平曲线认识

平曲线认识
平曲线认识

第三讲公路平面坐标计算

1、平曲线认识

道路是一个三维空间的工程结构物,它的中线是一个空间曲线,叫路线,其在水平面的投影就是平面线形。道路平面线形由于受到沿线地形、地质、水文、气候等自然条件和人为条件的制约而改变方向。在路线平面方向的转折处为满足行车要求,需要用适当的曲线把前、后直线连接起来,这种曲线称为平曲线。平曲线包括圆曲线和缓和曲线。

①圆曲线要素

主点桩号计算:ZY点里程=JD点里程-T

QZ点里程=ZY点里程+L/2 YZ点里程=ZY点里程+L

JD里程=QZ里程+D/2(校核)

②缓和曲线要素

切线长: 外距:

曲线长:()s s 180

22180

l aR l a R L h +=

+-=

π

βπ

切线加长:q =

/2-3/(240R2)

圆曲线相对切线内移量:p = 2/(24R)

切曲差 Dh = 2T -Lh

上式中:α 为线路转向角;β0为缓和曲线角; 其中q 、p 、β0缓和曲线参数。 ZH 桩号 = JD 桩号-T HY 桩号 = ZH 桩号+

QZ 桩号 = HY 桩号+L/2

YH 桩号 = QZ 桩号+L/2 = HY 桩号+L = ZH 桩号++L

HZ 桩号 = YH 桩号+

= ZH 桩号+Lh

JD 桩号 = ZY 桩号-Th +Dh (检核)

m)

2

)((q tg

p R T ++=α

(m 2

sec

)(R p R E -+=α

Ls Ls Ls Ls Ls Ls

注意:上面计算需要大家掌握主点桩号计算,五大主点:ZH、HY、QZ、YH、HZ,还会遇到一些特殊点例如起点QD、终点ZD、公切点GQ。可以判断下图即可。

重点知识必须掌握(线元法基础):

直线:曲率为0,起终点半径无穷大。

圆曲线:具有一定曲率半径的圆弧,半径为固定值。

缓和曲线:在直线与圆曲线之间或两个不同半径的圆曲线之间设置的曲率连续变化的曲线(指从直线上半径无穷大到圆曲线的定值之间曲率半径逐渐变化的过渡段),我国公路缓和曲线的形式采用回旋线。(曲率为半径的倒数)

A1,A2——缓和曲线参数R——圆曲线半径

Ls1,Ls2——缓和曲线长度

一段完整缓和曲线满足公式:A2=R x Ls1,A2=R x Ls2

入缓和曲线:从ZH点到HY点,A固定不变,随着Ls1的增大,半径从∞减小到R

出缓和曲线:从YH点到HZ点,A固定不变,随着Ls2的减小,半径从R增大到∞

如果A2≠R x Ls,那么这段缓和曲线是不完整的,叫做不完整缓和曲线。

关于不同类型缓和曲线的起点、终点曲率半径判断方法:

第一:完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈。

1、对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。因此,完整与对称与否是针对缓和曲线两个方面来看待区分的。

2、缓和曲线我们的上面P25页教案上讲述的其实就是完整缓和曲线,缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。

3、对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。

第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题.

1、完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。

2、完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:

A^2=[ (R大*R小) ÷(R大-R小)]*Ls

R 大=(A^2* R 小÷(A^2- R 小* Ls )

R 小=(A^2* R 大)÷(A^2-+R 大* Ls )

由上方程可以看出,R 大就是我们所需要求的这端半径了,R 小自然就是该不完整缓和曲线所接的圆曲线半径了。A 为该不完整缓和曲线参数,R 小为所接圆曲线半径,Ls 为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,只要是正值那就OK 了!!! 其实关于不完整缓和曲线一端半径求算方法这点,在轻松测量系统软件电脑版、双心软件、测量工具都有快捷计算。(推荐使用双心软件计算)

