—些有尾类体内受精,大多数两栖类生殖期雄性发出特有的鸣叫以吸引异性,雌雄两性有抱对现象,体外受精。

思考题

1与水生环境相比,陆生环境对上陆动物来说具有有利和不利的条件,这些条件怎样影响两栖类各个器官系统的进化?

2两栖类对陆地生活的适应有哪些完善和不完善之处?

3以蛙的个体生活史说明四足类的系统发育。

4描述蛙的心脏和血液循环路线的特点。

5蛙的皮肤是如何适应水、陆两栖生活的?

6叙述两栖类的主要类群、代表动物和主要特点。

7谈谈你对四足类起源的看法。

无脊椎动物的主要类群3

课时课题:第二章第1节无脊椎动物的主要类群第3课时 课型:新授课 一、教学目标 知识目标 (1)描述常见软体动物及主要特征。(重点) (2)说明节肢动物与陆地环境相适应的主要形态、结构和生理功能特点。(难点)(3)描述节肢动物的主要特征。(重点) 能力目标 (1)通过实验观察,阐明蝗虫形态结构与其陆地生活环境相适应的特点。 情感态度价值观目标 (1)强化“生物与其生活环境相适应”的观点。 (2)进一步强化环保的意识。 二、重点与难点: 重点:理解节肢动物与陆地环境相适应的主要形态、结构和生理功能特点。 难点:描述软体动物、节肢动物的主要特征。 三、教学准备 教师:蝗虫、放大镜、镊子、解剖盘、课件等。 学生:兴趣小组搜集贝壳,准备关于观察蝗虫的实验材料。 四、教法: 1、直观教学法:利用直观教学手段,启发学生积极思考,实现知识的升华和内 化。 2、引导发现法:引导学生层层深入发现未知,并在“动脑、动手、动口”状态 中提高探究能力和创新意识。 3、体验互动法:在师生、生生互动中,实现学生认知过程与情感体验过程的有 机结合。 学法: 1、自主探究法:通过观察的实验,体验科学探究的一般方法,分析问题解决问 题的能力。 2、合作学习法:通过观察蝗虫的结构实验,节肢动物与陆地环境相适应的主要 形态、结构和生理功能特点,提高交流表达能力和团队合作能力。 五、教学过程: (一)创设情境,激趣导入(5分钟)

2、扁形动物,线形动物,环节动物合起来又称为什么动物?以上四类动物都是 什么动物?无脊椎动物还有哪些? 【设计意图】学生认真回忆,复述四类动物的代表动物、主要特征、生活环境、营养方式,进一步加深对知识的记忆与理解。在学生了解了一部分无脊椎动物的类群后继续深入思考,无脊椎动物在进化到环节动物后,又进化到哪类动物?它们比环节动物高等在哪里?继而展开第一个活动: (二)自主探究,讨论交流 展示小螺号的图片并播放《小螺号》歌曲。 探究活动一:软体动物(5分钟) 1、学生阅读教材并完成: (1)常见软体动物有:、、、。 (2)软体动物身体,外壳为,可随身体的生长而增大,呈现出年轮般的花纹,乌贼的贝壳退化为,蜗牛的运动器官是,河蚌的运动器官是,古代用的贝壳作为货币使用。 2、引导学生归纳常见的软体动物,主要特征及生活环境。 主要特征:身体柔软,外壳能随身体的生长而增大,呈现年轮般的花纹。 生活环境:水中或潮湿的陆地。 进一步探究:软体动物比环节动物高等在哪里? 引导学生分析:软体动物大都有坚硬的贝壳,有保护功能,更能适应外部环境。软体动物大多有坚硬的贝壳,节肢动物也有坚硬的外壳,节肢动物的外壳与软体动物的贝壳有什么不同呢?为什么节肢动物比软体动物更能适应陆地的生活呢?引导学生继续探究。 (三)实验探究,互动交流 1、探究活动二:观察蝗虫、虾(5分钟) (1)轻轻地捏一下蝗虫和虾的身体,有什么感觉?

脊椎动物的进化过程探析论文

脊椎动物的进化过程探析论文 摘要:脊椎动物的进化是一个漫长的过程。从最早的甲胄鱼逐渐进化到两栖类,从此生物开始由水生向陆生进化;从两栖类进化发展到爬行类,又从爬行类中分化出鸟类和哺乳类,最后直到人类从哺乳类中演化出来。显然正是这样一个由简单到复杂、从低级到高级进化过程造就了动物界中最高等生物群体。 关键词:脊椎动物进化 动物的进化从最初的单细胞生物(原生动物)逐渐进化到多细胞生物进而不断的进化出具有体腔、神经系统、完整的循环系统的越来越高等动物。其中在动物界分门中脊索动物为最高等的一门,而在脊索动物中脊椎动物又是最高等的一门,那么这类高等的动物究竟是怎样进化的呢 1脊椎动物简介 脊椎动物是动物界最高等的类群,它们组成了动物界脊索动物中的一个亚门-脊椎动物亚门。脊椎动物体内有一条由一串脊椎骨连结而成的脊柱,起到支撑身体的作用;脊柱前方有发达的头骨,它与脊椎一起来,连同从脊椎骨两侧伸出的肋骨构成了脊椎动物的中轴骨骼。大多数的脊椎动物还有一套附肢骨骼,起到导航、平衡或推动身体前进的作用。脊椎动物的中枢神经系统脊髓,位于脊柱的上方、身体背侧;心脏和消化系统位于脊柱的下方和腹侧。脊椎动物中鱼类用腮呼吸(包括两栖类幼体),四足类用肺呼吸。除最原始的类型(圆口纲)外,脊椎动物都有上下颌。感觉器官包括眼、鼻、耳。 2、水生脊椎动物简介 ①脊椎动物伊始甲胄鱼

