讲座11 状态变量分析法

讲座11 状态变量分析法
讲座11 状态变量分析法

Chapter4-工具变量法

第1章 两阶段最小二乘法 在模型的基本假定中,解释变量与误差项正交保证了参数估计量的无偏性和一致性。当这一假定被违背时,称解释变量是内生的。常见的几种情况会导致内生问题:忽略重要的解释变量、变量的测量误差、变量的联立性。工具变量估计是解决解释变量内生问题的基本方法。本章介绍工具变量法和两阶段最小二乘法,以及模型内生性检验和过度识别约束检验等问题。 1.1 变量的内生性 如果模型中的解释变量与误差项出现相关,即(')E =X u 0,称解释变量是内生的。导致 解释变量内生性的原因有很多,主要的几个原因包括:模型中忽略了重要的解释变量、变量因果关系的双向性、变量的测量误差等。 模型中出现内生解释变量时,OLS 估计量是不一致的。根据OLS 估计量: 11111?(')(')(')(')(')(')N N -----==+=+βX X X y βX X X u βX X X u (1.1) 由假定Rank(X)=K 和大数定律,样本均值的概率极限等于总体均值,可得: 1Plim(')E(')N -=≡X X X X A , 1Plim(')E(')N -=≠X u X u 0。 (1.2) 又由Slustky 定理, 111Plim(')N ---=X X A 1?Plim E(')-=+≠β βA X u β (1.3) 1.2 工具变量估计 1.2.1 工具变量 在如下模型中, y = X β+ u 第i 个解释变量x i 为内生解释变量。如果存在变量z ,z 满足如下两个条件: 正交条件:与u 不相关,即cor(z, u) = 0 相关条件:与x 相关,即cor(z, x i ) ≠ 0,也称为识别约束条件。 那么,z 被称作x i 的工具变量。

工具变量法~

工具变量法 一、工具变量法的主要思想 在无限分布滞后模型中,为了估计回归系数,通常的做法是对回归系数作一些限制,从而对受限的无限分布滞后模型进行估计。在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好的解决此类问题的思路。经过变换,新的模型中,随机扰动项的表达式为: 考伊克模型:1t t t v u u λ-=- (01λ<< ,λ为衰减率) (1.1); 适应性期望模型:1(1)t t t v u u λ-=--(01λ<< ,λ为期望系数)(1.2); 部分调整模型:(1)t t v u γ=-(01γ≤< , 1γ-为调整系数) (1.3)。 t u 为原无限分布滞后模型中的扰动项,t v 为变换后的扰动项。 在原模型中的随机扰动项满足经典假设的前提下,部分调整模型也满足经典假设,但是考伊克模型与适应性期望模型的随机扰动项由于存在原随机扰动项的滞后项,也就是说考伊克模型与适应性期望模型的解释变量1t Y - 势必与误差项t v 相关,因此,可能会出现上述两个模型的最小二乘估计甚至是有偏的这样严重的问题。那么,我们是否可以找到一个与1t Y -高度相关但与t v 不相关的变量来替代 1t Y -?在这里,一个可行的估计方法就是工具变量法。 在讨论工具变量法之前,我们先来了解一下外生变量和内生变量。 一般来说:一个回归模型中的解释变量有的与随机扰动项无关,我们称这样的解释变量为外生变量;而模型中有的解释变量与随机扰动项相关,我们可称这样的解释变量为内生解释变量。内生解释变量的典型情况之一就是滞后应变量为解释变量的情形,如上述考伊克模型与适应性期望模型中的1t Y -。 外生解释变量:回归模型中的解释变量与随机扰动项无关; 内生解释变量:回归模型中的解释变量与随机扰动项无关; 了解了内生变量和外生变量的概念,我们接着讨论工具变量法的主要思想:工具变量法和普通最小二乘法是模型参数估计的两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数的普通最小二乘估计是非一致的,这时就需要引入工具变量。 工具变量,顾名思义是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关的随机解释变量(即内生变量)。 满足条件:1)总体无关:工具变量与随机扰动项无关; 2)样本相关:工具变量必须与被它所代替的内生变量高度相关; 3)与模型中其他解释变量不相关,以避免出现多重共线性。 做了替代后,用普通最小二乘法即可得到原回归系数的一致估计量。 二、工具变量法的基本原理

