可逆矩阵习题

可逆矩阵习题

2矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij ==组成的m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m×n 矩阵,记为n m ij a A ?=)( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; } (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )(== 若 ),,2,1;,,2,1(n j m i b a ij ij ===,则称A 与B 相等,记为A=B 。

2.1.2 矩阵的运算 1.加法 ~ (1)定义:设mn ij mn ij b B A A )(,)(==,则mn ij ij b a B A C )(+=+= (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A =k 为常数,则mn ij ka kA )(= (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A ==则 ,)(mp ij C C AB ==其中∑== n k kj ik ij b a C 1 . (2)运算规律 ①)()(BC A C AB =;②AC AB C B A +=+)( ③CA BA A C B +=+)( (3)方阵的幂 ①定义:A n ij a )(=,则K k A A A = ②运算规律:n m n m A A A +=?;mn n m A A =)( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ≠ ②;00,0===B A AB 或不能推出 ③k k k B A AB ?≠)( 4.矩阵的转置 ~ (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )(=, (2)运算规律 ①;)(A A T T = ②T T T B A B A +=+)(;

矩阵理论第一二章典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x||x 则为向量 的范数. ( ) 提示:因为非负性不成立,故结论错误。 2.设A n 为阶Hermite 矩阵, 12,,,n λλλ是矩阵A 的特征值,则2 2 21 ||||n m i i A λ==∑. ( ) 提示:A n 为阶Hermite 矩阵?22 2 212||||||(,, ,)||H m n m A Udiag U λλλ= 2 212||(,, ,)||n m diag λλλ=21 n i i λ==∑. 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( ) 提示:AA -为幂等矩阵?AA - 的特征值为0或1。又0A ≠,?A AA - ≥秩()=秩()1? 0AA -≠?1是AA -的特征值 ?2||||AA -=max ()i AA λ-= =1 4. 若设n x R ∈ ,则212||||||||||x x x ≤≤. ( ) 提示: 2 2 2 2 2 2 1221 ||||||||||||||x x x x x =++ +≤, 11||||||n i i x x ==∑1 ||1n i i x ==?∑ 21/21 ||)n i i x =≤ ∑2||x = 5. 设m n A R ?∈的奇异值为12n σσσ≥≥ ≥,则2 22 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11 ||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 提示:

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

可逆矩阵及其简单应用

它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩 阵的过程。可逆矩阵作为矩阵乘法的逆运算,是矩阵的一种重要运算,在解决矩阵问题中起着重要的作用。因而掌握可逆矩阵的求法,在解决实际问题时,往往可以起到事半功倍的效果。本文将对一些常用的可逆矩阵的求法作系统的总结, 并进一步介绍几种常见得可逆矩阵的在数学领域和通讯领域的简单应用。 【关键词】矩阵可逆矩阵通信 【Abstract】In the discussion of linear equations, we can see that some

important properties of the linear equations are reflected in its coefficient matrix and augmented matrix of nature, what`s more, the process of the solution performance of the process of transformation of these matrices. Invertible matrix multiplication as the inverse of the matrix is an important matrix operations,and plays an important role in solving the problem. master ring the method of Invertible matrix often can play a multiplier effect in solving practical problems.The following are the system summary of the commonly used reversible method for the evaluation of Invertible matrix, and further descripitions of several common application in the field of mathematics and simple communications. 【Key Words】Matrix Invertible matrix Communications

