压缩机虚拟样机仿真分析

压缩机虚拟样机仿真分析
压缩机虚拟样机仿真分析

本科毕业设计(论文) 题目:基于Pro/E的涡旋压缩机虚拟样机设计

教学单位:机电工程系

专业:机械设计制造及其自动化

学号: 0912010101

姓名:岳云欢

指导教师:邱海飞马志奇

2013年 5月

摘要

涡旋压缩机是近几年来发展迅速的一种新型压缩机械,具有效率高、能耗小、结构紧凑、运行平稳、寿命长、气源清洁等特点。但是涡旋压缩机的设计目前仍处于传统的设计阶段,为提高涡旋压缩机的设计效率,保证其运转性能,本文突破传统的二维设计方法,采用虚拟设计技术来探索涡旋压缩机的运动全过程。

本文涡旋压缩机为研究对象,通过参考国内外相关资料了解其结构及工作原理,运用Pro/E软件对其进行三维实体建模、虚拟装配以及运动学仿真分析。使用ANSYS 对关键零部件进行模态分析,可以预测结构的实际振动响应,为涡旋压缩机的动力学特性改进提供技术参考和依据。

关键词:涡旋压缩机;虚拟装配;运动仿真;模态分析;Pro/E

Abstract

Scroll compressor is a new type compressor has developed rapidly in recent years, with high efficiency, low energy consumption, Compact structure, smooth operation, long service life, air cleaning characteristics. But the design of scroll compressor is still in the traditional design stage, in order to improve the design efficiency of scroll compressor, guarantee its working performance; this paper breaks through the traditional two-dimensional design method, the whole process of using virtual design technology to explore the movement of scroll compressor.

In this paper, the scroll compressor as the research object, by reference to the relevant information to understand the structure and working principle, analysis of 3D solid modeling software Pro/E, the virtual assembly and kinematics simulation application. The use of ANSYS modal analysis of key parts and components, can predict the actual vibration response of structure improvement, to provide technical reference and basis for dynamic characteristics of scroll compressor.

Keywords: scroll compressor; virtual assembly; motion simulation; modal analysis;Pro/E

目录

第1章绪论 (1)

1.1涡旋压缩机的研究背景 (1)

1.2 涡旋压缩机国内外研究现状 (1)

1.3主要研究内容 (2)

1.3.1研究目的 (2)

1.3.2主要研究内容 (2)

1.3.3研究意义 (3)

第2章涡旋压缩机的结构与工作原理 (4)

2.1涡旋压缩机的基本结构 (4)

2.2涡旋压缩机的工作原理 (4)

2.3涡旋压缩机研究现阶段存在的问题和展望 (6)

第3章基于Pro/E的涡旋压缩机零部件设计 (7)

3.1设计环境 (7)

3.2建立零件实体模型 (7)

3.3主要零部件的三维模型 (7)

3.3.1轴系部件设计 (7)

3.3.2涡旋盘设计 (8)

3.3.3静平衡设计 (9)

3.3.4防自转机构设计 (10)

第4章涡旋压缩机的虚拟装配 (11)

4.1虚拟装配 (11)

4.2零件位置约束关系分析 (11)

第5章涡旋压缩机的运动仿真 (14)

5.1动力学仿真技术简介 (14)

5.2运动仿真环境 (14)

5.3基于Pro/E的运动学仿真分析 (14)

5.3.1 2500r/min下的曲轴运动学仿真分析 (15)

5.3.2 2900r/min下的曲轴运动学仿真分析 (18)

5.3.3 3600r/min下的曲轴运动学仿真分析 (21)

5.4关键零部件的有限元模态分析 (24)

5.4.1主轴模态分析 (24)

5.4.2支架体模态分析 (26)

总结 (29)

致谢 (30)

参考文献 (31)

第1章绪论

1.1涡旋压缩机的研究背景

伴随着涡旋压缩机研发技术的逐步成熟,我国当前涡旋空压机市场需求量大,而国内生产力不足;同时随着私家车的普及,汽车空调也是一个不可低估的市场,近几年来我国汽车市场发展迅速,汽车空调的配套设备产品也必须解决,涡旋式汽车空调具有更大的技术优势。而相对来说,外资企业产品主要投放到高端产品上;国内企业自主研发力度不够,在中低端产品市场上不能满足需求,这是一个很好的发展机遇。

1.2 涡旋压缩机国内外研究现状

自从进入上世纪70年代,中东战争爆发造成的能源危机以及精密设备和计算机数控技术的快速发展,给涡旋机械,特别是涡旋压缩机的发展带来了绝好的机遇。七十年代初,美国A.D.L公司进行了深入和卓有成效的研究,解决了涡旋盘端部补偿磨损的密封装置,并在此基础上与瑞士公司合作开发了以空气、氟里昂和氨气为介质的涡旋压缩机加工样机;1972年A.D.L公司将氨气涡旋压缩机安装在远洋海轮上并获得成功,这标志着涡旋压缩机应用时代的到来【1】。1987年,美国Copeland 制冷公司着手涡旋压缩机的批量化生产。迄今为止,Copeland制冷已经成为设计技术最先进、生产规模最大的涡旋压缩机生产厂家,截止1997年,他们的年产量已经达到了二百万台,产品规格覆盖了从1.5HP到5HP的中小功率压缩机市场【2】。美国作为世界上最早掌握涡旋压缩机设计、制造技术的国家,其技术实力和产品布局都在世界上居于领先地位。日本公司相对起步较晚,但市场定位准确、产品经济性好。三菱公司的1HP产品率先投入市场,这打破了业界关于批生产压缩机功率不可能低于1.5HP的传统理念;之后,在中小功率压缩机市场上,日本后来居上。由于家用空调和轿车的普及,日本公司在中小功率产品市场上获得了丰厚的利润,并利用积累的雄厚资金将变频调速等先进技术应用于涡旋压缩机领域,使产品的规格布局迅速扩大。