工具变量法

工具变量法 一、工具变量法得主要思想 在无限分布滞后模型中,为了估计回归系数,通常得做法就是对回归系数作一些限制,从而对受限得无限分布滞后模型进行估计。在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好得解决此类问题得思路。经过变换,新得模型中,随机扰动项得表达式为: 考伊克模型: ( ,为衰减率) (1、1); 适应性期望模型:(,为期望系数)(1、2); 部分调整模型:( ,为调整系数) (1、3)。 为原无限分布滞后模型中得扰动项,为变换后得扰动项。 在原模型中得随机扰动项满足经典假设得前提下,部分调整模型也满足经典假设,但就是考伊克模型与适应性期望模型得随机扰动项由于存在原随机扰动项得滞后项,也就就是说考伊克模型与适应性期望模型得解释变量势必与误差项相关,因此,可能会出现上述两个模型得最小二乘估计甚至就是有偏得这样严重得问题。那么,我们就是否可以找到一个与高度相关但与不相关得变量来替代?在这里,一个可行得估计方法就就是工具变量法。 在讨论工具变量法之前,我们先来了解一下外生变量与内生变量。 一般来说:一个回归模型中得解释变量有得与随机扰动项无关,我们称这样得解释变量为外生变量;而模型中有得解释变量与随机扰动项相关,我们可称这样得解释变量为内生解释变量。内生解释变量得典型情况之一就就是滞后应变量为解释变量得情形,如上述考伊克模型与适应性期望模型中得。 外生解释变量:回归模型中得解释变量与随机扰动项无关; 内生解释变量:回归模型中得解释变量与随机扰动项无关; 了解了内生变量与外生变量得概念,我们接着讨论工具变量法得主要思想:工具变量法与普通最小二乘法就是模型参数估计得两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数得普通最小二乘估计就是非一致得,这时就需要引入工具变量。 工具变量,顾名思义就是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关得随机解释变量(即内生变量)。 满足条件:1)总体无关:工具变量与随机扰动项无关; 2)样本相关:工具变量必须与被它所代替得内生变量高度相关; 3)与模型中其她解释变量不相关,以避免出现多重共线性。 做了替代后,用普通最小二乘法即可得到原回归系数得一致估计量。 二、工具变量法得基本原理 我们分别从简单线性回归模型与多元线性回归模型两方面来具体分析工具变量法得基本原理: 简单线性回归模型 考虑简单线性回归模型(2、1)其中为内生变量。 则其正规方程为:(2、2) 设回归模型中得解释变量与随机扰动项相关,则如前所述,普通最小二乘估计量就是非一致得。现用一个工具变量来代替正规方程中得解释变量,其残差表达式不变。