2、平曲线分类

直线:L 圆曲线:R 缓和曲线:Ls

简单型: L-R-L 凸型: L-Ls1-Ls2-L

C 型: R1-Ls1-Ls2-R2 基本型 对称型: L-Ls-R-Ls-L S 型: 反向平曲线连接

虚交点:转换为单交点 不对称型: L-Ls1-R-Ls2-L

分类

简单型: L-R1-R2-L

复曲线

正常型: L-Ls1-R1-R2-Ls2-L

卵型: L-Ls1-R1-Ls2-R2-Ls3-L 复合型: L-Ls1-Ls2 … - Lsn - L

回头曲线 L-R1-L-R2-L-R3-L

结合上面的平曲线类型可知,公路工程常见的平曲线有:

(1)当Ls1=Ls2,且R1=R2≠0时,为基本型曲线,分为园曲线、对称型缓和曲线、不对称型缓和曲线。

(2)当Ls1≠Ls2,或者R1≠R2时,为复曲线,分为简单复曲线(两个半径不同、转向相同的圆曲线相切组成)、正常型复曲线(两端有缓和曲线中间用两个半径不同、转向相同的圆曲线相切组成)、卵型曲线(两端有缓和曲线中间也由缓和曲线连接组成,即:两个以上缓和曲线且缓和曲线间由圆曲线连接而成)、复合型复曲线(两个及以上缓和曲线连接而成组成)。

正常复曲线如下图:

关注山西测量微信公众号获取更多知识。

铁路轨道曲线整毕业设计

毕业设计(论文)(2012 ~2013学年第二学期) 题目:渭南临渭区油库内部铁路 铁路轨道曲线整 专业: ********** 班级: ********* 学生姓名:******* 指导教师: ******* 起止日期: 2013.5.2-2013.6.7

目录 第一章 (3) 绪论 (3) 第二章铁路轨道曲线调查概况 (5) 第三章铁路轨道曲线调查内容 (6) 第一节确定调查目的和调查对象 (6) 第二节确定调查要点 (6) 一、轨道钢轨的伤损与状态检测 (6) 二、轨道水平的调查 (7) 三、轨道高低的调查 (7) 四、曲线要点的调查 (8) 第四章铁路轨道曲线病害分析 (9) 第一节铁路轨道曲线病害进行分析 (9) 第二节铁路轨道曲线爬行病害原因进行分析 (11) 一、轨道爬行病害原因分析 (11) 二、铁路曲线病害产生的原因分析 (12) 第五章铁路轨道曲整正方案研究与实践 (16) 第一节铁路轨道曲线整正方案研究 (16) 一、曲线轨距加宽 (16) 二、曲线轨距加宽的确定原则 (16) 三、根据车辆条件确定轨距加宽 (17) 四、根据机车条件检算轨距加宽 (17) 五、外轨超高的作用及其设置方法 (19) 第二节、铁路轨道曲线整正方案实践(曲线绳正法拨道) (20) 一、曲线绳正法概述 (20) 二、曲线整正的基本原理 (21) 三、曲线整正的测量: (23) 四、曲线计划正矢的计算 (24) 五.确定缓和曲线长度 (28) 六.确定曲线主要装点位置 (28) 第三节、曲线整正计算 (29) 一、计算曲线中央点的位置 (29) 二、确定设置缓和曲线前圆曲线长度 (29) 三、确定缓和曲线长度 (30) 四、计算主要桩点位置 (30) 五、确定各点的计划正矢 (30) 六、检查计划正矢是否满足曲线整正前后两端的直线方向不变的要求 (32) 七、计算拨量 (32) 八、拨量修正 (35) 第六章、曲线整正方案实践操作: (40) 第一节、曲线整正结果计算: (40) 第二节、轨道曲线整正实践方案结论 (41) 第七章毕业设计总结 (44)

