DCS容错调度算法

DCS容错调度算法
DCS容错调度算法

一种用于区块链的拜占庭容错算法

一种用于区块链的拜占庭容错算法 张铮文 erik@https://www.360docs.net/doc/a82177410.html, 摘要 本文提出了一种改进的拜占庭容错算法,使其能够适用于区块链系统。我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。我们的算法对由n个共识节点组成的共识系统,提供?的容错能力,这种容错能力同时包含安全性和可用性,并适用于任何网络环境。f=?n?1 3 1.概述 区块链是一种去中心化的分布式账本系统,它可以用于登记和发行数字化资产、产权凭证、积分等,并以点对点的方式进行转账、支付和交易。区块链技术最早是由中本聪在一个密码学的邮件列表中提出的[1],也就是比特币。此后,基于区块链技术的各种应用纷纷出现,比如基于区块链的电子现金系统、基于区块链的股权交易系统、基于区块链的智能合约系统等。区块链系统与传统的中心化账本系统相比,具有完全公开、不可篡改、防止多重支付等优点,并且不依赖于任何的可信第三方。 然而,和任何分布式系统一样,区块链系统会面临网络延迟、传输错误、软件错误、安全漏洞、黑客入侵等问题。此外,去中心化的特点决定了此系统的任何一个参与者都不能被信任,可能会出现恶意节点,以及因各方利益不一致导致的数据分歧等问题。 为了防范这些潜在的错误,区块链系统需要一个高效的共识机制来确保每一个节点都有一个

唯一公认的全局账本。传统的针对某些特定问题的容错方法,并不能完全解决分布式系统以及区块链系统的容错问题,人们需要一种能够容忍任何种类错误的容错方案。 比特币采用工作量证明机制[1],非常巧妙地解决了这个问题。但是代价也很明显,那就是巨额的电力成本和资源浪费。此外,新的区块链必须寻找到一种与之不同的散列算法,用于避免来自比特币的算力攻击,如莱特币采用了与比特币的SHA256不同的SCRYPT算法。 拜占庭容错技术是一种解决分布式系统容错问题的通用方案[5]。本文在Castro和Liskov 于1999年提出的Practical Byzantine Fault Tolerance(PBFT)[3]的基础上,提出了一种改进的拜占庭容错算法,使其能够适用于区块链系统。 2.系统模型 区块链是一个分布式账本系统,参与者通过点对点网络连接,所有消息都通过广播的形式来发送。系统中存在两种角色:普通节点和记账节点。普通节点使用系统来进行转账、交易等操作,并接受账本中的数据;记账节点负责向全网提供记账服务,并维护全局账本。 我们假设在此网络中,消息可能会丢失、损坏、延迟、重复发送,并且接受的顺序与发送的顺序不一致。此外,节点的行为可以是任意的:可以随时加入、退出网络,可以丢弃消息、伪造消息、停止工作等,还可能发生各种人为或非人为的故障。 我们采用密码学技术来保证消息传递的完整性和真实性,消息的发送者要对消息的散列值进 是节点i对消息m的电子签名,D(m)是消息m的散列值。如果没有特行签名。我们定义?m?σ i 殊说明,本文所规定的签名都是对消息散列值的签名。 3.算法 我们的算法同时提供了安全性和可用性,只要参与共识的错误节点不超过?n?1 ?,就能保证整 3

DCS课程设计报告

课程设计报告 (2015 -- 2016 年度第 1 学期) 名称:分散控制系统与现场总线技术题目:SOE技术综述 院系: 班级: 学号: 学生姓名: 指导教师: 设计周数: 1 成绩: 日期:2016 年1 月8日