最早的脊椎动物属于无颌纲,统称为甲胄鱼类。它们没有上下颌骨,作为取食器官的口不能有效的张合,因此它们获取广泛食物资源的能力就很受限制;它们没有真正的偶鳍,也没有骨质的中轴骨骼。甲胄鱼类到泥盆纪时发展成为适应于各种生态环境和具有各种生活习性的一大类群,取得了暂时的成功。然而随着有颌脊椎动物的逐渐兴起,甲胄鱼类最终在竞争中失败,退出历史舞台。 ②脊椎动物进化的革命颌 脊椎动物登上历史舞台之后的第一次革命就是颌的出现。甲胄鱼类有大量的腮,而后前边两对腮弓逐渐消失,在第三对腮弓上长出了牙齿,并在“弓”行尖端处以关节结构铰和在一起。这样,能够张合自如,有效地咬住事物的上下颌形成,从而扩大了脊椎动物的取食范围,使脊椎动物更适应生态环境。 ③高等鱼类 高等鱼类是以上下颌摄取食物的变温水生动物。典型的高等鱼类有一个大而有力的尾鳍,尾鳍来回摆动在水中引起反作用力从而推动身体前进。其背鳍臀鳍均为平衡器。偶鳍包括位于前方的一对胸鳍和位置或前或后的腹鳍。偶鳍非常灵活,起到水平翼或升降舵的作用,有助于鱼在水中的游动。高等鱼类分为软骨鱼系和硬骨鱼系。软骨鱼类骨骼为软骨,无鳔,体内受精,代表性动物为鲨鱼。硬骨鱼类具有高度进步的骨化了的骨骼。头骨在外层由大量骨片衔接拼成一复杂图式,覆盖着头的顶部和侧面,并向后覆盖在腮部。大多数硬骨鱼由舌颌骨将颌骨与颅骨以舌接型的连接方式相关连。体外覆盖鳞片完全骨化。原始硬骨鱼类的鳞厚重,随着其不断进化鳞片厚度逐渐变薄,最后进步的硬骨鱼仅有一薄层骨质鳞片。大多数硬骨鱼的肺转化为有助于控制浮力的鳔。高等鱼类已经与今天我们所讲的鱼类大致相同。

动物的主要类群练习题

动物的主要类群练习题 班级姓名学号 一、选择题。(每题2分) 1、下列属于腔肠动物的是() A、血吸虫、蛔虫 B、珊瑚、海蛰 C、蜗牛、丝虫 D、水母、水螅 2、自然界动物的种类很多,目前已知的大约有()万种 A、30 B、150 C、180 D、120 3、下列动物中都属于淡水鱼类的一组是() A、链鱼和带鱼 B、鳙鱼和鲤鱼 C、青鱼和大黄鱼 D、草鱼和小黄鱼 4、下面各组动物中,都属于恒温动物的一组是() A、鱼类、鸟类 B、两栖类、昆虫类 C、爬行类、哺乳类 D、鸟类、哺乳类 5、脊椎动物和无脊椎动物的主要区别是体内是否有() A、脊索 B、脊椎 C、脊柱 D、脊梁 6、自然界种类最多的一类动物是() A、鱼类 B、哺乳类 C、节肢动物 D、鸟类 7、蚯蚓是靠()来呼吸 A、皮肤 B、气管 C、湿润的体壁 D、肺 8、鸟类呼吸时进行气体交换的场所是() A、肺 B、肺和气囊 C、气囊 D、气管 9、身体两侧辐射对称的动物是() A、绦虫、虾 B、水螅、海蜇 C、涡虫、血吸虫 D、线虫、文蛤 10、地球上的鸟类和哺乳类分别大约有() A、4000种和9000种 B、9000种和4000种 C、3000种和4000种 D、3000种和9000种 11、下列水生动物中属于软体动物的是() A.海葵 B.珊瑚虫 C.章鱼 D.虾类 12、利于爬行动物保持水分的结构是() A.角质的鳞片或甲 B.毛 C.外骨骼 D.羽毛 13.适于陆地生活的动物,其呼吸器官一般是() A.气管和肺 B.气管和鳃 C.肺和鳃 D.肺和皮肤 14.海豹、海豚、鲸等都是生活在海洋中哺乳动物,它们的呼吸方式是 A.用鳃呼吸 B.用肺呼吸 C.用气囊呼吸 D.用皮肤呼吸 15.下列器官与鸟的呼吸无关的是() A.气管 B.鳃 C.肺 D.气囊 16.家鸽最发达的肌肉附着在() A.胸部 B.两翼 C.尾骨 D.后肢骨 17、下列家兔的生理特点与其食性有关的是() A.身体被毛 B.盲肠特别发达 C.心脏分四腔 D.用肺呼吸 18.水中游的动物( ) A.全都是脊椎动物 B.全都是无脊椎动物 C.既有脊椎动物又有无脊椎动物 D.既不是脊椎动物,也不是无脊椎动物 19.下列动物结构及其功能的对应关系中,不正确的是() A.河蚌的贝壳——游泳 B.蝗虫的气管——呼吸 C.蜥蜴的鳞片——保护 D.家鸽的羽毛——飞行 20.体表有外骨骼,身体由许多体节构成,有足和触角的是()

无脊椎动物的主要类群习题

无脊椎动物的主要类群周末习题 知识回顾(识记知识点后再填写) 无脊椎动物 一、腔肠动物 1.代表动物:(1)生活环境:水草丰茂的。(2)结构:身体由口、、消化腔和组成。 2.主要特征 结构简单的动物,身体呈状,体壁仅由构成,消化腔有。 二、.扁形动物 (1)生活环境:多数营生活。(2)主要特征:身体,有口的动物。(3)举例:涡虫、和等。 2.线形动物 (1)生活环境:通常生活在中,有些种类在人体或其他生物体内。(2)主要特征:身体一般为或,两头尖,有口。(3)举例:秀丽隐杆线虫、等。 三、环节动物 (1)生活环境:和的陆地。(2)主要特征:身体由构成,使运动更加灵活。(3)举例:蚯蚓、水蛭和沙蚕等。(4)蚯蚓是通过和的配合来完成运动的。(5)我们一般根据区分蚯蚓的前后端,。靠近的一端是端,远离的一端是端。(6)蚯蚓没有专门的呼吸器官,依靠与外界环境进行气体交换。 .蠕虫动物:身体细长,对称、无、能的动物。包括扁形动物、和。 四,软体动物 (1)主要特征:身体,为贝壳。贝壳能随着,呈现年轮般的花纹。 (2)举例:蜗牛、、乌贼和等。 五、节肢动物