平曲线要素计算

拉坡后,坡度差已知,变坡点高程已知,切线上各点和高程也就知道了。选定竖曲线半径R ,用竖距计算公式求出切线上各点的竖距,切线高程减竖距就是竖曲线高程。竖距公式如下: 一、路线转角、交点间距的计算 (一)在地形图上量出路线起终点及各路线交点的坐标: ()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783, (二)计算公式及方法 设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=- 交点间距D =象限角 arctan DY DX θ= 方位角A 是由象限角推算的: 转角1i i i A A α-=- 1.1JD QD 与之间: 坐标增量10=2396623810=1860DX X X =--> 1026977271802030DY Y Y =-=-=-<

交点间距275.33D m === 象限角 203 arctan arctan 47.502186 DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间: 坐标增量21X =2468423966=6880DX X =--> 21Y 26591269773860DY Y =-=-=-< 交点间距788.89D m === 象限角 386 arctan arctan 29.294688 DY DX θ-=== 方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间: 坐标增量32X =2484024684=1560DX X =--> 32Y 25885265917060DY Y =-=-=-< 交点间距723.03D m === 象限角 706 arctan arctan 77.54156 DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间: 坐标增量43X =2535024840=5100DX X =--> 43Y 25204258856810DY Y =-=-=-< 交点间距850.8D m === 象限角 510 arctan arctan 53.171681 DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-=

平曲线设计 纵断面设计

平面线形设计 1.路线设计 1.1 道路等级和技术标准的确定 1.1.1 已知资料 该地区的初始年交通组成如表1.1.1,交通量年平均增长率6.5%。 1.1.2 交通量计算 由《公路工程技术标准》可知,确定公路等级要把各种汽车的交通量折合成小客车的交通量。各汽车代表车型与车辆折算系数见表1.1.2。 表1.1.2各汽车代表车型与车辆折算系数 于是初始年交通量: ) /(93730.31630.2)161128138266414(5.1)792827554(0.134100日辆=?+?+++++?+++?=N 1.1.3 公路等级确定

其初始年交通量已达9373辆/日,故根据《公路工程技术标准》可知其道路等级可能不是二级及以下的公路。因此假设公路设计年限为20年,则设计交通量N : )/(31011%)5.61(9373)1(12010日辆=+?=+?=--n k N N 由设计交通量N=31011(辆/日),根据《公路工程技术标准》,拟定该公路为四车道一级公路。 1.1.4 公路主要技术标准的确定 该一级公路路段作为湖南省重要干线公路,其交通量比较大,加之沿线地形比较平缓,地质条件良好,因此设计速度选用80Km/h ,服务水平为二级。其主要技术标准表见表1.1.4。 表1.1.4主要技术标准表 1.2 纸上选线 1.2.1 选址原则 路线方案的选择首先得考虑该方案能否在国家、省公路网中起到应有的作用,即是否能够满足国家的政治、经济和国防的要求和长远利益。 对于一级公路,其主要功能是作为人烟稀少地区的干线公路,部分控制出入,提供城市与城市、城市与较大城镇之间的直接交通服务,生成并吸引大部分远距离的出行。选线是在符合国家建设发展的需要下,结合自然条件选定合理路线,使筑路费用与使用质量得到正确的统一,达到行车迅速安全,经济舒适及构造物稳定耐久,易于养护的目的,选线人员必须

学画曲线图形教学设计

第三课学画曲线图形教学设计 教材分析:本课内容是对上节课曲线工具使用的进一步学习,经过上课学的体验学习,这节课学生在知识的牚握不会很困难。 学情分析:学生在上节课已经接触到曲线工具,对难点也有所了解,在本课学习中会更加熟练地应用曲线工具。 教学目标: 知识与技能: 1、用曲线工具画柳树 2、用曲线工具画月亮 3、用曲线工具绘制美景 过程与方法:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,在不断摸索中获得、掌握知识,在评价交流中不断提高技巧技能。情感、态度与价值观:培养学生自我探索、自主学习、自我创新、团体协作的能力和审美能力。在自主探究的过程中,培养一种敢于尝试,不怕失 败的品质。 教学重点及解决措施:曲线工具的使用。解决措施:学生多操作,熟能生巧 教学难点及解决措施:用曲线画柳叶。解决措施:学生多操作,熟能生巧 教法与学法: 演示和观察法、指导法、任务驱动法、实践操作法、小组合作交流探究法 教学准备:教师准备教学课件。 教学设计: 一、师生谈话,导入新课 同学们,我们上一节课已经接触到曲线工具,这是画图工具中最不易掌握的工具,你们能快速掌握它的使用吗?谁敢接受挑战?好,那就让我们来用行动证明吧! 学习第三课学画曲线图形。 二、实践探究,学习新知 ⑴用曲线工具画简单的曲线 用曲线工具画曲线的基本方法是: ①单击工具箱中的曲线工具,选中曲线工具。