矩阵可逆性总结

矩阵的可逆性 摘要:本文通过由矩阵的除法引出可逆矩阵,介绍了可逆 矩阵的定义,性质,算法及其判定方法等等,之后对可逆矩阵进行了推广,还有关于广义逆的介绍。 关键词:可逆矩阵;伴随矩阵;三角矩阵;广义逆矩阵 正文: 一、逆矩阵的定义: 因为数的除法a ÷b 是:已知两数的乘积b 及其中一个因数a 求另外一个因数x ,也就是解方程ax =b 。只要能求出除数a 的倒数a ?1使aa ?1=1,则除法b ÷a 可以转化为乘法b ×a ?1。而我们联想到矩阵的运算上,对矩阵A , B ,用B “除以”A 也就是要求一矩阵X 使AX =B 。在之前的学习过程中已经了解了矩阵的乘法不满足交换律,还应考虑求另一矩阵Y 满足YA =B 。如果能找到一个A ?1满足条件A ?1A =I ,在矩阵方程AX =B 两边左乘A ?1就得到A ?1AX =A ?1B 从而X =A ?1B 。如果这个A ?1还满足条件AA ?1=I ,则A (A ?1B )=B ,X =A ?1B 就是AX =B 的唯一解。类似地,如果上述A ?1存在,可知YA =B 有唯一解Y =BA ?1。 所以给逆矩阵下一个定义:对于矩阵A,如果存在矩阵B满足条件AB=且BA=I (表示单位矩阵),就称A可逆,并且称B是A的逆。表示成B=A 1- 二、矩阵可逆的等价条件: 1、A 可逆?F ∈?B ,使得I AB =;(定义法) 2、若A 可逆,则A 是方阵且0≠A ; 3、若0≠A ,则方阵A 可逆; 4、n 级矩阵A 可逆?矩阵A 的秩为n,即r(A )=n ; 5、n 级矩阵A 可逆?A 的行向量组线性无关; 6、n 级矩阵A 可逆?A 的列向量组线性无关; 7、n 级矩阵A 可逆?A 可以表示成一系列初等矩阵的乘积; 8、n 级矩阵A 可逆?A 可以经过一系列初等行变换化为I ; 9、n 级矩阵A 可逆?A 可以经过一系列初等列变换化为I ; 10、n 级矩阵A 可逆?齐次线性方程组A x=0只有唯一零解. 三、逆矩阵的性质: 1、 逆的唯一性: 假如A 可逆,那么A 的逆B 是唯一的。

(完整版)可逆矩阵教案

§1.4 可逆矩阵 ★教学内容: 1.可逆矩阵的概念; 2.可逆矩阵的判定; 3.利用转置伴随矩阵求矩阵的逆; 4.可逆矩阵的性质。 ★教学课时:100分钟/2课时。 ★教学目的: 通过本节的学习,使学生 1. 理解可逆矩阵的概念; 2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法; 3. 熟悉可逆矩阵的有关性质。 ★教学重点和难点: 本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求逆的方法;难点在于转置伴随矩阵概念的理解。 ★教学设计: 一可逆矩阵的概念。 1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。 2.定义1.4.1(可逆矩阵)对于矩阵A,如果存在矩阵B,使得AB BA E ==则称A为可逆矩阵,简称A可逆,并称B为A的逆矩阵,或A的逆,记为1 A-。 3.可逆矩阵的例子: (1)例1 单位矩阵是可逆矩阵; (2)例2 10 11 A ?? = ? ?? , 10 11 B ?? = ? - ?? ,则A可逆; (3)例3 对角矩阵 100 020 003 A ?? ? = ? ? ?? 可逆; (4)例4 111 011 001 A ?? ? = ? ? ?? , 110 011 001 B - ?? ? =- ? ? ?? ,则A可逆。 4.可逆矩阵的特点: (1)可逆矩阵A都是方阵; (2)可逆矩阵A的逆唯一,且1 A-和A是同阶方阵;

(3)可逆矩阵A 的逆1A -也是可逆矩阵,并且A 和1A -互为逆矩阵; (4)若A 、B 为方阵,则1 AB E A B -=?=。 二 可逆矩阵的判定及转置伴随矩阵求逆 1.方阵不可逆的例子: 例5 1100A ?? = ??? 不可逆; 例6 1224A ?? = ??? 不可逆; 2.利用定义判定矩阵可逆及求逆的方法: (1)说明利用定义判定及求逆的方法, (2)说明这种方法的缺陷; 3.转置伴随矩阵求逆 (1)引入转置伴随矩阵 1)回顾行列式按一行一列展开公式及推论 1122,0,i s i s in sn D i s a A a A a A i s =?+++=?≠?L (1,2,,)i n =L , 1122,0,j t j t nj nt D j t a A a A a A j t =?+++=? ≠?L (1,2,,)j n =L ; 2)写成矩阵乘法的形式有: 111211121 1212221222212 120 00000n n n n n n nn n n nn a a a A A A A a a a A A A A A E a a a A A A A ?????? ? ?? ? ? ???== ? ??? ? ?? ? ?????? ? L L L L L L M M O M M M O M M M O M L L L 3)定义1.4.2(转置伴随矩阵)设ij A 式是()ij n n A a ?=的行列式中ij a 的代数余 子式,则 1121 112 22 2* 12n n n n nn A A A A A A A A A A ?? ? ? = ? ??? L L M M O M L 称为A 的转置伴随矩阵。 (2)转置伴随矩阵求逆: 1)* AA A E =; 2)定理1.4.1 A 可逆的充分必要条件是0A ≠(或A 非奇异),且