动态电力系统分析复习题

动态电力系统分析复习题 1. 理想电机 (P1) 满足以下假定条件的电机称为理想电机: (1)电机磁铁部分的磁导率为常数,既忽略调磁滞、磁饱和的影响,也不计涡流及集肤作用等的影响。 (2)对纵轴及横轴而言,电机转子在结构上是完全对称的。 (3)定子的3个绕组的位置在空间互相相差120°电角度。3个绕组在结构上完全相同。同时,它们均在气隙中产生正弦形分步的磁动势。 (4)定子及转子的槽及通风沟等不影响电机定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 2. 在同步发电机模型中,一般考虑哪些阻尼绕组? (P2) 在d 轴上的一个等值阻尼绕组D ; 在q 轴上的一个等值阻尼绕组Q 。 3. 列写出发电机abc 和dq0坐标下的电压平衡方程式。 (P3)、(P15) abc 坐标轴下: ??? ??-ψ=-ψ=-ψ=c a c c b a b b a a a a i r p u i r p u i r p u f f f f D D D D Q Q Q Q u p r i u p r i u p + r i ?=ψ+? =ψ+??=ψ? 合并成 ri p u +ψ= 式中 dt d p = ()T Q D f c b a u u u u u u ,,,,,u = ()T Q D f c b a ψψψψψψ=ψ,,,,, ()Q D f c b a r r r r r r diag ,,,,,r = ()T Q D f c b a i i i i i i ,,,,,i ---= dq0坐标轴下: ??????-??????+????? ?+??????ψψ=??????fDQ dq fDQ dq i i r r 0S p u u 00dq0fDQ dq0fDQ dq0 式中 ()T d q 00S ,,ψψ-=ωωdq 4. 在同步发电机方程中,采用PARK 变换的目的是什么? (P9) 派克变换可以使我们通过等值变换,立足于d 和q 旋转坐标观察电机的电磁现象,从而能极好地适应转子的旋转以及凸极效应。经派克变换后所得的dq0坐标下的同步电机基本方程中的电感参数均为定常值,大大地有助于分析电机暂态过程的机理及有利于实用计算,从而在电机过渡过程分析及大规模电力系统动态分析中取得了广泛的应用。 5. PARK 变换及逆变换公式 (P12) 完整的经典派克变换: ? ???? ??????????? ???? ???? ---=???? ??????c b a c b a c b a q d f f f f f f 212 121sin sin sin cos cos cos 320θθθ θθθ 或记作 abc dq0Df f = 完整的经典派克变换的逆变换: ???? ? ???????????? ???---=??????????0b 1sin cos 1sin cos 1sin cos f f f f f f q d c c b a a c b a θθθθ θθ 或记作 dq0-1 abc f D f = 6. 列写出发电机abc 和dq0坐标下的功率方程式。 (P7)、(P18)

工具变量法的Stata命令及实例

工具变量法的Stata命令及实例 ●本实例使用数据集“grilic.dta”。 ●先看一下数据集的统计特征: . sum Variable Obs Mean Std. Dev. Min Max rns 758 .2691293 .4438001 0 1 rns80 758 .292876 .4553825 0 1 mrt 758 .5145119 .5001194 0 1 mrt80 758 .8984169 .3022988 0 1 smsa 758 .7044855 .456575 0 1 smsa80 758 .7124011 .452942 0 1 med 758 10.91029 2.74112 0 18 iq 758 103.8562 13.61867 54 145 kww 758 36.57388 7.302247 12 56 year 758 69.03166 2.631794 66 73 age 758 21.83509 2.981756 16 30 age80 758 33.01187 3.085504 28 38 s 758 13.40501 2.231828 9 18 s80 758 13.70712 2.214693 9 18 expr 758 1.735429 2.105542 0 11.444 expr80 758 11.39426 4.210745 .692 22.045 tenure 758 1.831135 1.67363 0 10 tenure80 758 7.362797 5.05024 0 22 lw 758 5.686739 .4289494 4.605 7.051 lw80 758 6.826555 .4099268 4.749 8.032 ●考察智商与受教育年限的相关关系: . corr iq s (obs=758) iq s iq 1.0000 s 0.5131 1.0000 上表显示,智商(在一定程度上可以视为能力的代理变量)与受教育年限具有强烈的正相关关系(相关系数为0.51)。 ●作为一个参考系,先进行OLS回归,并使用稳健标准差:

第八章 系统状态变量分析

习题八 8-1对图8-1所示电路,列写出以)(t u C 、)(t i L 为状态变量x 1、x 2,以)(1t y 、)(2t y 为输出的状态方程和输出方程。 8-2 描述某连续系统的微分方程为 )(2)()(2)()(5)()1()1()2()3(t f t f t y t y t y t y +=+++ 写出该系统的状态方程和输出方程。 8-3 描述连续系统的微分方程组如下,写出系统的状态方程和输出方程。 (1))()()(2)(3)(211) 1(1)2(1t f t f t y t y t y +=++ )(3)()()(4)(212) 1(2)2(2t f t f t y t y t y -=++ (2))()()(12) 1(1t f t y t y =+ )()()()()(21) 1(2) 1(1) 2(2t f t y t y t y t y =+++ 8-4 以x 1、x 2、x 3为状态变量,写出图8-3所示系统的状态方程和输出方程。 8-5 如图8-7所示连续系统的框图。