一、课程设计的目的与要求 分散控制系统与现场总线技术是目前国内外工程领域应用非常广泛而有效的计算机控制技术,作为自动化类本科学生应当具备和掌握与此相关的基础知识、概念和设计方法。本课程设计是在分散控制系统与现场总线技术课程结束之后进行的一个综合性实践环节,主要目的是使学生在课程内容学习的基础上,运用所学的基础理论知识和设计方法,针对工程应用问题能够进行有关计算机监控系统等内容的综合分析设计以及仿真,通过该教学环节使学生进一步加深对分散控制系统与现场总线技术的认识和理解,同时也给学生提供了一个实践和增加感性认识的机会,为今后从事实际工作打下一定的基础。 二、设计正文 1、SOE的概念 SOE,即事件顺序记录,是Sequence Of Event的缩写。随着火电机组日趋规模化和复杂化,生产过程信息瞬间千变万化。当机组发生故障时,需要查找出真实原因,并采取相应措施,这时就需要对事件进行追忆打印。 S0E系统是DCS中用于异常记录的子系统,为机组故障和异常原因分析提供重要的数据依据。S0E记录事件发生的时间、首发事件和后续联锁发生的一系列事件的间隔时间和顺序;按照一定的时间间隔(一般为1ms),对设备运行状态和运行参数进行判断,一旦发生事件,立刻按此间隔时间顺序记录当时和后续发生的联锁事件。发电机组是一个紧密耦合的多变量系统,某设备跳闸故障将引发一系列的设备保护动作,形成一个事故信号群,事件信号量多达数百个。在数百个信号中,快速、正确判别初始事故、寻找第一故障源是S0E的关键技术。 一般的历史数据记录只能做到秒级的分辨率,当事件发生后,往往同一秒内出现的信息很多,且不能分出先后顺序,这就给事故分析造成了很大的困扰。而事件顺序记录系统(SOE)以ms级的分辨率获取事件信息,为热工和电气设备事故分析提供有力的证据。可以说SOE是电厂重要的运行状态监测、记录、事故分析用设备。 2、SOE系统的结构 GPS作为SOE系统的外部时钟源, 不仅需向现场总线控制器(FCP)、工 程师站提供精确的对时服务,而且需 通过硬接线向FCP、SOE连接的各模 件提供秒脉冲信号。SOE系统的控制 器和模件通过硬接线并联至GPS秒脉 冲信号的输出端子,以使模件和控制 器同步接收到秒脉冲。GPS设备作为

操作系统进度调度算法实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期 2012 至 2013 学年第 2 学期学生所在系部计算机学院 年级 10级专业班级网络B102 学生姓名刘状学号 201007024205 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java 等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。 (5)分析程序运行的结果,谈一下自己的认识。

多级反馈队列调度算法的实现

学生实习报告 课程名称_ 数据结构与数据处理应用训练 题目名称多级反馈队列调度算法的实现 学生学院计算机与计算科学 专业班级 学号 学生姓名 指导教师 2012年 2月 16 日 多级反馈队列调度算法的实现 【摘要】 多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。UNIX操作系统便采取这种算法,而本次试验就是试用C语言模拟某多级反馈队列调度算法。本次试验中前三级就绪队列采用时间片轮转法,时间片大小分别为2、4和8,最后一级就绪队列采用FIFO调度,将任务进入多级队列进行模拟,任务从优先级高的队列到优先级地的队列的顺序逐一进入,还用了算法支持抢占式,最后完成模拟,得到各个任务先后完成的顺序,还有得到各个任务的响应时间、离开时间、周转时间。 【关键词】队列优先级任务时间 1 内容与要求 【内容】 多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。UNIX操作系统便采取这种算法,本次试验就是试用C语言模拟某多级反馈队列调度算法,通过输入任务号、到达时间、运行时间,求出任务完成的先后顺序以及各个任务

的响应时间、离开时间、周转时间。 【要求】 多级反馈队列调度算法描述: 1、该调度算法设置四级就绪队列:前三级就绪队列采用时间片轮转法,时间片大小分别为 2、4和8;最后一级就绪队列采用FIFO调度。 2、任务在进入待调度的队列等待时,首先进入优先级最高的队列等待。 3、首先调度优先级高的队列中的任务。若高优先级中队列中已没有调度的任务,则调度次优先级队列中的任务,依次类推。 4、对于同一个队列中的各个任务,按照队列指定调度方法调度。每次任务调度执行后,若没有完成任务,就被降到下一个低优先级队列中。 5、在低优先级的队列中的任务在运行时,又有新到达的任务,CPU马上分配给新到达的任务。(注:与原来的题目不同,原题是在低优先级的队列中的任务在运行时,又有新到达的任务时,要在运行完这个时间片后,CPU马上分配给新到达的任务,而本题不需要在运行完这个时间片,即正在进行的任务立刻停止,CPU 马上分配给新到达的任务) 6、为方便实现,时间以1为单位,用整数数据表示;且每个时间点,最多只有一个任务请求服务(即输入)。 2 总体设计 算法总体思路: 这是建立在一个时间轴上的,即时刻,一个一个时刻(时间点)进行。 2.1.1 主函数思路:

高响应比调度算法

淮北师范大学 计算机学院实验设计报告 操作系统程序设计 实验报告 实验课题:高响应比调度算法 所属学院:计算机科学与技术 所属班级:11级计算机非师 姓名:李志国 辅导老师:施汉琴 2014年3月20日

目录 实验设计课题 (03) 课程设计目的 (03) 课程设计内容 (03) 课程设计要求 (04) 相关知识介绍 (05) 程序功能说明 (06) 各段程序说明 (07) 设计的流程图 (09) 程序执行截图 (11) 源程序的代码 (14) 实验小结体会 (19)

实验设计课题 设计题目:采用高响应比算法的进程调度程序 指导老师:施汉琴 课程设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 ?进一步巩固和复习操作系统的基础知识。 ?培养学生结构化程序、模块化程序设计的方法和能力。 ?提高学生调试程序的技巧和软件设计的能力。 ?提高学生分析问题、解决问题以及综合利用 C 语言进行程 序设计的能力。 课程设计内容 问题分析: 在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。于是我们想到了一种办法解决这个问题,就是引用动态优先权、并使作业的优先级随着等待时间的增加而以速率a提高,长作业在等待一定的时间后,必然有机会分配到处理机,这样长作业也得到了运行。由此可见:

(1)如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因此该算法有利于短作业。 (2)当要求服务的时间相同时,作业的优先权取决与其等待的时间,等待时间越长,其优先权越高,因而它实现的是先来先服务。 (3)对于长作业,作业的优先权可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可以获得处理机。 设计内容: 设计并实现一个采用高响应比算法的进程调度演示程序,响应比 R 定义如下:RWT/T1W/T 其中 T 为该作业估计需要的执行时间,为作业在后备状态队列中的等待时 W间。每当要进行作业调度时,系统计算每个作业的响应比,选择其中 R最大者投入执行。这样,即使是长作业,随着它等待时间的增加,W/T 也就随着增加,也就有机会获得调度执行。这种算法是介于 FCFS 和 SJF 之间的一种折中算法。由于长作业也有机会投入运行,在同一时间内处理的作业数显然要少于SJF 法,从而采用 HRRN 方式时其吞吐量将小于采用 SJF 法时的吞吐量。另外,由于每次调度前要计算响应比,系统开销也要相应增加。 课程设计要求 1.每一个进程有一个PCB,其内容可以根据具体情况设定。 2.进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3.可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、 时间片长度、进程优先级的初始化 4.可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资 源与进程间的同步关系,故只有两种状态) 5.采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状 态以及相应的阻塞队列