②选择粗细合适的线条。 ③在画板上拖动,画出一条“不定”直线。 ④在直线上某点处按住左键不放,拖拖看,直线变弯了,对吗?如果你认为弯度够了,就松开手。 ⑤在直线上另外一点处重复上述操作,曲线弯度再次发生变化。这次松开手后,曲线就“定型”了,再也弯不了了。 一条曲线最多可有两段弧,如果你只想要一个弧,在完成第一个弯曲松手后,原地再单击一次给曲线定型。动手操作试看,体会一下其中的妙处吧! (2)用曲线工具画垂柳 ①单击工具箱中的“曲线工具”,选中曲线工具。 ②选择粗细合适的线条。 ③选择棕色为前景色画树干。 ④选择绿色为前景色画树枝。 ⑤在画树叶的地方,画两条较短的曲线做树叶。 (3)学生尝试使用曲线工具绘画柳树 小结:曲线工具是画图工具中最不易掌握的工具,只有勤学苦练,才能进一步熟练。 3、作品展示,交流共享,解决疑难 利用多媒体教室电子系统,互相交流自己的作品,学生之间进行交流,并提出自己在实践过程中遇到的困难和如何解决困难的。对于学生解决不了的问题教师可以指导解决。 4、增强画技,巩固新知 ①画书中第8页最底下的两幅图。 ②展示自己的作品。 ③互评并修改自己的作品。 三、总结全课 同学们通过今天的学习,已经基本掌握了曲线工具的使用方法,你们很让老师满意,因为曲线工具是画图工具中最不易掌握的工具,只有勤学苦练才能进一 步熟练。同学们,努力吧,后面还有更多的困难在等着你们。 教学反思:通过今天的学习,学生能够基本熟练掌握曲线工具的使用,通过实践操作学生体会到成功的乐趣,为以后的学习打好基础,零起点的学生进步很大,增强了以后克服学习中困难的决心,本节课收到良好的效果。

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。 当i1- i2为正值时,则为凸形竖曲线。当i1 - i2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径,则有: (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距通过推导可得: 2、竖曲线曲线长:L = Rω 3、竖曲线切线长:T= TA =TB ≈ L/2 = 4、竖曲线的外距:E = ⑤竖曲线上任意点至相应切线的距离: 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R—为竖曲线的半径,m。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求