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

小度写范文【可逆矩阵判定典型例题】 矩阵可逆模板

【可逆矩阵判定典型例题】矩阵可逆典型例题(二)方阵可逆的判定 例1 设A是n阶方阵, 试证下列各式: (1)若|A|≠0, 则(AT)-1=(A-1)T ; (2)若A、B都是n阶可逆矩阵, 则 (AB)*=B*A* ;(3) (AT)*=(A*)T;(4)若|A|≠0, 则(A*)-1=(A-1)* ;(5) (-A)*=(-1)n-1A*;(6)若|A|≠0, 则(Al)-1=(A-1)l (l为自然数);(7) (kA)*=kn-1A*. 证(1)因为|A|≠0,故A是可逆矩阵, 且 AA-1 =E两边同时取转置可得 (AA-1)T=(A-1)TAT=(E)T=E 故由可逆矩阵的定义可知 (A-1)T是AT的逆矩阵. 即 (A-1)T=(AT)-1 (2)利用方阵与其对应的伴随矩阵的关系有 (AB)*(AB)=|AB|E 另一方面

(B*A*)(AB)=B*(A*A)B=B*(|A|I)B =|A|B*B=|A| |B|E=|AB|E 比较式(2-7)、(2-8)可知 (AB)*(AB)=(B*A*)(AB) 又因为A、B均可逆, 所以(AB)也可逆, 对上式两端右乘(AB)-1 可得 (AB)*=B*A* (3)设 n 阶方阵A为 ?aa12 a?11 1n?A=?a??21a22 a2n?? ? ??aa? ?n1n2 ann? 于是可得A的伴随矩阵A* 为 ?AA?11 21 An1?A*=?A??12A22 An2?? ? ???AA?1n2n Ann注意到?A 的转置矩阵为 2-7)2-8)( ( T 可推出A的伴随矩阵为 ?a11??a12

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

可逆矩阵判定典型例题

典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若0||≠A , 则 T T A A )()(11--=; (2)若A 、B 都是n 阶可逆矩阵, 则* **)(A B AB =; (3) T T A A )()(**=; (4)若0||≠A , 则* 11*)()(--=A A ; (5) * 1*)1()(A A n --=-; (6)若0||≠A , 则l l A A )()(11--=(l 为自然数); (7) * 1*)(A k kA n -=. 证 (1)因为0||≠A , 故A 是可逆矩阵, 且 E AA =-1 两边同时取转置可得 E E A A AA T T T T ===--)()()(11 故由可逆矩阵的定义可知 T A )(1-是A T 的逆矩阵. 即 1 1)()(--=T T A A (2)利用方阵与其对应的伴随矩阵的关系有 E AB AB AB ||)()(*= (2-7) 另一方面 B I A B B A A B AB A B )|(|)())((*****== E AB E B A B B A |||| ||||*=== (2-8) 比较式(2-7)、(2-8)可知 ))(()()(***AB A B AB AB = 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘1 )(-AB 可得 ***)(A B AB = (3)设n 阶方阵A 为 ?????????? ????=nn n n n n a a a a a a a a a A 2 1 2222111211 于是可得A 的伴随矩阵* A 为

二阶行列式与逆矩阵

二阶行列式与逆矩阵 教学目标 1. 了解行列式的概念; 2.会用二阶行列式求逆矩阵。 教学重点及难点 用行列式求逆矩阵。 教学过程 一、复习引入 (1)逆矩阵的概念。 (2)逆矩阵的性质。 二、新课讲解. 例1 设A= ???43 ?? ?21, 问A 是否可逆?如果可逆,求其逆矩阵。 例2设A= ???43 ?? ?21,问A 是否可逆?如果可逆,求其逆矩阵。 思考:对于一般的二阶矩阵A=? ??b a ?? ?d c ,是否有:当0≠-bc ad 时,A 可逆;当0=-bc ad 时,A 不可逆?