(1)写出以x 1、x 2为状态变量的状态方程和输出方程。 (2)为使该系统稳定,常数a ,b 应满足什么条件? 8-6 描述某连续系统的系统函数为 12 492)(2 2+++=s s s s s H 画出其直接形式的信号流图,写出相应的状态方程和输出方程。 8-7 某离散系统的信号流图如图8-13所示。写出以x 1(k )、x 2(k )为状态变量的状态方程和输出方程。 8-8 如图8-14所示离散系统,状态变量x 1、x 2、x 3如图8-14所示。列出系统的状态方程和输出方程。

第8章 电机的状态变量分析法.

第八章电机的状态变量分析法 本世纪二十年代以来,研究连续信号作用于线性网络问题的最有力工具是拉氏变换,其特点是将研究对象的特性用传递函数表示,然后根据激励函数求出响应函数。这种方法称为输入词输出法,又称端部法,因为它只研究网络的端口特性,而不考虑网络内部的结构、参数、电压、电流等。六十年代以来,随着电子计算机的广泛应用,状态变量分析法有了很大的发展。与输入—输出法相比,这种方法是一种内部法,因为它首先选定能够代表网络(或物理系统)内部特性的某些物理量,作为状态变量,建立相应的状态方程求解,然后由解出的状态变量和给定的输入量求出所需的输出量。 机电系统(包括电机)可化成电网络求解。使用状态变量法来分析机电系统的动态性能有以下优点: (1)状态变量方程是一组联立的一阶微分方程,可不必经过拉氏变换而直接在时域内求解,用电子计算机解这类方程组早已规格化,用起来很方便。 (2)不仅适用于单输入、单输出的问题,也适用于多输入、多输出的问题,后者用输入呻输出法较难求解。 (3)对于较复杂的网络,包括一部分线性、参数不随时间变化的网络和大部分非线性、时变参数的网络,数值计算法常是唯一可采用的方法。在用电子计算机进行这种计算时,用状态变量法要比用拉氏变换法容易。 (4)由于状态变量法是一种内部法,用于分析系统的稳定性、可控度等是很方便的,可以在不求出变量的解的情况下进行。由于上述优点,用状态变量法分析电机的动态性能,不仅有可能建立较精确的数学模型,使计算结果接近于实测值;而且可以解决某些过去难以分析的动态课题,从而使电机理论得到进一步发展。 本章首先简要介绍状态变量和状态方程的基本概念,然后建立几种典型的电机的状态方程,最后概略介绍它们的求解方法,并附有计算实例。 8—1状态变量分析法的基本概念 一、状态变量和状态方程的基本概念 由电路理论可知电容和电感是储能元件,它在某一瞬时的输出量不仅决定于该瞬时的输入,而是要由输入的全部历史来决定。例如电容器的电荷(输出量)与电流(输入量)的关系是

状态变量概念

Unit 15 State Variable concepts 状态变量概念Words and Expressions

state variable 状态变量 state variable approach 状态变量方法differential equations 微分方程difference equations 差分方程 higher-order equation 高阶方程 optimal control theory 最优控制理论specified a. 指定的,给定的 Given a. 给定的 behavior of the system 系统性能accessible a. 可达的 measurable a. 可测量的 observable a. 可观测的 controllable a. 可控的 state vector 状态向量 state space 状态空间 input-output relationship 输入输出关系mathematical notation 数学符号 initial conditions 初始条件conventional techniques 常规技术 state variable representation 状态变量表示multivariable systems 多变量系统general form 通用形式 coefficient matrices 系数矩阵 state matrix 状态矩阵 companion matrix 伴随矩阵 input matrix 输入矩阵 interval n. 区间 output matrix 输出矩阵 coefficient matrix 系数矩阵 state equation of the system 系统状态方程output equation of the system 系统输出方程column vector 列向量 row vector 行向量 scalar 标量