(1)代表动物:。 ①生活环境:陆地飞行。②形态结构:a.身体分为、、三部分。b.胸部具有三对、两对。c.体表有,其作用是和内部结构,有效地防止体内的蒸发。③生理:a.运动:用三对、两对运动。b.呼吸:用呼吸。 (2)主要特征:身体,和触角节均分,体表有。其他节肢动物:蝉、、蟹、等。 巩固提高: 一、选择题 1.水螅通常能捕食到与其体积相当的水蚤,这主要是依靠( ) A.刺细胞 B.触手的缠结 C.发达的肌肉 D.口的吞噬 2.(2012·泰安学业考)世界上许多国家成立了蚯蚓养殖厂,并把蚯蚓养殖称为“环境净化装置”。蚯蚓能用来净化环境的主要原因是( ) A.能在湿润土壤的深层生活 B.身体柔软,能在垃圾中钻洞 C.身体分节,运动灵活自如 D.能分解枯叶、朽根等中的有机物 3.进食未煮熟的猪肉可能会感染( ) A.猪肉绦虫 B.钩虫 C.姜片虫 D.肝片吸虫 4.下列动物中不属于昆虫的是( ) A.蜜蜂 B.蚊 C.园蛛 D.蟋蟀 5.(2011·菏泽学业考)千姿百态的动物王国里,有些动物的身体内有由脊椎骨组成的脊柱,有些动物则没有。下列生物中,全属于无脊椎动物的一组是( ) A.家鸽、壁虎、青蛙 B.蝗虫、蚯蚓、蜈蚣 C.鲫鱼、家兔、螳螂 D.蚂蚁、蜜蜂、鲨鱼

无脊椎动物的主要类群 复习题

- 1 - 无脊椎动物的主要类群 周末习题 审阅:七年级生物备课组 知识回顾(识记知识点后再填写) 无脊椎动物 一、腔肠动物 1.代表动物: (1)生活环境:水草丰茂的 。 (2)结构:身体由口、 、消化腔和 组成。 2.主要特征 结构简单的 动物,身体呈 状,体壁仅由 构成,消化腔有 。 二、.扁形动物 (1)生活环境:多数营 生活。 (2)主要特征:身体 ,有口 的 动物。 (3)举例:涡虫、 和 等。 2.线形动物 (1)生活环境:通常生活在 中,有些种类 在人体或其他生物体内。 (2)主要特征:身体一般为 或 ,两头尖,有口 。 (3)举例:秀丽隐杆线虫、 等。 三、环节动物 (1)生活环境: 和 的陆地。 (2)主要特征:身体由 构成,使运动更加灵活。 (3)举例:蚯蚓、水蛭和沙蚕等。 (4)蚯蚓是通过 和 的配合来完成运动的。 (5)我们一般根据 区分蚯蚓的前后端,。靠近 的一端是 端,远离 的一端是 端。 (6)蚯蚓没有专门的呼吸器官,依靠 与外界环境进行气体交换。 .蠕虫动物:身体细长, 对称、无 、能 的动物。包括扁形动物、 和 。 四,软体动物 (1)主要特征:身体 , 为贝壳。贝壳能随着 ,呈现年轮般的花纹。 (2)举例:蜗牛、 、乌贼和 等。 五、节肢动物 (1)代表动物: 。 ①生活环境:陆地飞行。②形态结构:a.身体分为 、 、 三部分。b.胸部具有三对 、两对 。c.体表有 ,其作用是 和 内部结构,有效地防止体内 的蒸发。③生理:a.运动:用三对 、两对 运动。b.呼吸:用 呼吸。 (2)主要特征:身体 , 和触角节均分 ,体表有 。 其他节肢动物:蝉、 、蟹、 等。 巩固提高: 一、选择题 1.水螅通常能捕食到与其体积相当的水蚤,这主要是依靠( ) A.刺细胞 B.触手的缠结 C.发达的肌肉 D.口的吞噬 2.(2012·泰安学业考)世界上许多国家成立了蚯蚓养殖厂,并把蚯蚓养殖称为“环境净化装置”。蚯蚓能用来净化环境的主要原因是( ) A.能在湿润土壤的深层生活 B.身体柔软,能在垃圾中钻洞 C.身体分节,运动灵活自如 D.能分解枯叶、朽根等中的有机物 3.进食未煮熟的猪肉可能会感染( ) A.猪肉绦虫 B.钩虫 C.姜片虫 D.肝片吸虫 4.下列动物中不属于昆虫的是( ) A.蜜蜂 B.蚊 C.园蛛 D.蟋蟀 5.(2011·菏泽学业考)千姿百态的动物王国里,有些动物的身体内有由脊椎骨组成的脊柱,有些动物则没有。下列生物中,全属于无脊椎动物的一组是( ) A.家鸽、壁虎、青蛙 B.蝗虫、蚯蚓、蜈蚣 C.鲫鱼、家兔、螳螂 D.蚂蚁、蜜蜂、鲨鱼 6.蝗虫与陆地生活相适应的呼吸器官是( ) A.肺 B.鳃 C.气管 D.气囊 7..请观察蝗虫的外部形态图,回答问题。(注意:[ ]内填数字, 上填名称) (1)蝗虫是常见的昆虫,它的身体分为 、 、 三部分,其中有发达肌肉的是[ ] 。 (2)图中[ ] 是它的飞行器官,它 有 对足,跳跃时主要靠图中[ ] ,运动 器官都着生在 。 (3)蝗虫的呼吸器官是 。 (4)蝗虫的哪些特点使其适应陆地及空中生活? 。 8.根据饲养和观察蚯蚓的实验及图示,回答下列问题: (1)区分蚯蚓的前端和后端可根据[ ]___________的位置。 (2)用手触摸蚯蚓的腹面会有_________的感觉。这是因为在蚯蚓的腹面有许多小突起,叫__________,它们与蚯蚓的_____________有关。 (3)蚯蚓身体由许多___________构成,这样的动物被称为__________动物。你能说出蚯蚓在自然界中的一项作用吗?_________________________________ _______________________________________________________________________________________________________________________________________。