结论:如果矩阵A=? ?? b a ?? ?d c 是可逆的,则0≠-bc ad 。 表达式 bc ad -称为二阶行列式,记作 c a d b ,即 c a d b =b c a d -。ad bc -也称为行列式a b c d 的展开式。符号记为:detA 或|A| ① 反之,当 ≠-bc ad 时,有 ??? ?? ?-A c det det A d ?? ?? ? ? det A a det A b -?? ?b a ?? ?d c = ?? ?b a ?? ?d c ?? ? ???-A c det det A d ? ??? ??det A a det A b -=1001?? ? ??? 。 【可逆矩阵的充要条件】 定理:二阶矩阵A=? ?? b a ?? ?d c 可逆,当且仅当0≠-bc ad 。 当矩阵A=? ?? b a ?? ?d c 可逆时,1-A =?? ? ???-A c det det A d ? ??? ??det A a det A b -。 1.计算二阶行列式: ① 31 42 ② 2 2 1 3 λλ-- 2.判断下列二阶矩阵是否可逆,若可逆,求出逆矩阵。 ①A =0110?? ?-?? ②B =1100?? ??? 三、课堂小结

关于矩阵的可逆性探讨(1)(可编辑修改word版)

上海大学2011~2012 学年冬季学期课程论文 课程名称:线性代数与几何课程编号:01014108 论文题目:关于矩阵的可逆性探讨 作者姓名: 学号: 成绩: 论文评语: 评阅人: 评阅日期:

关于矩阵的可逆性探讨 姓名:学号: 摘要:本文首先给出矩阵可逆的定义、性质,其次探讨矩阵可逆的判定方法、逆矩阵的求法以及矩阵可逆的应用,特别是在编码、解码方面的应用。最后,本文对可逆矩阵进行了相应的推广。 关键词:矩阵矩阵的逆秩广义逆 正文: 引言 在这篇文章中涉及到一些线性代数中的专有符号,在此做些说明。r(A) 是矩阵 A 的秩、A 是矩阵 A 的行列式。写这篇文章主要是对矩阵的可逆性由来及 定义、性质、应用等等进行探讨。这篇文章的其余部分是这么编排的,章节一是矩阵的定义,章节二主要是逆阵的性质,章节三是逆矩阵的判定方法,接下来的章节四是逆矩阵的求法,章节五就是逆矩阵的应用,最后一个章节是对矩阵逆的推广。 章节一:矩阵逆的定义 首先,迎面而来的问题是逆矩阵是什么呢,我们为何要映入逆矩阵的概念。从以前学到的知识中我们知道,矩阵和复数相仿,有加、减、乘三种运算,为了要完善矩阵的运算,我们因此引入了矩阵的逆这个概念。 对于 n 阶矩阵 A,如果有一个 n 阶矩阵 B,使得 AB=BA=I,则说矩阵 A 是可逆的,并把矩阵 B 称为A 的逆矩阵,A 的逆矩阵记为A-1 。 章节二:可逆矩阵的性质 1、若矩阵 A、B 均可逆,则矩阵 AB 可逆,其逆阵为 B -1 A -1 ,当然这一性质可以推广到多个矩阵相乘的逆。 2、若 A 可逆,则A-1也可逆,且(A-1)-1 =A;