加权公平队列调度算法

2008年2月 February 2008 —28— 计 算 机 工 程Computer Engineering 第34卷 第4期 Vol.34 No.4 ·博士论文· 文章编号:1000—3428(2008)04—0028—03 文献标识码:A 中图分类号:TP391 一种新的加权公平队列调度算法 尹德斌,谢剑英 (上海交通大学自动化系,上海 200240) 摘 要:传统公平队列调度算法(WFQ 、WRR 等)普遍存在基于数据包的权重参数计算问题,由此产生的高复杂度使其难以获得广泛应用。该文提出一种新的加权公平队列调度算法,使用服务概率和随机数实现加权公平调度,显著降低了算法的复杂度。同时使用自适应服务概率计算解决了数据包变长度带来的不公平性。通过队列管理技术有效地提高了交换机的缓冲区利用率,并减小了排队延迟抖动。仿真结果证明了算法的有效性和实用性。 关键词: 队列调度;加权公平排队;自适应队列管理;分组交换网络 New Weighted Fair Queue Scheduling Algorithm YIN De-bin, XIE Jian-ying (Department of Automation, Shanghai Jiaotong University, Shanghai 200240) 【Abstract 】Traditional weighted fair queue algorithms have the main drawback: the calculation of the weight parameters according to each packet.The paper proposes a new weighted fair queueing algorithm(SPFQ), which uses service probability to schedule packets and a random number to decide which packet to be served next. In addition, a novel adaptive service probability parameter calculation method is used to solve the unfair problem induced by the variable packet length and an adaptive queue management technology to improve the utilization of the server's queue buffer and reduce the delay burstiness. Simulation results demonstrate the validity and practicability of SPFQ. 【Key words 】queue scheduling; weighted fair queueing; adaptive queue management; packet switching network 1 概述 队列调度是当前互联网技术领域的一个研究热点。其中,加权公平队列调度算法由于能够根据各业务流的权重进行区分服务而受到广大研究者的广泛关注[1-9]。其中最著名的是加权公平WFQ [1]和加权轮询WRR [6]两类算法。WFQ 及其改进算法[3,5,7]都基于通用处理机共享模型[2],使用虚时间(virtual time)进行数据包转发。WFQ 算法在业务流受漏斗约束的情况下可以提供精确的带宽保证和最大时延上限,并且数据包的转发不受其他业务流特性影响。但是它的计算复杂度太高。WRR [2,6]是另一类复杂度相对较低的常用加权队列调度算法;各业务流在一次轮询中所允许发送的数据包个数由队列权重决定。DRR [4]引入了差额计数器(dificit conter),记录由数据包长度不同引起的服务量差。轮询类算法复杂度较低,但无法提供确定的带宽保证和时延上限。 国内的研究者近年来也提出了许多队列调度算法。文 献[8]针对SS 和BF 两种业务流,提出了一种对数自适应调度算法,但该算法对类内各业务流之间如何调度并没有说明,且不能提供公平服务和隔离特性。文献[9]提出了一种用于区分服务网络的虚时钟核心无状态队列调度算法,各数据包自身携带虚时钟状态信息,中心服务器根据虚时钟进行转发,但需要根据虚时钟将入队列数据包插入到转发队列中,这无疑是一项沉重的计算负担。另外,该算法并未考虑虚时钟清零问题。本文提出了一种新的加权队列调度算法SPFQ 。由于采用了指数移动平均算法和阀值触发的平均数据包长度更新,使得服务概率计算频度大大降低,从而显著降低了算法的复杂度。 2 SPFQ 队列调度算法 2.1 SPFQ 的基本原理 SPFQ 算法依据各业务流的平均数据包长度将它们的权重转换成归一化服务概率,通过该参数实现加权服务。为了降低算法的复杂度,系统采用事件触发方式计算队列的平均长度。在算法实现中,使用单独模块计算服务概率,以减轻调度器的负荷。 2.2 SPFQ 的结构 数据包分类器图1 SPFQ 算法结构 基金项目:国家自然科学基金资助项目(60572157);国家“863”计划基金资助项目(2003AA123310) 作者简介:尹德斌(1978-),男,博士,主研方向:包交换网络的队列调度和管理;谢剑英,教授、博士生导师 收稿日期:2007-03-10 E-mail :yin_db@https://www.360docs.net/doc/a82177410.html,