在我国,涡旋压缩机的研发工作始于上世纪八十年代中期,经过近二十年的努力,已经形成了比较成熟的涡旋式空气与制冷压缩机理论体系。1987年,我国第一

台涡旋压缩机样机研制成功。1994年,广州万宝电器集团引进日本Hitachi公司的生产线,实现空调用涡旋压缩机的批量生产【3】。1997年,爱默生.谷轮公司在苏州建立年产百万台的生产线,首次在我国实现涡旋压缩机大批量生产。春兰公司的百万台规模生产线上马后,业界关于其单台压缩机向国外专利机构支付的不蜚专利授权费的争议四起【4】。我国国有企业在压缩机领域,往往更倾向于开发石化、电力等领域的大型压缩机,而忽视了涡旋压缩机的巨大市场份额。在科研机构里,除了西交大的国家工程中心以外,对涡旋压缩机的研究投入都不太多,而且大都停留在理论研究上。综上所述,在家用空调和汽车空调市场大幅度上扬的市场环境下,在国家节约能源的重大决策出台后,涡旋压缩机会有一个很大的发展。

1.3主要研究内容

1.3.1研究目的

涡旋压缩机是一种新型的压缩机,是当今世界的节能压缩机,被业内誉为“无需维修空气压缩机”和“新革命空气压缩机”。涡旋压缩机的动、静涡旋盘和曲轴是涡旋压缩机的主要工作部件,而且承受的是交变载荷,除了满足一定的强度要求外,还应考虑其耐疲劳性能,对其进行应力及变形的分析至关重要。涡旋压缩机虚拟样机模型的建立将有助于完成其系统的动力学研究、零部件的强度分析与计算。

1.3.2主要研究内容

(1)结构分析和概念设计

收集国内外相关资料,分析涡旋压缩机基本结构和工作原理,提出面向市场需求的涡旋压缩机类型和规格。根据以上分析,参与涡旋压缩机概念设计,负责确定传动机构布局和相关功能零部件选择、配置,为零部件参数设计作好前期准备工作。(2)主要零部件的三维实体模型设计与装配

建立基于Pro/E实体设计软件的涡旋压缩机主要零部件的三维模型;完成压缩机在计算机上的虚拟装配。

(3)对主部件进行运动学仿真分析

运用软件对涡旋压缩机进行深入细致的动力学研究,对主部件进行运动学仿真及模态分析。

1.3.3研究意义

随着经济全球一体化大环境的形成,市场竞争愈演愈烈,国内许多企业面临着严峻的考验,企业在积极主动地采用先进技术和生产方式的同时也应增强自身在市场竞争中的应变能力和生存能力。我国许多产品开发大多数还采用的是传统的老方法:设计试制出原型样机,然后测试,验证并分析。工程师设计出产品,往往要经过多次反复的试制才能成功进入市场,产品开发时间长,耗费资金大,而且无法在缩短上市时间上有实质性的突破。

近年来,涡旋压缩机作为一种新型的压缩机械发展势头迅猛,引起越来越多人的重视。如何用最少的钱创造出最大的价值是企业所盼望的,目前应用越来越广泛的虚拟装配技术成为了企业的首选。虚拟装配设计是产品设计的重要环节,它可以为企业带来众多的经济效益,例如缩短产品的开发周期,提高产品的质量和可靠性,降低生产成本和减少库存等【5】。本课题顺应时代的发展,希望可以为为涡旋压缩机的设计装配及受力研究方面提供一点小小的参考。

第2章涡旋压缩机的结构与工作原理

2.1涡旋压缩机的基本结构

涡旋压缩机主要由动涡旋盘、静涡旋盘、主轴、轴承、机架、十字滑块组成(如图 2.1)。本课题中所选用的主轴为带有偏心结构的阶梯轴,涡旋盘选用圆渐开线线型。

图2.1涡旋压缩机

2.2涡旋压缩机的工作原理

涡旋压缩机是一种借助容积变化来实现气体压缩的容积式压缩机。其主要部件是两个形状相同但角相位置相对错开1800的渐开线涡旋盘(如图2.2),其中一个是固定涡旋盘叫做静涡旋盘,而另一个则是由偏心主轴带动,其轴线绕着静涡旋盘轴线做公转平动的动涡旋盘。装配完成后,两个涡旋盘之间形成了数对月牙形的封闭腔,随着偏心主轴的转动,这些月牙形气腔的形状大小一直在变化。气体从吸气口进入吸气腔,相继被吸入到外围与吸气腔相通的月牙形气腔里。随着这些外围月牙形气腔的闭合而不再与吸气腔相通,其密闭容积便逐渐被转移到静涡旋盘的中心且不断缩小,气体被不断压缩而使压力升高【6】。由于动静涡旋不断形成封闭腔,使吸气、压缩、排气过程(如图2.3)连续进行。

本课题方案中,由动涡旋盘、静涡旋盘、偏心轴、平衡机构和防自转机构等组成传动系统。涡旋压缩机的传动机构按照其使用目的可分为两类:一类用于传递动力,如主轴机构:另一类用于保证涡旋压缩机的正常工作,如防自转机构十字滑块。

图2.2 动静涡旋盘角相位示意图

图2.3压缩过程示意图

2.3涡旋压缩机研究现阶段存在的问题和展望

在我国,研究涡旋压缩机的科研机构还停留在理论研究以及测绘和仿制国外成品的层次上,这样不仅容易引发知识产权纠纷,还会使产品概念设计中的很多问题被忽略,不利于产品的自有化。同时,科研机构缺乏研究资金,不能进行样机的实验,得不到测试数据,研发进展缓慢。而企业又更倾向于直接引进国外整套的生产线,使得我国的涡旋压缩机研究水平在世界上处于比较弱势的地位。本人查阅了一些国内外的资料并结合自己的想法,总结了目前我国涡旋压缩机的开发应该需要注意的以下几个问题:

(1)在产品研发过程中使用功能强大的CAD/CAM/CAE软件来达到缩短产品研发周期的目的。我国的科研机构在产品开发过程中,还在延续着以前的概念设计-→样机实验-→修改设计方案-→再实验的流程【7】。这不仅浪费了大量的人力资源,而且还严重的影响了产品研发进度,降低了产品的竞争力。这时我们需要靠使用CAD /CAM/CAE软件来节省资源,提高产品的研发及生产竞争力。

(2)降低产品的生产成本。国外涡旋压缩机的产品主要将目光集中在我国的高端市场上,而忽略了我国的低端市场,这就给国内相关的企业提供了绝好的发展机会。如果能在现在实现批量化生产的基础上,改进生产工艺,在确保了主要参数和整机性能的基础上来优化产品结构,降低产品成本,这将使我国的涡旋压缩机产业迈入一个新的台阶。