铁路曲线要素的测设

铁路曲线要素的测设、计算与精度分析 摘要 铁路线路平面曲线分为两种类型:一种是圆曲线,主要用于专用线和行车速度不高的线路上,另一种是带有缓和曲线的圆曲线,铁路干线上均用此种曲线。曲线的五大要素,ZH(直缓点)、 HY(缓圆点)、QZ(曲中点)、 YH(圆缓点)、 HZ(缓直点),是曲线的重要线形特征 铁路曲线测设一般分两步进行,先测设曲线主点,然后依据主点详细测设曲线上的任意点。结合本人的工作经验,就铁路圆曲线和缓和曲线上任一点坐标的计算及法向方位角的计算进行实例解析。 绪论 一、工程测量学概述 工程测量学是研究各种工程在规划设计、施工建设和运营管理阶段进行的各种测量工作的学科。工程测量的特点是应用基本的测量理论、方法、技术及仪器设备,结合具体的工程特点采川具有特殊性的施测工绘方法。它是大地测量学、摄影测量学及普通测量学的理论与方法在程工中的具体应用。 工程建设一般可分为:勘测设计、建设施工、生产运营三个阶段。 勘测设计阶段的测量主要任务是测绘地形图。测绘地形图是在建立测绘控制网的基础上进行大比例尺地面测图或航空摄影测量。 建设施工阶段的测量主要任务是按照设计要求,在实地准确地标定建筑物或构筑物各部分的平而位置和高程,作为施工安装的依据(简称为标定);是在建立仁程控制网的基础上,根据工程建设的要求进行的施工几测量。 生产运营阶段的测量主要任务是竣工验收测量和变形监测等测量工作。 工程测量按所服务的工程种类,可分为建筑工程测量、线路工程测量、桥梁与隧道工程测量、矿石工程测量、城市工程测量、水利工程测量等。此外,还将用于大型设备的高精度定位和变形监测称为高精度工程测量;将摄影测量技术应用于工程建设称为工程摄影测量;而将自动化的全站仪或摄影仪在计算机控制下的测量系统称为三维工业测量。测量学是研究地球的形状和大小以及确定地而(包含空中、地表、地下和海底)物体的空间位置,井将这些空间位置信息进行处理、存储、管理、应用的科学。它是测绘学科重要的组成部分,其核心问题是研究如何测定点的空间位置。 测量学研究的内容分为测定和测设两部分。测定是指使用测量仪器和工具,通过测量和计算,得到一系列测量数据,或把地球表面的地形按一定比例尺、规定的符合缩小绘制成地形图,供科学研究和工程建设规划设计使用;测设是指把图纸上规划设计好的建筑物、构筑物的位置在地而上标定出来,作为施工的依据。 二、现代测量技术概述

圆曲线要素及计算公式

圆曲线要素及计算公式

前言 《礼记》有云:大学之道,在明德,在亲民。在提笔撰写我的毕业设计论文的时候,我也在向我的大学生活做最后的告别仪式。我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾! 非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向工作岗位的时刻,我仿佛感受到水利行业对我赋予新的历史使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大自然关系的高尚事业。水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。这种使命,更让我用课堂中的知识用于实际生产中来。特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。所以,我越发不愿放弃不多的大学时光,努力提高自己的实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃?

刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。作为毕业设计的主体工作,我们主要运用电子水准仪对某幢建筑物进行变形观测与计算,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。而我研究的毕业课题是圆曲线测设。 大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。今天我提笔写毕业论文,我的毕业设计也接近尾声。不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。 在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。 摘要:在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。本文通过仪器安置

平曲线要素计算

一、路线转角、交点间距的计算 (一)在地形图上量出路线起终点及各路线交点的坐标: ()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783, (二)计算公式及方法 设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=- 交点间距D =象限角 arctan DY DX θ= 方位角A 是由象限角推算的: 360θ- 转角1i i i A A α-=- 1.1JD QD 与之间: 坐标增量10=2396623810=1860DX X X =--> 1026977271802030DY Y Y =-=-=-< 交点间距275.33D m === 象限角 203 arctan arctan 47.502186 DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间: 坐标增量21X =2468423966=6880DX X =--> 21Y 26591269773860DY Y =-=-=-< 交点间距788.89D m === 象限角 386 arctan arctan 29.294688 DY DX θ-===

方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间: 坐标增量32X =2484024684=1560DX X =--> 32Y 25885265917060DY Y =-=-=-< 交点间距723.03D m === 象限角 706 arctan arctan 77.54156 DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间: 坐标增量43X =2535024840=5100DX X =--> 43Y 25204258856810DY Y =-=-=-< 交点间距850.8D m === 象限角 510 arctan arctan 53.171681 DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-= 5. 4ZD JD 与之间: 坐标增量4X =2606225350=7120DX X =--> 4Y 25783252045790DY Y =-=-=> 交点间距917.706D m === 象限角 579 arctan arctan 39.118712 DY DX θ=== 方位角039.118A θ== 转角 443=39.118312.49892.289A A α-=-= 二、各平曲线要素的计算