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

一、逆矩阵与逆变换

逆 矩 阵 与 逆 变 换 教学目标 1.逆矩阵的概念; 2.逆矩阵的性质。 教学过程 探究:对于一个线性变换ρ,是否存在一个线性变换σ,使得σρ=ρσ=I ?对于一个二阶矩阵A ,是否存在一个二阶矩阵B,使得BA=AB=E 2? 变换ρ:将向量α沿逆时针方向绕原点旋转30°;变换σ:将向量α沿顺时针方向绕原点旋转30°,则任意向量经上述两种变换后,仍得其本身。 1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得 σρ=ρσ=I ,(I 是恒等变换),则称变换ρ可逆,其中σ是ρ的逆变换。 若变换变换ρ和变换σ对应的矩阵分别为A 、B ,则有BA=AB=E 2 2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E 2,则称矩阵A可逆,其中B为A的逆矩阵。 符号、记法:1A -,读作A的逆。 一般地,设A 是一个二阶可逆矩阵,对应的线性变换为ρ,由矩阵与线性变换的对应关系可以看出,A 的逆矩阵就是ρ的逆变换所对应的矩阵。 3.逆矩阵的性质: 性质1:若逆矩阵存在,则可以证明其具有唯一性。 性质2:设A 、B 是二阶矩阵,如果A 、B 都可逆,则AB 也可逆,且111()AB B A ---=。 课堂练习: 1.下列变换不存在逆变换的是 ( ) A.沿x 轴方向,向y 轴作投影变换。 B.60o R 变换。 C.横坐标不变,纵坐标增加横坐标的 两倍的切变变换。 D.以y 轴为反射变换 2.设A,B 可逆,下列式子不正确的是 ( ) A.111()AB A B ---= B. 111()AB B A ---= C.11 ()A A --= D. 2112()()A A --= 3.关于x 轴的反射变换对应矩阵的逆矩阵是 4.矩阵0111?? ??? 的逆矩阵为 5.A =1101-?? ???13223122??- ? ? ? ?? ?,则1A -=

可逆矩阵

哈尔滨师范大学 学年论文 题目浅谈可逆矩阵的判定、求法 学生赵怀志 指导教师高鹤讲师 年级2010级 专业数学与应用数学 系别数学与应用数学系 学院数学科学学院 哈尔滨师范大学 2012年11月

论文提要 在高等代数中矩阵占有很重要的部分,而可逆矩阵又是矩阵比较重要的一类,在多项式理论、线性方程组理论、向量空间、线性变换、二次型理论等相关理论中具有极其重要的地位,为此本文从最基本的矩阵出发阐述了可逆的定义、性质及相关的应用,体现了数学的逻辑性及严密性的特点,从整体把握可逆矩阵的思想方法,希望对大家有所帮助。

浅谈可逆矩阵的判定、求法 赵怀志 摘 要:本文主要介绍了有关可逆矩阵的定义、判定、性质、求法,。对可逆矩阵相关知识做了一个较为详尽的总结。 关键词:可逆 单位矩阵 初等变换。 1 预备知识: 定义1 由 n m ?个实数ij a 排成的一个 m 行n 列的矩形数表 A =11 1212122212 mn n n m m a a a a a a a a a ?? ? ? ? ? ?? ? 称之为 n m ? 矩阵,位置( i ,j )上的元素,一般用ij a 表示(强调两个足标的意义)。 矩阵可简记为n m A ?或}{ij a A =或n m ij a A ?=}{ . 特殊矩阵: 方矩阵 若 n m =,称A 为n 阶(方)矩阵,也可记作 n A . (强调矩阵的(主)对角线,) 而nn a a a ,,,2211 称之为对角元素;(反主对角线)。 当 1==n m 时,即 ()11a A =, 此时矩阵退化为一个数11a . 矩阵相等 若同型矩阵n m ij a A ?=}{和n m ij b B ?=}{在对应位置上的元素都相等 即,,,1;,,1, n j m i b a ij ij === 零矩阵 所有元素都为零的矩阵,称之为零矩阵。一般记作O ;或 n m O ? . 注意,不同型的零矩阵是不相等的。 负矩阵 设 n m ij a A ?=}{,称矩阵 }{ij a A -=- 为矩阵A 的负矩阵。 三角矩阵 设}{ij a A =是 n 阶矩阵。 1)若A 的元素满足 j i a ij >?=,0,称A 是上三角矩阵; 2)若A 的元素满足 j i a ij