第八章 控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n Λ 和0t t ≥时输入的时间函数)(t u ,则系 统在0t t ≥任何时刻())()() (21t x t x t x n Λ 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n Λ =。 4. 状态空间 以状态变量())()() (21t x t x t x n Λ 为坐标的n 维空间。系统在某时 刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x & (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

工具变量方法原理

工具变量原理 教学目的及要求: 1、理解引入随机解释变量的目的及产生的影响 2、理解估计量的渐进无偏性和一致性 3、掌握随机解释变量OLS 的估计特性 4、应用工具变量法解决随机解释变量问题 第一节 随机解释变量问题 一、随机解释变量问题产生的原因 多元(k )线性回归模型: i ki k i i i U X X X Y ++???+++=ββββ22110 (8-1) 其矩阵形式为: U XB Y += (8-2) 在多元(k )线性回归模型中,我们曾经假定,解释变量j X 是非随机的。如果j X 是随机的,则与随机扰动项i U 不相关。即: C o v () i ij U X ,0= ),,2,1;,,2,1(n i k j ???=???= (8-3) 许多经济现象中,这种假定是不符合实际的,因为许多经济变量是不能用控制的方法进行观测的,所以作为模型中的解释变量其取值就不可能在重复抽样中得到相同和确定的数值,其取值很难精确控制,也不易用实验方法进行精确观测,解释变量成为随机变量。又由于随机项U 包含了模型中略去的解释变量,而略去的解释变量往往是同模型中相关的变量,因而就很有可能在X 是随机变量的情况下与随机项U 相关,这样原有的古典假设就不能满足,产生随机解释变量。 在联立方程模型以及模型中包含有滞后内生变量等情况下,如果扰动项是序列相关的,那么均有扰动项和解释变量之间的相关性的出现,模型就存在随机解释变量问题。

例如,固定资产投资与国民收入的关系满足如下模型: t t t t u I Y I +++=-1210βββ 其中,t I 为t 期的固定资产投资,1-t I 为1-t 期的固定资产投资,t Y 为t 期的国民收入,因为1 -t I 是随机变量,故模型中存在随机解释变量。 再如,消费与收入之间的影响关系模型为 t t t t u C Y C +++=-1210βββ 其中,t C 为t 期的消费支出,1-t C 为1-t 期的消费支出,t Y 是t 期的收入,因为1-t C 是随机变量,故模型中存在随机解释变量。 二、随机解释变量问题的后果 模型中,在解释变量为随机变量并且与扰动项相关的情况下,应用普通最小二乘法估计参数可能会出现估计的不一致性,使得估计值产生很大的偏误,造成拟合优度检验的全面失准,F 检验失效,t 检验失去意义。在这种情况下,各种统计检验得到的是虚假的结果,不能作为判别估计式优劣的依据。 随机解释变量带来何种结果取决于它与随机误差项是否相关: 1)随机解释变量与随机误差项不相关 2)随机解释变量与随机误差项在小样本下相关,在大样本下渐进无关 3)随机解释变量与随机误差项高度相关 4)滞后被解释变量与随机误差项相关 第二节 随机解释变量模型的估计特性 我们讨论的估计量的性质(包括无偏性、最小方差性)都是在样本容量一定的情况下的统计性质,在数理统计上叫做小样本性质。在某些情况下,小样本时的估计量不具有某种统计性质,但是随着样本容量的增大,一个估计量在小样本时不具有的性质,大样本时就逐渐具有这种统计性质了,这种性质我们叫做大样本性质或叫做估计量的渐近统计性质。常用的渐近统计性质有渐近无偏性和一致性。