教程(圆曲线缓和曲线计算公式

[教程]第九章道路工程测量(圆曲线缓和曲线计算公 式) 未知2009-12-09 19:04:30 广州交通技术学院 第九章道路工程测量 (road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey)

1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量 (center line survey) 1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。 2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。即测设直线上、圆曲线上或缓和曲线上中桩。 三、交点 JD(intersecting point) 的测设 (一)定义:路线的转折点,即两个方向直线的交点,用 JD 来表示。 (二)方法: 1、等级较低公路:现场标定 2、高等级公路:图上定线——实地放线。

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

缓和曲线要素及计算公式

缓和曲线要素及计算公式 缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。 缓和曲线的主要曲线元素 缓和曲线主要有ZH 、HY 、QZ 、YH 、HZ 5个主点。 由此可得: q P R q T T h ++=+=2 tan )(α R P R E h -+=2 sec )(α s h L R L 2180)2(0+-=πβα 180 )2(0R L y πβα-= 式中:h T -缓和曲线切线长 h E -缓和曲线外矢距 h L -缓和曲线中曲线总长 y L -缓和曲线中圆曲线长度

缓和曲线与圆曲线区别: 1. 因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P 产生) 2. 缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q; 3. 由于有缓和曲线的存在,因此有缓和曲线角0β。 缓和曲线角 0β的计算: R L S 2/0=β(弧度)= R L S π90 (度) 内移值P 的计算: ()m R L P S 242 = 切线增长值q 的计算: )(240223 m R L L q S S -= P -缓和曲线内移值 q -缓和曲线切线增长值 0β-缓和曲线首或尾所采用的缓和曲线段分别的总缓和曲线角。 S L -缓和曲线两端各自的缓和曲线长。 R -缓和曲线中的主圆曲线半径 α-偏转角

缓和曲线主点桩号: ZH 桩号=JD 桩号-h T HY 桩号=ZH 桩号+S L QZ 桩号=HY 桩号+2y L YH 桩号=QZ 桩号+ 2 y L HZ 桩号=ZH 桩号+h L 另外、QZ 桩号、YH 桩号、HZ 桩号还可以用以下方式推导: QZ 桩号=ZH 桩号+ 2 h L YH 桩号=HZ 桩号-S L HZ 桩号=YH 桩号+S L 切线支距法计算坐标: 缓和曲线段内坐标计算如式: 2 2540S P p L R L L -=X s P RL L Y 63 = 进入净圆曲线段内坐标计算如式: ?? ??????- ?? ???+=R L L R q X s p π1802 sin ? ??????????- ?? ? ?? -???+=R L L R P Y s p π1802cos 1

高等级道路竖曲线的计算方法

高速公路竖曲线计算方法 【摘要】本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高 程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果, 建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用 近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。 但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进 行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I,里程为D I,两侧的纵坡度分别为i1、i2,竖曲线设计半径为R,竖曲线各元素的近似计算公式如下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的dOH′直角坐标系,A点的坐标为(d A,0),Z点的坐标为(0,H Z′),竖曲线各元素的精确计算公式如下: α1=arctani 1 (1) α2=arctani 2 (2) ω=α1-α2(3) T=Rtan(4) E=R(sec-1) (5) d I=Tcosα1 (6) d A=Rsinα1 (7) H Z′=Rcosα1 (8) 竖曲线在直角坐标系中的方程为: (d-d A)2+H′2=R2 (9)