(3)优化结构减少气体泄漏损失和气体阻力损失;加大传动机构研究力度,减少摩擦功耗损失,以此来提高涡旋压缩机的容积效率和工作可靠性。

(4)拓宽产品的应用范围和使用领域。当前我国自主开发的压缩机产品大多属于中等排量的压缩机,为了在市场竞争里脱颖而出,解决排量规格的局限性设计出大排量和1HP以下小排量的类型,以及对变频调速等技术的应用将是国内研发人员需要首先突破的难关。

第3章基于Pro/E的涡旋压缩机零部件设计

3.1设计环境

本设计环节是在高性能PC机上安装的美国PTC公司的Pro/ENGINEER Wildfire 5.0软件上完成的。

3.2建立零件实体模型

本课题在实体建模过程中,主要用到的各零部件的形体特征,在此可以分解各零部件的形体特征类别(如图3.1)

图3.1形体特征类别图

3.3主要零部件的三维模型

3.3.1轴系部件设计

主轴为偏心结构偏心距为0.8mm,有八个阶总长为297mm的偏心阶梯轴(如图3.2)。

图3.2 偏心主轴

(1)动涡旋盘

动涡旋盘主要由涡旋齿、端板、轮毂组成,零件上一些不太重要的细节做了相应的简化。当线型为圆渐开线,修正角γ和齿厚h时,通过重定义曲线方程参数可以得到涡旋齿【8】:

m=N*2π*t

x=a*(cos(m*180/π+90)+m*sin(m*180/π+90))

y=a*(sin(m*180/π+90)-m*cos(m*180/π+90))

z=0

上式为圆的渐开线基线方程。其中t:软件自身变量,0~1变化;N:涡旋圈数;a:渐开线基圆半径。

(a)动涡旋盘正面(b)动涡旋盘反面

图3.3动涡旋盘设计

(2)静涡旋盘

(a)静涡旋盘正面(b)静涡旋盘反面

图3.4 静涡旋盘设计

(1)小平衡铁

涡旋盘围绕主轴作公转平动时必然会产生公转惯性力和力矩,为减少压缩机的振动和延长压缩机寿命,本课题中采用增加配重的方法(如图3.5)来解决问题。

图3.5 配重组件示意图Ⅰ

(2)大平衡铁

偏心部件在高速运转过程中惯性力会对主轴产生不良的影响,故采用增加配重大平衡铁部件(如图3.6)来平衡惯性力。

图3.6 配重组件示意图Ⅱ

3.3.4防自转机构设计

防自转机构主要用来阻止动涡旋盘切向气体力所引起的自转运动趋势。常见的防自转机构有十字环、圆柱梢、特殊滚珠机构、小曲柄销等。本课题中选用十字环(如图3.7)防自转机构。

图3.7 十字滑块

第4章涡旋压缩机的虚拟装配

4.1虚拟装配

装配体设计有两种设计方法:自下而上设计方法和自上而下设计方法。本课题中使用的装配方法是自下而上装配方法,即将已绘制完成的零件插入到装配体文件中,形成装配体【9】。

本课题中涡旋压缩机是由子装配及零部件组成的,在Pro/E环境下进行涡旋压缩机的虚拟样机设计也是从其子装配及零部件开始的。总的来说,进行涡旋压缩机的虚拟样机设计可以按照下面的流程(如图4.1)来进行。

图4.1虚拟装配过程图

4.2零件位置约束关系分析

零件的装配过程,实际上就是一个约束限位的过程,根据不同的零件模型及设计需要,选择合适的装配约束类型,从而完成零件模型的定位。一般要完成一个零件的完全定位,可能需要同时满足几种约束条件。Pro/E提供的约束类型有:(1)匹配:指两零件指定的平面或基准面重合或平行且两平面的法线方向相反。

(2)对齐:使两零件指定的平面、基准面、基准轴、点或边重合或共线。

(3)插入:使两零件指定的旋转面共旋转中心线,具有旋转面模型有圆柱、圆台、球等。

(4)坐标系:使零件装配的坐标系与其装配零件的坐标系对齐,来完成装配零件的放置。

(5)相切:在两个进行装配的零件中,各自指定一个曲面或一个为平面,另一个为曲面,使其相切。

(6)线上点:在一个零件上指定一点,然后在另一零件上指定一条边线,使该点在这条边线上。

(7)曲面上的点:在一个零件上指定一点,然后在另一个零件上指定一个面,则指定的面和点相接触。

(8)曲面上的边:在一个零件上指定一条边,然后在另一个零件上指定一个面,则指定的边位于指定的面上。该选项常配合“对齐”、“匹配”等选项一起使用。

在Pro/E中,元件的放置还有一种装配方式——连接装配。使用连接装配可利用机构模块直接进行执行机构的运动分析与仿真,它通过上面所讲的各种约束条件来限定零件的运动方式及其自由度。常用的连接类型:

(1)刚性:刚性连接。自由度为零,零件装配处于完全约束状态。

(2)销钉:销钉连接。自由度为1,零件可沿某一轴旋转。

(3)滑动杆:滑动连接。自由度为1,零件可沿某一轴平移。

(4)圆柱:缸连接。自由度为2,零件可沿某一轴平移或旋转。

(5)平面:平面连接。自由度为2,零件可在某一平面内自由移动,也可绕该平面的法线方向旋转。该类型需满足“平面”约束关系。

(6)球:球连接。自由度为3,零件可绕某点自由旋转,但不能进行任何方向的平移。该类型需满足“点对齐”约束关系【10】。

本课题涡旋压缩机中各部件所需的约束关系(如表4.1)

表4.1 各运动部件之间的约束关系

完成的涡旋压缩机子装配图(如图4.2)及总装配图(如图4.3),轴系子装配由主轴、轴承、带轮部件组成。

图4.2 轴系子装配图

涡旋压缩机的总装配由轴系子装配、动涡旋盘、静涡旋盘、机架、端盖、十字滑块及大小平衡铁组成。

图4.3 涡旋压缩机总装配图

第5章涡旋压缩机的运动仿真

5.1动力学仿真技术简介

动力学仿真技术(Dynamics Emulating Technology)是指在计算机上建立产品的虚拟样机之后,利用软件对系统的运动进行仿真并分析其各种工况下的运动学和动力学性能,并对物理样机进行之前难以解决或者根本无法进行的试验,从而可以对结构缺陷进行修改,直到获得最优设计方案。这项仿真技术最初源于对多体系统动力学的研究。