生物进化的历程导学案

第二节生物进化的历程 思维导航: 生命诞生之初,地球上只有最简单的单细胞藻类和单细胞动物。而今的地球上,到处是丰富多彩的各类生物。那么现今的生物是从哪里来的呢人们一直在寻找这个问题的答案。 由于科学发展水平和认识能力的限制,一直以来,神创论的观点占据主导地位,认为人类和各种生物都是上帝或者神创造的。到底是不是这样呢直到人类不断发现越来越多的古生物化石以后,生物进化的观念才逐渐得到人们的认可。化石是什么呢生物是怎么样由简单进化到现在复杂的各类生物的呢通过这一节的学习,你会了解到生物进化的证据以及生物进化的主要历程。知识点梳理: 生物进化的历程 1.生物进化的证据 (1)化石是生物进化的最直接证据。 (2)马的进化过程:趋势是体型由小趋大,四肢越来越长,多趾逐渐变成中趾发达并唯一着地。 (3)鸟的进化过程:古代的某种爬行动物→始祖鸟→现代鸟 (4)越简单、越低等的生物的化石总是出现在越古老的地层里; 越复杂、越高等的生物的化石总是出现在越新近形成的地层里。 2.生物进化的主要历程 (1)地球上最早出现的植物是海洋中的原始的单细胞藻类;种子植物的生殖过 程已经完全 ..摆脱了对水.的依赖。 (2)地球上最早出现的动物是海洋中的原始的单细胞动物。 鸟类 古代鱼类(最早的脊椎动物)→原始两栖类→爬行类 哺乳类 (3)生物进化趋势:从单细胞到多细胞、从低等到高等、从简单到复杂、从水生到陆生。 (4)生物多样性是生物进化的结果。 随堂反馈:

1. 为生物进化提供了最直接的证据。 2.化石是地层里古代生物的___ 、____ 、____ 等的总称。 3.爬行类进化成鸟类的典型证据是在德国发现的“”化石。 4.科学家们发现,越、越的生物的化石总是出现在越古老的地层里,越、越_____的生物化石则出现在越新近形成的地层里。 5.科学家们根据亲缘关系的远近,用生物“”形象而简单地表示生物进化的主要历程。 6.地球上最早出现的植物是海洋中原始的,最早出现的动物是原始。 7.生物进化的规律是从_________到_________、从_________到_________、从________到_________、从_________到_________。 8.生物多样性是的结果。 巩固升华: 一、选择题 1.在越古老的地层里,成为化石的生物() A.数量越多 B.种类越丰富 C.越简单、越低等 D.越复杂、越高等 2.始祖鸟在进化上可能是处于哪两种动物之间的过渡类型() A.鸟类和哺乳类 B.无脊椎动物和脊椎动物 C.鱼类和两栖类 D.古代爬行类和鸟类 3.下列观点错误的是() A.所有的生物都有共同的原始祖先 B.越接近生物进化树的顶端,生物越高等 C.越复杂的化石出现在越古老的地层里 D.生物进化的方向是由简单到复杂 4.下列生物中,哪个可能最接近于原始的自养生物() A.藻类 B.蕨类 C.细菌 D.草履虫 5.下列有关生物进化历程的概括中,错误的是() A.由简单到复杂 B.由低等到高等 C.由体小到体大 D.由水生到陆生

无脊椎动物的进化

一、体制:无对称→球形对称→辐射对称→两侧对称 (1)无脊椎动物 原生动物: 变形虫——无对称 放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成相等的对称面)→适应于悬浮在水中 草履虫——两侧对称 多孔动物、腔肠动物: 基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中 海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面) 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,就是动物由水生进化到陆生的重要条件之一。 二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转) 原生动物: 单细胞动物没有胚层的概念;即使就是团藻也只有一层细胞,; (真正地多细胞动物有胚层的分化) 肠腔动物: 二胚层 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 出现三胚层(在动物进化上有着极为重要的意义) 三、体腔:无体腔→假体腔→真体腔(就是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物、扁形动物: 无体腔 线形动物(假体腔动物): 假体腔(初生体腔,即直接跟体壁的肌肉层与消化管道的壁相接触没有中胚层形成的体腔膜包围,也不与外界相通)←胚胎时期的囊胚腔所形成的 环节动物、节肢动物、棘皮动物(软体动物真体腔退化): 真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了各种器官的进一步特化 四、体节与身体分布:同律分节→异律分节(身体分节就是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物: 不分节 扁形动物、线形动物: 原始分节(机体各部分结构与机能分化,但身体不分节) 环节动物: 同律分节 节肢动物、软体动物、棘皮动物: 异律分节(导致了动物的身体分部) 五、体表与骨骼:细胞膜→细胞外有壳→外有纤毛→有角质层→体外有壳→体外含几丁质原生动物: 仅细胞膜(部分植物性鞭毛虫有细胞壁,部分有壳肉足虫具外壳、含角质、石灰质等);

无脊椎动物的主要类群教案

无脊椎动物的主要类群教案 教学目标: 知识目标 描述无脊椎动物的主要类群 通过观察和交流,归纳出腔肠动物的主要特征 说出腔肠动物与人类的关系,初步感知生物“由低等到高等、由简单到复杂、由水生到陆生”的进化顺序能力目标 通过观察水螅分组实验,培养学生观察分析问题的能力及使用操作显微镜的能力。 通过探究活动,培养学生科学探究能力和小组合作解决问题的能力。 教学准备: 教师准备 收集腔肠动物的各种资料 准备实验的材料 学生准备 收集有关水螅的资料 教学过程: 教学环节及时间安排教师活动学生活动设计意图 创设情景

激发兴趣 分钟 【导入】: 我们学习了我们身边的绿色植物,下面让我们一起走进多姿多彩的动物世界。提出问题:这些动物有何不同? 师明确:脊椎动物与无脊椎动物的概念。 【过渡语】:各种动物以其独特的方式运动着,并表现出不同的行为,使得生物圈充满了无限生机与活力。这节课我们一起学习无脊椎动物的主要类群 节无脊椎动物的主要类群1生思考后回答: 生1:根据生活环境的不同可分为水生、陆生 生2:根据生活方式的不同可分为寄生、自生 生3:根据脊椎的有无可分为有脊椎动物、无脊椎动物创设问题情境,激发学生学习探究的欲望 自主学习 合作探究 0分钟这些看似柔弱的无脊椎动物与脊椎动物相比那个种类多?它主要包括哪些类群?提出问题 这些机灵可爱还能翻筋斗的小动物大家见没见到过?它叫什么名字?在什么样的环境中能采集到? 【过渡语】:它的形态结构及捕食特点是怎样的呢?下面让我们一起去探究