由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤dY (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11) D=D Z+d (D Z=D I-d I) (12) 式中,α1,α2分别为纵坡线与水平线的夹角;ω为变坡角;Τ为切线长;Ε为外矢距;d I为纵坡变坡点I与Z点的里程差;d A为竖圆曲线圆心A与Z点的里程差;H′为竖圆曲线上任一点的纵坐标值;d为竖圆曲线上任一点与Z点的里程差;H为竖圆曲线上任一点的设计高程;ΔH=H′Z-H Z为Z点纵坐标值与Z 点设计高程之差(H Z=H I-d I.i1);D为竖曲线上任一点的里程。 由式(10)可知,当d=d A时,则里程D N=D Z+d A的N点为竖圆曲线的变坡点, 其高程H N=H N′-ΔH=R-ΔH=max,N点在现场施工中具有很重要的指导意义。 三、计算实例 某山岭重丘的二级公路的纵坡变坡点I,其设计高程H I=68.410 m,里程D I

曲线要素

前言 《礼记》有云:大学之道,在明德,在亲民。在提笔撰写我的毕业设计论文的时候,我也在向我的大学生活做最后的告别仪式。我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾! 非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向工作岗位的时刻,我仿佛感受到水利行业对我赋予新的历史使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大自然关系的高尚事业。水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。这种使命,更让我用课堂中的知识用于实际生产中来。特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。所以,我越发不愿放弃不多的大学时光,努力提高自己的实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃? 刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。作为毕业设计的主体工作,我们主要运用电子水准仪对某幢建筑物进行变形观测与计算,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。而我研究的毕业课题是圆曲线测设。 大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。今天我提笔写毕业论文,我的毕业设计也接近尾声。不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。 在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。 摘要:在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。本文通过仪器安置不同地方进行多种圆曲线测设,提出了交点偏角法详细测设圆曲线的方法,其中主要运用了偏角法测设法。 Abstract: The round curve of route in the highway , railway is examined while having, is generally examining the contours of having out each mainly a bit, examine and have in detail the round curve a bit straighter on the straight dot or the round thereupon . This text, through the instrument finds a room for not examined and set up many kinds of round curves with the place, examine the method to have round curve in detail after putting forward the drift angle law of the point of intersect, among them has used the law of drift angle to examine trying mainly. 关键词:安置;交点;偏角法;圆曲线;测设 Keyword: Find a room for; deflection point;method of deflection angles;circular curve;lay off 开题报告 一、研究课题:《微分曲线的应用》 二、学科地位和研究应用领域 1.学科定义 工程测量学是研究地球空间中具体几何实体的测量描绘和抽象几何实体的测设实现的理论方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。 2.学科地位 测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。 3.研究应用领域 目前国内把工程建设有关的工程测量按勘测设计、施工建设和运行管理三个阶段划分;也有按行业划分成:线路(铁路、公路等)工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、三维工业测量等,几乎每一行业和工程测量都有相应的著书或教材。