复杂机械系统的力学模型基本表现为多机构通过运动副而连接的系统,因此被称为多体系统。对于多体系统研究人员最关心的问题主要分为两类:一是在不考虑系统运动起因的情况下研究各部件的位置、速度和加速度的关系,称为系统的运动学分析;二是讨论载荷与系统运动的关系,即动力学分析【11】。

综上所述,动力学仿真技术是多项技术的综合。它的核心部分是多体系统运动学与虚拟建模的技术。应用数学中的数值算法为其提供了有效算法;计算机的可视化技术以及动画技术的发展为其提供了用户界面;CAD/FEA等技术的发展为虚拟样机技术的应用提供了技术环境。

5.2运动仿真环境

本课题中依靠美国PTC公司的Pro/ENGINEER Wildfire5.0软件进行运动学仿真分析【12】、美国ANSYS公司开发的ANSYS 10.0软件【13】进行模态分析,两者共同来完成涡旋压缩机的动态分析及运动仿真过程。

5.3基于Pro/E的运动学仿真分析

本课题中主要运用Pro/E对已装配好的涡旋压缩机主轴、动涡旋盘、十字滑块进行运动学仿真分析,分析在不同转速下三个部件的位移、速度、加速度的变化。初步选用曲轴转速为2500r/min、2900r/min、3600r/min三种情况,在“运动分析”对话框中设置定义的伺服电动机的执行时间为2s,帧频为35。

5.3.1 2500r/min下的曲轴运动学仿真分析

(1)主轴运动学变化曲线

图5.1a主轴位移变化图

图5.1b主轴速度变化图

图5.1c主轴加速度变化图

主轴随电机作匀速圆周运动,主轴随时间变化的位移曲线为正弦曲线,最大位移为217mm,最小位移为212.5mm如图5.1a所示。其速度随着时间的变化保持匀速运动,v=2632.5mm/s如图5.1b所示。主轴加速度随时间变化保持不变a=9554mm/s2如图5.1c所示。

(2)动涡旋盘运动学变化曲线

图5.2a动涡旋盘位移变化图

图5.2b动涡旋盘速度变化图

图5.2c动涡旋盘加速度变化图

动涡旋盘随时间变化的其位移变化图像近似正弦曲线,最大位移s=221mm,最小位移s=214.7mm如图5.2a所示。由于动涡旋盘绕主轴作公转平动,所以其速度、加速度保持不变为直线如图5.2b、5.2c。

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

YUYJD55制冷压缩机性能测试实训装置

YUY-JD55制冷压缩机性能测试实训装置 实 验 指 书 导 上海育仰科教设备有限公司

一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1

2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。

浅谈虚拟样机技术

虚拟样机技术及应用 (课程考试) 题目: 浅谈虚拟样机和虚拟样机技术学生: 陈川 班级: 机制1001班 学号: 2010200626 指导教师: 王春光

浅谈虚拟样机和虚拟样机技术 一虚拟样机产生的背景 进入21 世纪, 科学技术突飞猛进, 社会发展日新月异。人们对个性化产品的需求越来越迫切, 对产品性能的要求也越来越高, 全球化经济已明显地呈现出买方市场的特点。由于这一变化, 导致市场竞争日趋激烈, 而竞争的核心则主要体现在产品创新上, 体现在对客户的响应速度和响应品质上。传统的物理样机在产品的创新开发中, 在开发周期、开发成本、产品品质等方面已越来越不能满足市场需求, 虚拟样机技术正是在这一市场需求的驱动下产生的。 传统的产品设计模式通常采取的是一种设计→制造→试验→改进→设计的串行设计模式,尽管在结构设计方面采用CAD、CAE等软件,但由于不同学科软件相对独立性,产品的性能指标往往是通过大量的试验来确定特征参数。而且降低了产品的总体性能,使产品研发周期长、效率低。 如在传统的印刷机械设计工作过程中,都是由工程师先根据机器功能改进的需要,进行理论选型,然后计算结果,画出机械零件图、部件图和装配图,再交给车间进行试制。待样品出来以后,对样品进行运转测试,把测试到的实际结果与设计前的理论构想进行比对,寻找差异产生的原因,再重新进行设计上的修改,直到样品满足改进的需要。这种设计过程,需要的周期长,样品试制费用高,往往不能满足市场对新机器换代及时性的要求,带来了人力物力的巨大浪费。为了改变这些现象,提高产品的性能,缩短生产周期,降低生产成本,各行各业都在不断地创新,开发新的技术。这样通过不断地创新、改进,近年来终于找到了解决这些缺点的方法,并提出了虚拟样机技术。 二什么是虚拟样机 虚拟样机是建立在计算机上的原型系统或子系统模型,它在一定程度上具有与物理样机相当的功能真实度。 虚拟样机是一种计算机模型,它能够反映实际产品的特性,包括外观、空间关系以及运动学和动力学特性。利用这项技术,设计师可以在计算机上建立机械系统模型,然后以三维可视化处理,模拟在真实环境下系统的运动和动力特性并根据仿真结果精简和优化系统。 虚拟样机被美国国防部建模和仿真办公室(DMSO)定义为对一个与物理原型具有功能相似性的系统或者子系统模型进行的基于计算机的仿真;而虚拟样机则是使用虚拟样机来代替物理样机,对候选设计方案的某一方面的特性进行仿真测试和评估的过程。 虚拟样机的概念与集成化产品和加工过程开发 (Integrated Product and Process Development,简称IPPD)是分不开的。IPPD是一个管理过程,这个过程将产品概念开发到生产支持的所有活动集成在一起,对产品及其制造和支持过程