观察水螅的外部形态 提出问题,学生思考讨论: 水螅生活在怎样的环境中? 观察时用肉眼能看清楚吗?我们要借助什么工具?它的体型有何特点? 水螅是如何捕获食物的 【过渡语】:通过观察我们知道水螅身体呈筒状,有触角。那么它是如何利用自己简单的形体特点进行捕获食物的呢? 水螅身体的两端有何区别? 水螅的触角有什么作用?它如何捕获食物? 水螅的体壁和消化腔特点 生物的结构和功能是相适宜的,它的体壁和消化腔有什么样的特点与此捕食相适应呢? 水螅的体型是怎样的? 体壁由几层细胞构成? 消化腔有什么特点? 复习显微镜的使用 对照课本P73页2.2—3水螅结构示意图观察 你在低倍显微镜下看到水螅的体壁和消化腔各有何特点? 【强调】:实验过程注意事项:

脊椎动物演化史上有几大进步事件

脊椎动物演化史上有几大进步事件,随机举出两个进步事件的意义?五大事件进步:具上下颌、五指型附肢、羊膜卵、恒温、胎生哺乳。(5分) A五指型附肢的进步意义 (1)适应陆生的五趾型附肢,这是动物演化历史上的一个重要事件。 (2)两栖动物的五趾型附肢与鱼鳍不同,肩带游离,前肢在摆脱头骨的制约后,不但获得了较大的活动范围,而且也增强了动作的复杂性和灵活性;腰带一方面直接与脊柱牢固地联结,另一方面又与后肢骨相关节,构成支持体重和运动的主要工具,使登陆的目标得以实现。羊膜卵出B现的进步意义: 1羊膜卵可以产在陆地上并在陆地上孵化。 2体内受精,受精作用可无需借助水作为介质。 3胚胎悬浮在羊水中,使胚胎在自身的水域中发育,环境更稳定,既避免了陆地干燥的威胁,又减少振动,以防机械损伤。 C恒温出现的进步意义: 1恒温的出现,是动物有机体在漫长的发展过程中与环境条件对立统一的结果。 2高而恒定的体温,促进了体内各种酶的活动、发酵过程,使数以千计的各种酶催化反应获得最大的化学协调,从而大大提高了新陈代谢水平。 3高温下,机体细胞(特别是神经和肌肉细胞)对刺激的反应迅速而持久,肌肉的粘滞性下降,因而肌肉收缩快而有力,显著提高了恒温动物快速运动的能力,有利于捕食及避敌。 4恒温还减少了对外界环境的依赖性,扩大了生活和分布的范围,特别是获得在夜间积极活动的能力和得以在寒冷地区生活。这也是中生代哺乳类能战胜在陆地上占统治地位的爬行类的重要原因。 D胎生和哺乳的进步意义 1胎生和哺乳对后代的发育和生长具有完善、有利的保护。 2从受精卵、胚胎、胎儿产出、至幼仔自立的整个过程均有母兽的良好的保护,使后代的成活率大为提高,而使哺乳类在生存竞争中占有较高的起点,在地球上的生存和发展中具有较大的优势。

脊椎动物的主要类群(第一课时)

2.2.2脊椎动物的主要类群 第一 教学目标 知识与能力 1.能概述出脊椎动物各大类群的主要特征。 2.能区分、判断出常见的脊椎动物属于哪一类群。 3.能举例说出脊椎动物与人类生活的关系。能列举出几种我国特有的或珍稀的脊椎动物的名称。 过程与方法 1.通过让学生总结脊椎动物各大类群的特点,培养训练学生分析比较的思维能力。 2.通过讨论活动,培养学生的协作能力、分析思考能力。 3.通过研究活动,使学生掌握应用网络进行学习的方法。 情感态度价值观 1.通过对各类群动物的学习,培养学生热爱生命、保护动物、珍爱动物的美好情感。 2.通过对各类群动物与人类关系的学习和了解,帮助学生树立一分为二的辩证观点和生物科学的价值观。 教学重难点 教学重点 脊椎动物类群的主要特征(常见脊椎动物的特点)。 教学难点 脊椎动物类群的主要特征(常见脊椎动物的特点)。 课前准备 课件、实验材料用具等。 教学过程 情境导入 生活中常见的小动物鱼、乌龟、蜥蜴、蛇等,它们形态特征、生活环境各不相同,但是它们又有共同之处,这共同之处是什么呢?这节课我们来认识这些动物。 积极回答,畅所欲言。培养学生的发散思维。 讲授新课 一、鱼类 观察鲫鱼,观察时结合课本80页图片,并完成下列观察内容。 1.观察鲫鱼的体色、体形,体表。 (1)体色观察鲫鱼的体色,比较背部和腹部的颜色有什么不同?想一想,这种体色与水生环境有什么关系? (2)体形观察鲫鱼的身体呈什么形态?想一想,这种体形与水中游泳有什么关系? 讨论你知道鲫鱼的体形特点,在仿生学方面有什么应用吗? (3)体表 a.观察鳞片的分布,想一想,鳞片有什么作用?鳞片上的侧线有什么作用?