平曲线计算

平面设计计算书 该路为双车道二级公路,设计车速V=80km/h ,一般规定直线的最大直线长度不超过20V (1600m )且同向曲线夹直线长度不小于6V (480m ),反向曲线夹直线长度不小于2V (160m ),汽车在任何一段线形上的行驶时间不短于3s (即长度为67m ),本段公路的平曲线间的直线段最小长度为551.016m 。圆曲:线极限最小半径250m ,一般最小半径400m ,不设超高最小半径(路拱≤2%为2500m 路拱>2%为3350m ),最大半径不超过10000m ,本段公路的最小半径为435m ,最大半径为1350m ,其中包含一个S 型曲线。缓和曲线最小长度一般值为100m 最小值为70m ,不设缓和曲线的最小圆曲线的半径为2000m ,该段公路都需设置缓和曲线且最小缓和曲线长度为70m 。平面曲线最小长度一般值为700m 最小值为140m ,本段公路的最小曲线长度为316.97m ,最大曲线长度为428.995m 。公路转角α≤07时的平曲线最小长度一般值为1000/αm 低限值为140m ,本段公路最小转角为15.2362度。 JD1(K2+961.802)缓和曲线要素计算: (R=1100,Ls=80,α=15.6074) q =32 2240s s L L R - =39.998m p =243 242384s s L L R R - =0.2424m 0β=s 28.6479 L R = 2.08348 p tan q 2T =+α (R+)=190.785m 0180L = π (α-2β)R +2s L =379.641m E=(R+p)sec 2 R -α =10.527m 2J T L =-=1.929 JD2(K4+843.269)缓和曲线要素计算: (R=1350,Ls=70,α=15.2362) q =32 2240s s L L R - =34.999m p =243242384s s L L R R - =0.15123m 0β=s 28.6479 L R =1.48545 p tan q 2T = +α (R+)=215.582m 0180L = π (α-2β)R +2s L =428.994m E=(R+p)sec 2 R -α =12.174m 2J T L =-=2.17 JD3(K5+217.695)缓和曲线要素计算: (R=435,Ls=100,α=28.5780) q =32 2240s s L L R - =49.978m p =243 242384s s L L R R - =0.957345m 0β=s 28.6479 L R =6.5857 p tan q 2T = +α (R+)=161.013m 0180L =π (α-2β)R +2s L =316.9697m E=(R+p)sec 2 R -α =14.875m 2J T L =-=5.056 JD1的曲线的主点里程计算: H ZH JD T =-=K2+961.802-190.786=K2+771.016 s HY ZH l =+=K2+771.016+80=K2+851.016 Y YH HY L =+= K2+851.016+219.641=K3+70.657 s HZ YH l =+= K3+70.657+80=K3+150.657

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

线形设计

第五章线形设计 第一节平面线形设计 摘要内容: 主要介绍平面线形设计原则、平曲线最小长度以及线形要素组合类型的定义、组合要求等。 一、平面线形设计一般原则 (一)平面线形设计的定义 从线形设计的角度研究平面几何三要素的选用和相互配合问题。 (二)平面线形设计一般原则 1. 平面线形应直捷、连续、顺适,并与地形、地物相适应,与周围环境相协调 原则:与地形相适应,宜直则直,宜曲则曲,不片面追求直曲,这既是美学问题,也是经济问题和保护生态环境的问题。 在宽阔的平原微丘区,路线应直捷顺畅;在没有任何障碍物的戈壁、草原等开阔地区,应以直线为主。在起伏的山岭和丘陵地区,线形以曲线为主。 直线、圆曲线、缓和曲线的选用与合理组合取决于地形地物等具体条件,片面强调路线要以直线为主或以曲线为主,或人为规定二者的比例都是错误的。 2. 保持平面线形的均衡与连贯 ①长直线的尽头避免接小半径曲线 长直线上汽车行驶速度较高,如果突然遇到小半径曲线,易产生减速不及造成的事故。 事故形态:车辆侧翻到曲线外侧路基或与对向车辆相撞或碰撞路侧护栏。 要求:长直线的尽头避免接小半径曲线,特别避免长直线下坡尽头接小半径平曲线。若由于地形所限小半径曲线难免时,中间应插入中等曲率的过渡性曲线,并使纵坡不要过大。

②高低标准之间要有过渡 高低标准之间的过渡有两种情况: 一是:同一等级道路上大、小指标间的均衡过渡。 主要包括:长直线与小半径曲线之间。 相邻的大小半径曲线之间。(反向曲线R2/R1=1~1/3,同向R2/R1=0.2~0.8) 二是:同一条道路上采用不同设计速度设计的路段之间的过渡。 除了选择合适的衔接地点,在标准变更的相互衔接处前、后一定长度范围内主要技术指标应逐渐过渡,避免产生突变,设计速度高的一端应采用较低的平、纵技术指标,反之则应采用较高的平、纵技术指标,以使平、纵线形技术指标较为均衡。 3.回头曲线的设置 回头曲线是在山区越岭线的特别困难地段,以延长展线方式克服高差而采用的一种特殊曲线类型。 回头曲线是由一个主曲线、两个辅助曲线和主、辅曲线所夹的直线段组合而成的复杂曲线。 回头曲线

相关文档
最新文档