压缩机参数

QD压缩机的资料 输入功率(W)制冷量(W)电流(A)制冷剂电源(V)应用类型效能 QD2580680.65R12220V-50Hz LBP L QD3082780.65R12220V-50Hz LBP L QD3686880.68R12220V-50Hz LBP L QD431121180.88R12220V-50Hz LBP L QD521281380.98R12220V-50Hz LBP L QD551251321R12220V-50Hz LBP L QD591371461R12220V-50Hz LBP L QD65145158 1.1R12220V-50Hz LBP L QD66150R12220V-50Hz LBP L QD68R12220V-50Hz LBP L QD75162176 1.2R12220V-50Hz LBP L QD80180R12220V-50Hz LBP L QD85184202 1.3R12220V-50Hz LBP L QD91192216 1.4R12220V-50Hz LBP L QD110232271 1.6R12220V-50Hz LBP L QD1282603062R12220V-50Hz LBP QD142280333 2.1R12220V-50Hz LBP QD168330380 2.3R12220V-50Hz LBP L QD180380440 2.8R12220V-50Hz LBP L QD210435510 3.1R12220V-50Hz LBP L QD66D241232 1.4R22220V-50Hz LBP L QD76D252258 1.6R22220V-50Hz LBP L QD91D286300 2.2R22220V-50Hz LBP L QD100D340370 2.5R22220V-50Hz LBP L QD120D360400 2.5R22220V-50Hz LBP L QD150D460546 3.2R22220V-50Hz LBP L QD168D510580 3.55R22220V-50Hz LBP L QD180D550660 2.96R22220V-50Hz LBP L QD210D655790 3.12R22220V-50Hz LBP L QD238D1P R22220V-50Hz LBP L QD268D1+1/8P R22220V-50Hz LBP L QD308D1+1/4P R22220V-50Hz LBP L QD350D1+3/8P R22220V-50Hz LBP L QM238D1+1/8P R22220V-50Hz LBP H QM268D1+1/4P R22220V-50Hz LBP H QM308D1+1/2P R22220V-50Hz LBP H QM350D1+3/4P R22220V-50Hz LBP H

空压机的性能检测

1空压机的概述 1.1 NPT5 空压机的组成结构和工作原理 (1)组成结构 NPT5空气压缩机是一种常用的空气压缩机,目前为止,它也是机车中使用最多的一种空气压缩机。当环境温度小于30 0C时,它能够连续稳定运转。前面也介绍了,它主要用于铁路机车的制动系统,还包括其它的气源部件,如鸣笛等。NPT5是三缸,立式,风冷,两级压缩的活塞式空气压缩机。其结构图如图1所示。 图1空压机的结构图 NPT5主要由运动部件,空气压缩系统,润滑系统和冷却系统组成,下面分别对各个部分作简单的介绍。 1)运动部件 曲轴是空压缩机中很重要的一个部件。原动机经由曲轴带动,使电机的旋转运动转换成活塞的上下来回运动。在曲轴的一端装有油泵的联轴器带动油泵旋转。连杆是受力部件。活塞环是个密封部件,主要负责布油和导热。 2)空气压缩系统 曲轴由原动机带动作规律的旋转,通过连杆使活塞作规律的往复运动。在活塞不断运动的过程中,气缸内工作容积也在随之不断变化。因为气阀的原因,空气也会按照一定规律在运动,从而形成对空气的压缩作用。 3)润滑系统 对于空压机的运行,润滑系统是一个必不可少也非常关键的系统分。NPT5空压机主要是采用压力润滑的解决办法。 4)冷却系统 压缩机的冷却系统是非常有必要的,不然超过了它的运行温度,会导致空压机不能正常的工作。空压机的冷去系统主要包括对压缩空气的冷却和受热机件的冷却。本压缩机采用了强迫通风的冷却装置,结构很简单,主要部件为风扇和冷却器。 ( 2) NPT5空压机的工作原理 电动机通过联轴器将动力输入,然后带动空压机的曲轴按指定的方向作旋转运动。由于

连杆的作用,然后带动装在连杆小端的活塞在气缸内做活塞运动。在活塞的不停运动中,活塞的顶部与气缸之间形成进气和排气的空气压缩过程。气阀的工作原理如图2所示。 图2气阀的工作原理 1.2 NPT5 空压机的主要参数 表1为NPT5 的主要参数 表1 NPT5 的主要参数

虚拟样机仿真实验报告样本

机械原理课程虚拟样机仿真实验 课题:六足步行机器人的虚拟样机仿真 姓名:XXX 学号:***** 班级:¥¥¥ 指导教师:XXX 2012年5月1日

六足步行机器人的虚拟样机仿真 摘要 以前我做过的一个设计题目是五足步行机器人的步态优化,当时由于还不会使用Adams软件,因此每次对步态做一些调整之后都要直接在样机上进行试验才能验证方案是否合理。由于样机硬件设备并不完善,因此很多时候试验会出现各种硬件问题,这占用了我很多时间。 现在虽然我暂时不做这个项目了,然而借着本次虚拟样机仿真实验的机会,我决定运用本学期学到的知识建立步行机器人的虚拟样机模型,并进行仿真分析。然而若是对五足机器人进行仿真,由于其步态比较复杂,因此大部分时间会用于计算步行过程中的关节变量数据。因此本文从简化问题和对所学知识实践两方面来考虑,改为对六足步行机器人进行建模仿真,并将关节型串联机构步行腿改为并联机构中的缩放结构型步行腿以简化计算。 关键词:六足步行机器人、缩放机构、虚拟样机、ADAMS应用、仿真

目录 1 问题的分析 (1) 2 六足步行机器人虚拟样机建模 (2) 2.1 设置工作环境 (2) 2.2 单腿建模与验证 (2) 2.2.1 创建平面缩放机构连杆模型 (2) 2.2.2 创建机器人单腿模型 (4) 2.3 创建整机模型 (5) 3 计算步行过程中的关节变量 (7) 4 六足步行机器人仿真分析 (8) 4.1 导入数据 (8) 4.2 修改驱动函数 (9) 4.3 仿真 (9) 4.4 测量和分析 (10) 课程总结 .......................................... 错误!未定义书签。参考文献 . (11) 附录A............................................. 错误!未定义书签。

实验实训12 空调压缩机的性能测试实验

实验实训12 空调压缩机的性能测试实验 一、测试原理 压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。 二、设备概述 本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。 1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩 2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表: 三、测试软件使用说明 压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及