可逆矩阵

§3 可逆矩阵 若方阵 A 的逆阵存在,则称 A 为非奇异方阵或可逆方阵。 一、可逆矩阵的定义及性质 定义3.1 设A ∈Mn (F ), 若存在同阶矩阵B ,使AB=BA=E ,则称A 为可逆矩阵,B 为A 的逆矩阵,简称为A 的逆,记为B= A-1 。 如果A 是可逆矩阵,那么A 的逆是唯一的。这是因为当B ,C 都是A 的逆时,有AB=BA=E=AC=CA , B=BE=B (AC )= (BAC=EC=C 。 可逆矩阵的性质: 1 、 =A ; 2 、如果A 可逆,数λ≠0 ,那么( A)-1= A-1 ; 3 、如果A 可逆,那么,A T 也可逆,而且( AT )-1=( A-1)T ; 4 、如果A ,B 皆可逆,那么AB 也可逆,且(AB) -1=B-1A-1 。 两个n 阶矩阵A 与B 的乘积AB=E 时,一定有BA=E ,从而A ,B 互为逆矩阵。 二、矩阵的标准形 定义3.2 如果矩阵A 经过有限次行(列)初等变换变为矩阵B ,就称A 行(列)等价于 B 。如果矩阵 A 经过有限次初等变换变为 B ,就称矩阵 A 等价于矩阵 B ,记为 。 矩阵的行等价(列等价、等价)满足如下定律: 1 自反律; 2 对称律如果那么; 3 传递律如果,,那么,。 在数学中,把具有上述三条规律的关系称为等价关系。因此矩阵的等价是一种等价关系。定义3.3 一个矩阵中每个非零行的首元素(指该行第一个非零元素)出现在上一行首元素的右边,同时,没有一个非零行出现在全零行的下方,这样的矩阵称为阶梯形矩阵。 定理3.2 任何一个矩阵A 都行等价于一个阶梯形矩阵。 定义3.4 一个阶梯形矩阵,如果它的每一非零行的首元素是1 ,且首元素所在列的其余元素全是零,就称为简化阶梯形矩阵。 定理3.3 任何一个矩阵行等价于一个简化阶梯形矩阵。 定理3.4 任何一个非零矩阵A ∈Mm ×n (F )可经过有限次初等变换化为下面形似

可逆矩阵判定典型例题.docx

典型例题(二)方阵可逆的判定 例1设A是n阶方阵,试证下列各式: (1)若|A|"则(A T)J=(AJ)T; * * * (2)若A、B都是n阶可逆矩阵,则(AB) =BA (3)(A T) =(A)T; (4)若|A|"则(A*)J=(AJ)* ; (5)^A)* ^-I)nj A* ; l J 」I (6)若 1 A^Z0,则(A ) =(A )( I 为自然 数); (7)(kA) =k njL A . 证 (1)因为IA R°,故A是可逆矩阵,且 AA J=E 两边同时取转置可得 (AA) T=(A)T A T=(E)= E 故由可逆矩 阵的定义可知(A')T是A T的逆矩阵. 即 (A」)T=(A T)J (2)利用方阵与其对应的伴随矩阵的关系有 (AB) * (AB) =IABIE (2-7)另一方面 (B*A*)(AB) =B*(A*A)B =B*(∣A∣I)B =| A| B*B =| A| | B | E =| AB | E (2-8)比较式(2-7)、( 2-8)可知 (AB)* (AB) =(B*A*)( AB) 又因为A、B均可逆,所以(AB)也可逆,对上式两端右乘(AB)'可得 (AB)* =B (3)设n阶方阵A为 a 11 a1 n a 21 a 2n J a n1 于是可得A的伴随矩阵A*为 a n2 a nn A 12 A 22 A n2 _A1 n A?n 注意到A的转置矩阵为

A T aιι a12 a21 a22 _a in a2n a n1 a n2 a nn 可推出A T的伴随矩阵为 (A T) * T * 比较A*与(A )可知 (A )T A nI = (A T) A 12 A 22 A n2 A ln A 2n A nn (4)因为 IA A0,故A可逆,A的逆矩阵为 A* HAIA J I 由于I ALO, A J可逆且A'(A^1) =I A (A J)*—A |A| A J I E可得 另一方面,由 * 1 * A(A)=IAI AJ IAI 由矩阵可逆的定义知 (5)对于(3) ,A可逆,并且 * 1 1 ; (A ) =(A ) 给出的矩阵A,有 一a11 一 a 12 -A = —?a22 IL- a n1 一 a n2 即^aij的代数余子式为 (-1)i j 一a i 41 -a i 11 D n X (i, j =1, -a i 4 j ,并且由AA=IAI E可知 一 a 1n —a nn ^ a i Jj 1 _ a i 4n 一a i ij —-a i ij 1 -a i In -a nj -1 2, , n)

相关文档
最新文档