脊椎动物演化历程 双语

脊椎动物演化历程 达尔文主义者认为,两栖类和现代鱼类源出于一种上古的鱼;爬虫出自两栖动物的祖先;飞鸟和哺乳动物分别从爬虫祖先进化而来。最后,他们指出,人与猩猩都是源出于一个相同的猿类祖宗,而且这些猿人的过渡化石已被发掘出来。根据古尔德所言,从爬虫到哺乳动物,和从猿至人之间的过渡化石,已确实证明了进化的事实。 在未分析这些证据之前,我需要加上一些条件,这些条件一定使达尔文主义者很不好受,就是这些证据不能根据"假定学说真实"的大前提来衡量,应从一个独立的立场来考究。 我们已指出古生物学奉达尔文主义为金科玉律,不再怀疑它的真实性,只求在这理论的"骨骼"上加上"肌肉"而已。古生物学家的成就,乃是在于进化祖先的鉴定,因此他们已经建立鉴定进化祖先的标准。美国自然历史博物馆古生物学家加勒特·纳尔逊,直截了当地形容他们的治学态度: 我们必定有一些祖先,我们要找出来。为什么呢?因为我们知道,早晚一定会找出来的。这就是古生物学的作风,我并非夸大其词。 当然,这些"祖先"不能用来证实这套理论,因为学者乃是根据"一定有祖先"的理论,来鉴定祖先。 鱼纲至两栖类 要考证的理论,就是鱼纲进化到一个地步,使它爬出水面,登上陆地,而且同时发展两栖纲的生殖功能和其他特征,达尔文主义者并没有指出一种特别的鱼纲为两栖纲的祖先,但是他们都以一类绝种的扇鳍目(rhipidistians)为祖先类属,这些化石有与早期两栖动物相似的骨骼,如一些可能进化为腿的小骨,但是,据《脊椎动物历史》(Vertebrate History)的作者巴尔巴拉·施塔尔说:"在已知的一切鱼纲中,我们找不到最早的陆地脊椎动物的祖先,因为这些鱼纲都是在最早的两栖纲出现之后才生存的,在这些鱼纲之先的化石都没有发展早期四足动物特有的强壮四肢和肋骨的证据。" 1938年,印度的渔夫捕获一种腔棘鱼(colelacanth),鉴定为7000万年前绝种的样本。很多古生物学家都认为这种鱼与上述的扇鳍目有密切关系,因此这活生生的样本应在研究早期两栖动物的进化上占重要的地位。但是根据腔棘鱼的解剖研究,它的内脏并无任何适应陆地生活的征状,在鱼至两栖动物的进化中并无贡献,这发现使人怀疑此前的扇鳍目也是同样缺乏说服力。 两栖纲至爬虫纲 在这转变时期中并无化石的证据。塞莫利亚(Seymouria)乃是早期的两栖动物化石,具有多少类似爬虫的特征,但是它们在化石历史中出现太晚,最近的证据鉴定它们为道地的两栖动物。而爬虫与两栖动物的骨骼相似,最重要的分别就在于不能变为化石的生殖系统,两栖动物在水中产卵,卵子经过复杂的孵化才变为成长的动物,但爬虫的卵子却有很厚的硬壳,内有羊膜保护胚胎,因此胚胎与成长的动物相若。达尔文的自然选择论不能解释两栖动物如何进化出爬虫的一套生殖系统。 爬虫纲至哺乳纲 最后我们谈谈达尔文主义者最引以为荣的化石证据,即古尔德和其他一些人作为结论性证据引用的具有哺乳动物特征的兽孔目爬虫(Therapsida),这一目(Order)的动物具有很多化石拥有爬虫与哺乳动物的构造,好像是这两纲之间的中间动物。其实在这两纲动物之间的分界线是很难划分的。普遍通用的标准乃是爬虫的颚骨内几个小骨,其中一块与头颅骨连

无脊椎动物各系统进化主线 3

物发生律或称重演律: 德国学者赫克尔提出 生物发展史可分为两个相互密切联系的部分,即个体发育和系统发展,也就是个体的发育历史和由同一起源所产生的生物群的发展历史。个体发育史是系统发展史的 简单而迅速的重演。 消化系统的进化主线: 原生动物只有胞内消化,可用伪足或胞口摄食,另外还可植食和腐食性; 海绵动物仍然是胞内消化; 腔肠动物开始有了消化管;胞内和胞外消化; 扁形动物为胞外消化,但消化管是不完全的; 线形动物出现了完全的消化管,并且有了分化; 环节动物以后由于真体腔的出现,消化管更加复杂和分化,同时有了消化腺。 呼吸系统的进化主线: 原生动物、海绵动物、腔肠动物都没有呼吸和排泄系统,呼吸作用通过体表完成的;扁形动物和线形动物也无呼吸系统,呼吸也是体表进行的,寄生种类为厌氧呼吸,环节动物的呼吸可通过体表和疣足进行; 软体动物的呼吸通过体壁突起的鳃和外套膜进行; 节肢动物的呼吸器官包括鳃(虾)、书鳃(鲎)、书肺(蜘蛛)、气管(昆虫)、气管鳃(幼虫) 以及体表; 棘皮动物的呼吸是通过管足和皮鳃完成。 排泄系统的进化主线: 原生动物、海绵动物、腔肠动物的排泄活动也是借体表完成的;原生动物还可通过伸缩泡进行排泄; 扁形动物和线形动物的排泄系统为外胚层内陷形成的原肾; 扁形动物的排泄系统是焰细胞,线形动物则是原肾管; 环节动物的排泄系统是由外胚层和中胚层共同组成的混合型的后肾; 软体动物的排泄系统是中胚层的后肾; 节肢动物排泄系统有两类,一是体腔管演化而来的肾管,一是马氏管; 棘皮动物的排泄是通过管足和皮鳃完成。 循环系统的进化主线: 环节动物之前的各门类没有专门的循环系统;原生动物中的细胞质流动起到循环的作用; 海绵动物、腔肠动物和扁形动物通过消化循环腔起着循环的作用; 线形动物的原体腔也有输送养料的功能; 真体腔的出现产生了血管,环节动物开始有了真正的循环系统; 除环节动物中的大部分为闭管系统外,其他的高等无脊椎动物的循环系统均为开管式。 神经系统的进化主线: 原生动物没有神经系统,只有纤毛虫有纤维系统联系,起着感觉传递的作用; 海绵动物也无神经系统,借原生质来传递刺激; 腔肠动物的神经系统为网状; 扁形动物和线形动物的神经系统为梯形; 环节动物和节肢动物的神经系统为链式;