生成测试报告。 1.界面功能介绍 整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。 菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能; 状态栏用来指示当前系统的工作状态,用于提示; 调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值; 实时数据图形显示用来显示实时数据和整个过程的数据变化状况; 计算数据显示用来显示瞬态计算数据; 功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据; 页面显示用来选择实时数据的显示方式; 通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态; 2.菜单 菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。 2.1 系统菜单 系统菜单主要用于管理系统用户和控制测试开始、停止和退出,如下图所示: 高级用户登陆用于系统权限管理,高级用户登陆后可以使用用 户管理、硬件配置等高级功能。如右图所示,在未登陆前,用户 无权限进行用户管理,同时也无权限对硬件进行配置(系统设置菜 单内容),快捷键(Ctrl+L)。 用户管理用来管理使用该平台用户的权限,快捷键(Ctrl+M)。 注销用户用来退出当前使用者的权限设置功能。 开始测试用来启动、停止测试功能,和开始测试按钮具有完全相同的功能,快捷键(Ctrl+R)。退出菜单用来退出整个测试平台,快捷键(Ctrl+Q)。 2.2 系统配置菜单 注:本菜单只有在设备更换或测量不正常时使用,在设备正常使用时切无操作,不然可能会引起错误。 系统设置菜单包括工况设置、铭牌设置和硬件初始化设置(权限设置,有效登陆后激活)。 工况设定(Ctrl+T)用来设定工况控制的目 标值,自动更新调节器的设定值,和按钮工 况设定功能完全相同; 铭牌设定(Ctrl+N)用来设置压缩机铭牌,和 铭牌设定按钮功能完全相同; 硬件初始化菜单在测试进行过程中无效; 通讯端口配置(Ctrl+O)用来设置下位机设 备的通信端口; 冷凝温度(排气压力)调节器初始化、蒸发温 度(吸气压力)调节器初始化、过冷温度调节器初始化、吸气温度调节器初始化、环境温度调节器分别用来初始化相应的调节器; 电量表8902F初始化用来初始化压缩机电量采集仪; 电量表8905F初始化用来初始化量热器电量采集仪; 数据采集仪初始化用来初始化DA100数据采集仪,并恢复数据采集输入类型为系统默认值;

虚拟样机技术概述

虚拟样机技术概述 1.1.行业背景 多年来,制造业完全依赖于物理样机来解决和交流设计过程中的问题,这就使得制造成本增加和产品设计时间的延长(见表1)。然而,近年来,制造业者已经认识到物理样机在快速抢占市场上已严重阻碍了其发展,成为发展过程中的一个重要障碍。 为了突破这个障碍,很多制造业者(如Boeing ,GM, Caterpillar ,Ford等)开始研究使用虚拟样机,而减少对物理样机的依赖。他们并不完全排除物理样机,只是减少物理样机的数量,用虚拟样机的灵活性去完成物理样机不能完成的功能。例如,90年代Boeing公司用虚拟样机技术用在波音777上取得了极大的成功,他们仅用一个较小的物理机头模型就在四年内把这种飞机推向市场(Boswell, 1998)。Caterpillar公司也同样利用这个技术应用于他们的履带机设计,他们发现这种技术在解决设计评审阶段节省了9个月时间(Ellis, 1996)。 表1 物理样机成本 虚拟样机的成功有两项关键技术,第一,实时的3D图形特性和位图质量要达到一定的标准,要求硬件产生的高质量位图包括150,000到250,000个三角形的数据。另外,这些位图刷新速度要达到交互速度的要求。第二,投影和其它显示技术的发展使得高清晰度的立体图像能被建立。结合这两项技术,虚拟样机赢得了一些评论家的关注。现在,这种技术也面临着有激烈地争议,但虚拟样机的高成长性和广泛应用已成为事实。 物理样机被用于解决贯穿整个生产过程的问题。通常情况下,一些独特的模型对解决某些关键的问题是必须的。表2列出一些通过样机解决的问题和关心

的主要问题。 下面给出虚拟样机技术在工业中的三个具体应用层面: 1.建立可信的图像 2.产品设计与制造过程的集成(DFM) 3.虚拟样机和现有测量工具的结合 表2 原型问题 1.2.虚拟样机的关键技术 1.2.1.建立可信赖的1:1产品虚拟原型 建立可信的图像是一个核心要求。目前,绘图师和设计师都用不同的射线跟踪包(沿物理样机)去形成高真实的图像或动画电影。这些工具对于交流是非常有用的,他们也能描述必需的经验上的碰撞。当你在墙上看到这些图像时,你就会想象你正经历着这个产品,或正在看它漂亮的图片。这种预先渲染的技术限制了通常物理样机所提供的探测和交互的种类。例如,你不能进入图像的内部和感受到聚集在你周围的场景。这种情况下,具有现实性的图像并没有充分的理由代替物理样机。既然这样,使用这种技术生成的虚拟样机的应用的可信度就会大打折扣,因为它们限制了探测场景的比例和现场的沉浸感。 当计算机可视化的价值得到工业界的普遍认可时,具有“沉浸感”的虚拟样机还是被许多专家持怀疑和观望态度。但当它呈现出高可信度的图像和虚拟样机时,这种怀疑的态度就会消失。虚拟样机的展示,的确给观察者一种与物理样机同处一室的感觉,这时,观察者就会认为他看到的虚拟样机是真实的。

压缩机功率对照表以及压缩机详细技术参数

各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 ... 各种型号压缩机功率对照表以及压缩机详细技术参数,此表可作为维修冰箱或空调等制冷设备、更换压缩机的技术依据。 企业名称产品 规格 制冷剂 汽缸容积 (cm3) 名义功率 (HP) 制冷量 (W) 输入功率 (W) 效率 (W/W) 油的 粘度 电机 类型 湖北南光制冷设备有限公司QD56 R12 5.6 132 120 1.1 32 YUR QD63 R12 6.3 145 132 1.1 32 YUR QD72 R12 7.2 165 150 1.1 32 YUR QD80 R12 8.0 186 165 1.12 32 YUR QD88 R12 8.8 200 180 1.11 32 YUR QD96 R12 9.6 233 208 1.12 32 YUR QD110 R12 11 261 238 1.1 32 YUR QD58 R134a 5.8 132 120 1.1 32 YUR QD71 R134a 7.1 148 134 1.1 32 YUR QD78 R134a 7.8 162 145 1.11 32 YUR QD86 R134a 8.6 185 162 1.14 32 YUR Q-5 R22 5.6 750 315 2.38 32 YYR Q-6 R22 6.7 890 370 2.4 32 YYR Q-7 R22 7.1 1000 410 2.44 32 YYR Q-8 R22 8.6 1150 460 2.5 32 YYR 西安远东公司航空工业总公司QD24 R12 2.4 55 75 0.73 22 RSIR QD30 R12 3.0 75 95 0.78 22 RSIR QD45A R12 4.5 113 116 0.95 22 RSIR QD52A R12 5.2 132 139 0.95 22 RSIR QD57A R12 5.7 142 137 1.05 22 RSIR QD62A R12 6.2 154 154 0.95 32 RSIR QD62G A R12 6.2 154 134 1.07 32 RSCR QD75G R12 7.5 190 168 1.09 32 RSCR