动态电力系统分析复习题

动态电力系统分析复习题 1. 理想电机 (P1) 满足以下假定条件的电机称为理想电机: (1)电机磁铁部分的磁导率为常数,既忽略调磁滞、磁饱和的影响,也不计涡流及集肤作用等的影响。 (2)对纵轴及横轴而言,电机转子在结构上是完全对称的。 (3)定子的3个绕组的位置在空间互相相差120°电角度。3个绕组在结构上完全相同。同时,它们均在气隙中产生正弦形分步的磁动势。 (4)定子及转子的槽及通风沟等不影响电机定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 2. 在同步发电机模型中,一般考虑哪些阻尼绕组 (P2) ; 在d 轴上的一个等值阻尼绕组D ; 在q 轴上的一个等值阻尼绕组Q 。 3. 列写出发电机abc 和dq0坐标下的电压平衡方程式。 (P3)、(P15) abc 坐标轴下: ??? ??-ψ=-ψ=-ψ=c a c c b a b b a a a a i r p u i r p u i r p u f f f f D D D D Q Q Q Q u p r i u p r i u p + r i ?=ψ+? =ψ+??=ψ? 合并成 ri p u +ψ= 式中 dt d p = ()T Q D f c b a u u u u u u ,,,,,u = ()T Q D f c b a ψψψψψψ=ψ,,,,, ()Q D f c b a r r r r r r diag ,,,,,r = () T Q D f c b a i i i i i i ,,,,,i ---= # dq0坐标轴下: ??????-????? ?+??????+??????ψψ=??????fDQ dq fDQ dq i i r r 0S p u u 00dq0fDQ dq0fDQ dq0 式中 ()T d q 00S ,,ψψ-=ωωdq 4. 在同步发电机方程中,采用PARK 变换的目的是什么 (P9) 派克变换可以使我们通过等值变换,立足于d 和q 旋转坐标观察电机的电磁现象,从而能极好地适应转子的旋转以及凸极效应。经派克变换后所得的dq0坐标下的同步电机基本方程中的电感参数均为定常值,大大地有助于分析电机暂态过程的机理及有利于实用计算,从而在电机过渡过程分析及大规模电力系统动态分析中取得了广泛的应用。 5. PARK 变换及逆变换公式 (P12) 完整的经典派克变换: ? ???? ??????????? ???? ??? ? ---=???? ??????c b a c b a c b a q d f f f f f f 212 121sin sin sin cos cos cos 320θθθ θθθ 或记作 abc dq0Df f = / 完整的经典派克变换的逆变换:

电机动态分析作业

摘要:本文以三相感应电动机为模型,对其在从静止开始起动的动态过程进行了分析,利用Matlab 软件进行了仿真。 Abstract :In this paper,three-phase induction motor for the modelfrom its start-up of static started the process of dynamic analysis, the use of Matlab simulation software. 关键词: 三相感应电动机; 起动过程 Key words: Three-phase induction motor; Start-up process 一 引言 Matlab 语言是Mathworks 公司开发的数值分析功能软件,其在控制系统仿真上的应用已越来越广泛。它提供的计算机辅助设计能很容易地解决系统仿真、分析、研究的问题,关键在于仿真模型的构造,模型的准确与否将直接影响仿真结果的可靠性。 对于三相感应电动机,列出在相坐标系中的运动方程,然后把转子量变换到 定子边,得到定子坐标系中感应电动机的运动方程,即感应电机的运动方程为: 0e L d dt d T T R J dt d p dt θθθ ?Ω?? =++??? Ω? =+Ω+?? ?=Ω?? i L u Ri L i (1) 其中u 、i 和R 、L 分别为整个电机地电压列阵、电流列阵和电阻矩阵、电感矩阵。θ为电角度,Ω为机械角速度,二者均为状态变量,绕阻上地外加电压u 和轴上的负载转矩L T 为控制变量。利用此模型对三相感应电动机的静止开始的启动过程进行动态分析并利用Matlab 软件仿真启动过程电机运行动态特性曲线。 二 三相感应电动机的动态方程 三相感应电动机的气隙均匀,定子绕组是对称三相绕组A ,B ,C ,转子绕组也是三相对称绕组a ,b ,c 。电角度为θ,机械角速度为Ω,逆时针旋转,电机

相关文档
最新文档