《生物进化的历程》word版 公开课获奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 22-2生物进化的历程(2) 教学目标: (一)知识目标: 概述生物进化的主要历程,形成生物进化的观点。 (二)能力目标: 根据各种生物的主要特征,要求学生排列出生物的进化顺序,进一步锻炼学生解决问题的能力。 (三)情感态度与价值观目标: 结合生物进化历程的学习,进一步加强学生与生物和谐相处的教育和保护生物圈的意识。 教学重点难点: 重点:生物进化的历程和规律 难点:生物进化的历程和规律 教学设计思想: 动、植物进化的历程是本小节学习的重点。通过了解动物、植物进化的历程,帮助学生认识生物进化的基本规律——从简单到复杂、从低等到高等、从水生到陆生。教学中根据学生已经学习过的动物学、植物学知识,引导学生分析归纳,抓往能反映生物进化的线索,认识生物进化的规律。同时,注意引导学生认识生物进化是生物发展的必然结果。 教师准备:1.查找有关生物进化历程的图片或文字资料。 2.CAI课件 学生准备:查找有关生物进化历程的图片或文字资料。 一.导入新课: 教师:与原始生命起源一样,生物进化的历程也是极其漫长的过程。现在地球上的丰富多彩的生物界是经过漫长的历程逐渐进化形成的。生物进化究竟经历了哪些进化环节呢?今天,我们就一起来探讨一下这个问题。 二.新授: 教师:原始生命在原始海洋中不断繁殖,不断进化。在进化的早期,由于营养方式的差异,原始生命的一部分进化为具有叶绿素的原始藻类,另一部分进化为不含叶绿素的原始单细胞动物。 以后,这两类原始生物分别沿着一定的历程发展为各种各样的植物和动物。 学生:结合已有的动植物的知识,自学生物进化的历程。 1.植物进化的历程

无脊椎动物的进化

一、体制:无对称→球形对称→辐射对称→两侧对称 (1)无脊椎动物 原生动物: 变形虫——无对称 放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成 相等的对称面)→适应于悬浮在水中 草履虫——两侧对称 多孔动物、腔肠动物: 基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中 海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面) 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,是动物由水生进化到陆生的重要条件之一。 二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转)原生动物 : 单细胞动物没有胚层的概念;即使是团藻也只有一层细胞, ; (真正地多细胞动物有胚层的分化) 肠腔动物 : 二胚层 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 出现三胚层(在动物进化上有着极为重要的意义) 三、体腔:无体腔→假体腔→真体腔(是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物、扁形动物: 无体腔 线形动物(假体腔动物): 假体腔(初生体腔,即直接跟体壁的肌肉层和消化管道的壁相接触没有中胚层形成的 体腔膜包围,也不和外界相通)←胚胎时期的囊胚腔所形成的 环节动物、节肢动物、棘皮动物(软体动物真体腔退化): 真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了 各种器官的进一步特化 四、体节和身体分布:同律分节→异律分节(身体分节是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物: 不分节 扁形动物、线形动物: 原始分节(机体各部分结构和机能分化,但身体不分节) 环节动物: 同律分节 节肢动物、软体动物、棘皮动物: 异律分节(导致了动物的身体分部)

脊椎动物的进化与演化

脊索动物的起源进化演化 脊索动物的起源: 有人认为脊索动物与棘皮动物有共同祖先。此说根据半索动物的成体有接近于脊索动物的特点,而胚胎发育和幼体形态却和棘皮动物的极为相似,加以对肌肉的肌蛋白生化成分的分析,可以说半索动物,棘皮动物和脊索动物有明显的共同点,均具肌酸,而半索动物与棘皮动物的肌蛋白中除含有肌酸,尚含有精氨酸,无脊椎动物的肌蛋白含精氨酸不含肌酸。故主张半索动物、棘皮动物与脊索动物源自共同祖先,由此共同祖先分为3支演化:一个侧支进化为棘皮动物,这从近来发现的一类棘皮动物化石得到更好地证明,它们具一系列类似鲨鱼样的鳃裂,具肛后尾和一个背神经索,它们是一类用鳃裂滤食的动物,十分类似现代的原索动物,另一侧支进化为半索动物;主干进化为脊索动物。并将半索动物与棘皮动物作为从无脊椎动物向脊椎动物演化之过渡类型。 某些具柄的棘皮动物,如已灭绝的棘皮动物中的海果类以及腕足类在这方面都有相似处,也许这些动物间均有亲缘关系,并与早期脊索动物有共同祖先。也许这些动物均各自独立地经适应辐射而形成这些相似性。而它们的循环系统和按节分布的神经系统与肌肉系统均类似于脊椎动物,消化管中的内柱与脊椎动物的甲状腺同源,尤其是其胚胎发育的中胚层体腔囊的形成方式,在前14对体节的形成方式同于棘皮动物与半索动物,14对体节之后的中胚层是从一条独立的细胞带形成,这种方式又与脊椎动物是—致的。另外,文昌鱼的受精卵在卵裂过程中的染色体具明显的双层膜结构,这又与棘皮动物的海胆等相似,而不同于脊椎动物。但文昌鱼又是十分特化的动物,它们的脊索向前超过神经管,按节排列的肾管和生殖腺均与脊椎动物不同。因此,一般动物学者认为文昌鱼类不能代表脊椎动物的祖先。故文昌鱼类或许是脊索动物进化中离开主干的一个侧支,与脊椎动物有共同祖先。

第一节无脊椎动物的主要类群

第一节无脊椎动物的主要类群 第1课时 一、教学目标 (一)知识与能力 1、说出水螅的形态结构特点。 2、描述蚯蚓的形态结构及运动方式。 3、举例说出腔肠动物、扁形动物、线形动物和环节动物的主要特征。 (二)过程与方法 1、通过分组实验及观察描述腔肠动物、扁形动物、线形动物和环节动物的主要特征。 2、尝试列表比较各类无脊椎动物的异同。 (三)情感、态度与价值观 1、通过对不同类群动物的对比学习,强化生物进化的观点。 2、通过对不同类群动物与人类的关系的学习,进一步强化学生喜欢生物学、保护动物的情感。 二、重点: 无脊椎动物的类群及特征 三、难点 各代表动物的结构。 四、过程 (一)创设情景,导入新课 谁能说出被发现的植物有多少种? 自然界还有一类,它包括的种类比植物的种类更多,这类生物,就是我们现在要开始学习的:动物 地球上的动物可以首先根据有没有脊椎骨,分成两大类:身体里没有脊椎骨组成的脊柱的动物,叫做无脊椎动物;身体里有由脊椎骨构成的脊柱的动物,叫做脊椎动物. 本节课来学习无脊椎动物中的腔肠动物门、扁形动物门、线形动物门、环节动物门。 (二)讲授新课 我们先来学习一类最低等的多细胞动物--腔肠动物。请同学们观看录像。边放录像边讲解。然后播放水螅的捕食过程。 讨论: 1、尝试描述水螅的外部形态特点。 2、水螅是如何捕获食物的? 3、水螅的体壁和消化腔各有何特点? 指导学生讨论。师生一块儿得出结论:腔肠动物的主要特征:身体呈圆筒形,有口无肛门,体壁仅由外胚层和内胚层两层细胞构成。 扁形动物 设问:请同学们看猪肉绦虫成虫的标本,观察它的体形与腔肠动物水熄的体形有什么不同之处? 对。这就是我们今天要学的又一类动物--扁形动物。 (1)课件展示猪肉绦虫形态图. (2)出示血吸虫挂图,学生观察形态。 (3)观察涡虫形态。