往复活塞式压缩机性能测定实验汇总

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

虚拟样机实验报告

《XXXXXXX实验报告》实验一XXXXXXXX 班级: 姓名: 学号:

ADAMS虚拟样机建模与分析实验报告 实验报告(一) 姓名:学号:成绩:指导教师:实验名称:凸轮-气门机构的运动学仿真 一、实验目的 1. 熟悉ADAMS软件的操作界面; 2. 掌握常见平面约束和驱动约束的分析与建立; 3. 掌握ADAMS软件运动学建模操作; 4. 掌握ADAMS软件运动学仿真操作; 5. 掌握ADAMS软件后处理分析。 二、实验环境 1. 计算机 2. 安装ADAMS软件 三、实验内容 1. 建立二种凸轮-气门机构的运动学模型和虚拟样机; 2. 显示所建立的模型、建模过程、模型信息; 3.结果曲线; 4. 对比分析二种建模。 四、实验体会 实验报告(二) 姓名:学号:成绩:指导教师:实验名称:齿轮机构的运动学仿真 一、实验目的

1. 熟悉ADAMS软件的操作界面; 2. 掌握常见平面约束和驱动约束的分析与建立; 3. 掌握ADAMS软件运动学建模操作; 4. 掌握ADAMS软件运动学仿真操作; 5. 掌握ADAMS软件后处理分析。 二、实验环境 1. 计算机 2. 安装ADAMS软件 三、实验内容 1. 建立二种齿轮机构的运动学模型和虚拟样机; 2. 显示所建立的模型、建模过程、模型信息; 3.结果曲线; 4. 对比分析二种建模。 四、实验体会 实验报告(三) 姓名:学号:成绩:指导教师:实验名称:空间并联机构的动力学仿真 一、实验目的 1. 熟悉ADAMS软件的操作界面; 2. 掌握常见空间约束和驱动约束的分析与建立; 3. 掌握ADAMS软件动力学建模操作; 4. 掌握ADAMS软件动力学仿真操作; 5. 掌握ADAMS软件后处理分析。 二、实验环境

制冷压缩机的基本性能参数计算

制冷压缩机的基本性能参数计算 一、实际输气量(简称输气量) 在一定工况下, 单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量——制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1 小型往复式制冷压缩机的名义工况

四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1 实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的 排热量为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率;

机械原理课程虚拟样机仿真

机械原理课程虚拟样机仿真 实验报告 题目:基于ADAMS的单缸四冲程内燃 机仿真与分析 姓名:苏雨 学号:14041032 班级:140411

2016年5月8日 基于ADAMS的单缸四冲程内燃机仿真与分析 14041032 苏雨 北京航空航天大学能源与动力工程学院 摘要 本文主要针单缸四冲程内燃机,首先绘制机构的运动简图,理论验证机构工作原理的可行性;然后使用SolidWorks软件对机构进行三维实体建模,使用ADAMS软件对机构进行仿真与分析。通过仿真,不仅验证了单缸四冲程内燃机原理的可行性,而且对机构传力特性的分析,验证了此机构设计的合理性。 关键词:ADAMS;单缸四冲程内燃机;建模;仿真与分析。

目录

1、机构简单分析 (5) 2、机构的三维实体建模 (6) 3、机构的ADAMS仿真分析 (6) 3.1模型的导入 (6) 3.2模型的完善 (7) 3.3机构分析 (7) 4、机构拓展(此部分也可省略不写) (8) 4.1其它四冲程内燃机简介 (8) 5、结束语 (9) 参考文献: (10)

1、机构简单分析 图1为单缸四冲程内燃机,其工作原理的描述可参考图2。该机器内含有三种机构:曲柄滑块机构、凸轮机构和齿轮机构。其中,由缸体4、活塞3、连杆2和曲轴1等组成曲柄滑块机构,用于实现移动到转动运动形式的转换。由凸轮5和推杆6组成凸轮机构,主要在于凸轮5利用其特定轮廓曲线使推杆6按指定规律作周期性的往复移动;齿轮1'、9、5'组成齿轮机构,其运动特点在于将高速转动变为低速转动。上述三种机构按照一定的时间顺序相互协调、协同工作,将燃气燃烧的热能转变为曲轴转动的机械能,从而使这台机器输出旋转运动和驱动力矩,成为能作有用功的机器。 排气阀 进气阀 凸轮5 缸体4 推杆6 活塞3 连杆2 曲轴1 齿轮 齿轮 齿轮9 图1 内燃机 单缸四冲程内燃机的工作原理如图2所示,当燃气在缸体内腔燃烧膨胀而推动活塞移动时,通过连杆带动曲轴绕其轴线转动。 为使曲轴得到连续的转动,必须定时地送进燃气和排出废气,这是由缸体两侧的凸轮,通过推杆、摆杆,推动阀门杆,使其定时关闭和打开来实现的(进气和排气分别由两个阀门控制)。曲轴的转动通过齿轮传递给凸轮,再通过推杆和

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

Ⅱ型压缩机性能测定实验指导书

活塞式压缩机性能测定 实验指导书 V3.0 北京化工大学

活塞式压缩机性能测定实验 一、实验目的 1.活塞式压缩机性能曲线测试 压力比—排气量曲线(ε— Q ) 压力比—轴功率曲线(ε— Ne ) 压力比—效率曲线(ε—η) 2.活塞式压缩机闭式示功图 3.实验数据、实验曲线的显示存储和打印。 二、实验设备 1.实验装置如图1所示。 2.压缩机性能参数: 1)型号:TA-80型一级三缸风冷移动式空气压缩机; 2) 气缸直径:D=80毫米×3个 3) 活塞行程:S=60毫米 =0.5立方米/分(额定工况下) 4) 排气量:Q 5) 轴功率:Nz<4千瓦(额定工况下) 6) 回转速:n=875 rpm =0.8 Mpa(表) 7) 额定排气压力:P 2 3.三相交流异步电动机型号:Y112M-2FSY 1) 额定功率 4 kW 2) 转速 875 rpm 3) 额定电压 V=380V 4) 额定电流 I=8.2A 5) 频率 50Hz 6) 电机效率η=0.882 7) 功率因数 cosφ=0.88 =97% 8) 皮带传动效率η C 4.辅助装置 1) 控制箱和操作台 2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米 3) 低压箱及喷嘴喷嘴直径d=9.52 mm 4) 导管及调节阀 5.主要测量仪器及仪表 1)喷嘴流量测量装置

2)差压变送器 3)压力变送器 4)温度变送器 5)磁电式齿轮转速传感器 图1 空气压缩机性能实验装置简图 1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器 6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐 三、实验步骤 1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率; 根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。 2.步骤: 1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。点击“确认”按钮进入试验画面; 2) 压缩机启动:a.盘车——用手转动皮带轮一周以上;b.将储气罐出口调节阀完全打开;c.转动压缩机控制箱旋钮——启动压缩机; 3)点击“清空数据”按钮, 4)调储气罐出口调节阀,改变排气压力(间隔0.05Mpa),等试验系统稳定后,记录各项数据。(运转中,如发现有不正常现象应及时停车); 5)停车:转动压缩机控制箱旋钮——关闭压缩机(注意:此时不得转动储气罐出口调节阀)。 四、压缩机参数计算 1.实测排气量计算

虚拟样机仿真与测试实验

虚拟样机仿真与测试实验 实验目的 了解ADAMS软件的建模和分析方法; 初步掌握ADAMS进行机构参数化建模的方法; 初步掌握ADAMS添加运动约束、运动驱动、仿真分析、参数测量。 实验参数 图所示为某机器的曲柄滑块机构,圆盗1以n= 60r /min的转速逆时针旋转, 在滑块的端部作用有载荷F, F的方向与滑块运动的方向相反。已知:圆盘1的半径R =350mm 厚度3= 100mm 材料密度为7. 8X 10-3kg /cm3;连杆 2 长度L = 1100mm 宽度w= 150mm 厚度3= 50mm 质量Q= 65kg,惯性矩Ixx = 0.132kg - m2 Iyy = 6.80kg - m2 Izz = 6.91 kg ? m2,滑块3长度L= 400mm高度h= 300mm厚度3 = 300mm材料为黄铜。 试进行以下的建模和分析: 1)确定滑块酌位置、速度和加速度。 2)裁荷F=l00kN时,确定所需的圆盘驱动力矩;3)设置驱动力矩,测量滑块的位置和速度。

实验结果 时间一位移曲线 piston Displacement —piston Cl/ Position X u i g E ) §匸^ 10 15 2.Q 2.5 Analysis Last^Run Time (sec) 2012-04-12 11:18 16 时间一速度曲线 piston CM Velpcity X 「me 底匸) 2012-04-12 11 18:16 T -P Z-.」 .H D 一 :2r .--J -l Analysis Last_Run 时间一加速度曲线 F o a s A s OJ E )匸口曾」E -piston CM Ac cetera!bon X 100 5.0 0.0 ■5 0 -10.0 ■15.0 -20.Q pistonpump 1 0 1 5 2Q 2 5 Trneisec) QQ 0 5 "Tknalvsis La5t Run 2012-04^12 11 18 16 时间一驱动力矩曲线 pistcnpump —MOTION 1 TZ 」£q>E ?c □ 舊 匚

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

虚拟样机

虚拟样机技术 1、虚拟样机概念 1.1 产生背景 传统的设计方式要经过图纸设计、样机制造,测试改进、定型生产等步骤,为了使产品满足设计要求,往往要多次制造样机,反复测试,费时费力、成本高昂。虚拟样机技术的出现,改变了传统的设计方式,采用数字技术进行设计。它能够在计算机上实现设计——试验——设计的反复过程,大大降低了研发周期和研发资本,能够快速响应市场,适应现代制造业对产品 T(time )、Q(quality )、 C( cost )、S(services )、E(environment )的要求,极大地促进了敏捷制造的发展,推动了制造业的数字化、网络化、智能化。 1.2 虚拟样机技术定义 虚拟样机技术(Virtual Prototyping, VP)是指在产品设计开发过程中 ,将分散的零部件设计和分析技术(指在某一系统中零部件的 CAD 和 FEA 技术)揉合在一起 ,在计算机上建造出产品的整体模型 ,并针对该产品在投入使用后的各种工况进行仿真分析 ,预测产品的整体性能 ,进而改进产品设计 ,提高产品性能的一种新技术。 虚拟样机技术是一门综合多学科的技术 , 它的核心部分是多体系统运动学与动力学建模理论及其技术实现。 CAD/ FEA 技术的发展为虚拟样机技术的应用提供了技术环境和技术支撑。虚拟样机技术改变了传统的设计思想,将分散的零 部件设计和分析技术集成于一体 ,提供了一个全新的研发机械产品的设计方法。虚拟样机技术设计流程见图 1 。

图1虚拟样机技术设计流程 1.3虚拟样机分类 虚拟样机按照实现功能的不同可分为结构虚拟样机、功能虚拟样机和结构与功能虚拟样机。 结构虚拟样机主要用来评价产品的外观、形状和装配。新产品设计首先表现出来的就是产品的外观形状是否满意,其次,零部件能否按要求顺利安装,能否满足配合要求,这些都是在产品的虚拟样机中得到检验和评价的。 功能虚拟样机主要用于验证产品的工作原理,如机构运动学仿真和动力学仿真。新产品在满足了外观形状的要求以后,就要检验产品整体上是否符合基于物理学的功能原理。这一过程往往要求能实时仿真,但基于物理学功能分析,计算量很大,与实时性要求经常冲突。 结构与功能虚拟样机主要用来综合检查新产品试制或生产过程中潜在的各种问题。这是将结构虚拟样机和功能虚拟样机结合在一起的一种完备型的虚拟样机。它将结构检验目标和功能检验目标有机结合在一起,提供全方位的产品组装测试和检验评价,实现真正意义上的虚拟样机系统。这种完备型虚拟样机是目前虚拟样机领域研究的主要方向。 1.4虚拟样机技术特点

相关文档
最新文档