脊椎动物心脏的进化历程

脊椎动物心脏的进化历程 发表时间:2014-09-05T10:41:57.497Z 来源:《教育学文摘》2014年8月总第128期供稿作者:徐照宇[导读] 脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。 ◆徐照宇中国农业大学动物医学院动物医学系2010级2班100193 摘要:在动物进化的漫长历程中,因为适应各种不同的环境,动物的身体结构也发生了巨大的变化。本文以进化论的观点、比较解剖学的手法, 以心脏的进化为例,论述了脊椎动物从鱼类、两栖类、爬行类到哺乳类,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序发展和演变的规律。 关键词:循环系统鱼类两栖类爬行类哺乳动物心脏脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。生物的结构都是与其生活环境相适应的,由于运动和适应复杂环境的需要, 脊椎动物进化出了能够支撑身体的脊柱。随着脊椎动物从水生环境到陆地环境的过渡, 生活环境变得越来越复杂,其身体结构也发生了巨大的演变。本文用进化的观点,用比较解剖学的方法, 论述了脊椎动物心脏结构发生的演变过程。 循环系统是生物体的体液及其管道组成的系统。从动物有了心脏以后,心血管循环系统分心脏和血管两大部分,形成了一个相对封闭的管道系统,血液在其中按照一定的方向循环流动。心脏是血液循环动力的源泉,具有较厚的肌肉壁,内有空腔,肌肉的收缩和舒张使心脏产生有节律的搏动,使血液在血管中循环流动。 一、用鳃呼吸的动物的心脏模式 典型的用鳃呼吸的脊椎动物的心脏,由后向前依次为静脉窦、心房、心室、动脉圆锥。静脉窦接受来自全身的静脉血,静脉血依次通过心房、心室和动脉圆锥,心房和心室没有任何的间隔,只是在静脉窦和心房之间、心房和心室之间有瓣膜,这些瓣膜能防止血液的倒流。 有些动物,如软骨鱼和硬骨鱼,它们的心脏模式与原始的以鳃呼吸的心脏结构相似,但是由于心脏的扭曲,心脏的整体形态逐渐向“S”型过渡,因此这些动物心脏的静脉窦和心房都位于心室的背面。有些动物动脉球代替了动脉圆锥。 二、用肺呼吸的动物的心脏模式 动物在从水生向陆生过渡的过程中,因为生活环境的变化,出现了新的呼吸器官——肺,两栖类的循环系统也因此发生了比较大的变化,循环路线由于增加了肺循环而由单一循环转向双循环,心房此时出现房间隔,由一心房变为两心房;到了爬行类,心室出现了不完全间隔(类似于现在临床上的一些室间隔缺损病症,是一种先天性的心脏病,因为主动脉输血到全身各处,室间隔缺损会导致主动脉射出的血液不足而导致组织器官供血不足,出现一些缺血症状),鳄类则出现了完全的室间隔;到鸟类和哺乳类,心房和心室都分为两部分并且发育完备。从上述过程就可以看出:心脏在演化的过程中,最主要的目的是将来自身体其他部位的动脉血和静脉血分开,适应不同的循环路径,从而提高血液中物质的利用效率。 1.三个腔的心脏模式 两栖类是动物从水生到陆生的过渡类型,因此循环系统也是从单循环向双循环的过渡类型。心房由一腔转变为两腔,左心房接受来自肺静脉的动脉血,右心房接受来自体静脉的静脉血。但是在不同的种类中心房分割的程度也不一样,有些两栖类的心房是完全分隔,而另一些两栖类中,由于没有出现肺这种呼吸器官,因此没有肺循环,心房也是不完全的分隔。 在两栖动物的心室中,没有出现完全的室间隔,但是在内壁却出现了一些肌肉质的网柱和小梁,对两种血液有一定程度的分流作用,但是两种血液不能完全分开,因此血液的运输效率不是很高(如前面提到的室间隔缺损)。但是由于两栖类的皮肤可以辅助呼吸,可以在一定程度上弥补由于血液不分流造成的对氧的利用效率的降低。 2.室间隔不完全的心脏模式 爬行类的心室是不完全的分隔,因此血液的循环也是不完全的双循环。不过有一些种类,如龟鳖类和蛇类,心室则出现了完全的分隔。从这一点也可以看出,动物的心脏在演化过程中是一个渐变的过程,因此也可以认为两栖类中心室出现肌肉质网柱和小梁的结构,为心室出现完全的分隔提供了结构基础。在龟鳖类和蛇类中,心室一方面被一水平隔分为上下两腔,背腔同时被一垂直隔分隔为左右两个腔,这样造成进入心脏的血液的分隔程度比在两栖类中要高得多。在爬行类中,心室的分隔同样在不同的种类中分隔程度不同,在鳄类则出现了完全的室间隔。同时在爬行类中,动脉圆锥消失,静脉窦也趋于退化,成为心房的一部分,对提高血压和提高血液运输效率起到了一定的作用。 3.完美的四个腔的心脏模式 到了鸟类和哺乳类,心脏完全分隔为左右心房和左右心室,在心房和心室之间具有防止血液倒流的房室瓣,从而不完全的双循环转向完全的双循环,在结构上提供了保障。进入心脏的静脉血和动脉血被完全分开而进入体循环和肺循环,大大提高了血液中营养物质的利用效率。 通过对各种脊椎动物心脏结构的比较,可以看出心脏结构演化方向是形成多个腔,以协助脊椎动物由单循环向双循环的演化。由此实例也可以看出:脊椎动物的身体结构是在漫长的时间里,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序不断地发展和进化的。

相关文档
最新文档