星间实时关键数据一次容错调度算法

2017,53(14)1引言系统之间数据传输的可靠性是保证卫星系统正常运行的关键因素,受空间环境等因素影响,任务错误的现象不可避免,且伴随多个任务同时出现错误的情况,多任务容错设计是高可靠长寿命系统不可避免的问题。系统之间传输的数据可以分为两大类:一类为关键数据,其周期长,数据量少,实时性要求高,且有容错传 输需求;另一类为普通数据,周期短,数据量大,容错传输需求低或无。本文面向某项目中数据传输的应用场景,对关键数据传输任务一次容错问题进行研究。现今国内外已有很多学者研究并给出多种调度算法,现有的实时调度算法分为静态调度和动态调度两星间实时关键数据一次容错调度算法 范玲玲1,2,林宝军2,3,陈勇3 FAN Lingling 1,2,LIN Baojun 2,3,CHEN Yong 3 1.中国科学院上海微系统与信息技术研究所,上海200050 2.上海微小卫星工程中心,上海201203 3.中国科学院光电研究院,北京100094 1.Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China 2.Shanghai Engineering Center for Microsatellites,Shanghai 201203,China 3.Academy of Opto-Electronics,Chinese Academy of Sciences,Beijing 100094,China FAN Lingling,LIN Baojun,CHEN Yong.Key data between satellites once fault-tolerant scheduling https://www.360docs.net/doc/a82177410.html,puter Engineering and Applications,2017,53(14):61-64. Abstract :In this paper,in accordance with the need of key data in real-time satellite system fault tolerance,and the key data with a relatively small number and a long cycle,it puts forward NP-PEDF-FT algorithm to realize high performance schedule.This algorithm based on EDF fault tolerant algorithm,adjusts the deadline of the key data through fault toler-ance coefficient λ.This algorithm adjusts the deadline of the key data as the original deadline multiplied by the coeffi-cient (1-λ)to the queue of the tasks to send again,when the key data once transmission errors.So it can realize once fault tolerance.Of course,the algorithm will not send again and abandon the task,when the common data once trans-mission errors.NP-PEDF-FT algorithm is better when the coefficient λis equal to 0.6through the simulation.It also simu-lates the NP-PEDF-FT algorithm,NP-EDF-FT algorithm and NP-DP-FT algorithm,and compares the packet loss proba-bility.It turns out that the NP-PEDF-FT algorithm used in this paper has a better effect. Key words :non-preemptive;key data;fault tolerance;scheduled;deadline;compare 摘要:针对卫星实时系统中关键数据一次容错问题,首先,针对关键数据与非关键数据混合传输场景,建立系统模型,对系统的容错传输能力进行分析,得出混合数据一次容错传输条件;其次提出NP-PEDF-FT 调度算法,通过在非抢占式EDF 容错算法的基础上,利用截止期容错系数λ调整出错任务的截止期,实现全部关键数据的1次容错传输;同时加入数据传输队列监测功能,以保证关键数据在其截止期之前优先传输;最后对算法进行了仿真分析,比较NP-PEDF-FT 、NP-EDF-FT 、NP-DP-FT 三种非抢占式容错调度策略,分析结果表明,NP-PEDF-FT 算法关键数据丢包率较NP-EDF-FT 算法平均降低31.6%,较NP-DP-FT 算法平均降低86.4%。 关键词:非抢占式;关键数据;容错;调度;截止期;比较 文献标志码:A 中图分类号:T P391doi :10.3778/j.issn.1002-8331.1603-0186 作者简介:范玲玲(1989—),女,硕士,主要研究方向为计算机应用与技术,E-mail :fanll2009@https://www.360docs.net/doc/a82177410.html, ;林宝军(1963—),男,研究 员,主要研究方向为计算机应用技术、空间飞行器总体设计。 收稿日期:2016-03-14修回日期:2016-04-22文章编号:1002-8331(2017)14-0061-04 CNKI 网络优先出版:2016-07-08,https://www.360docs.net/doc/a82177410.html,/kcms/detail/11.2127.TP.20160708.1735.022.html Computer Engineering and Applications 计算机工程与应用 61 万方数据

操作系统——移动臂调度算法的实现

南京工程学院 上机实验报告课程名称:操作系统 实验项目名称:移动臂调度算法的实现学生班级: 学生学号: 学生姓名: 指导教师: 实验时间: 实验地点:信息楼专业机房实验成绩评定: 2016-2017-1学期

一、实验目的及内容 掌握操作系统的设备管理功能,熟悉移动臂调度算法,设计恰当的数据结构和算法,模拟实现移动臂调度算法。要求至少模拟实现一种磁盘移臂调度算法。 二、实验相关知识简介 磁盘移臂调度的目标就是要使磁盘访问的总时间中的寻找时间最小。因此,磁盘移臂调度要尽量减少磁盘移动臂移动的距离。磁盘移臂调度算法很多,常用的也有好几种,一个好的磁盘调度算法,不仅要使磁盘寻找时间最小,同时,还要避免移动臂频繁地改变移动方向,因为频繁的改向不仅使时间增加,还容易损耗机械部件。 常用的磁盘移臂调度算法有:先来先服务、最短寻找时间优先、单向扫描、双向扫描调度算法等。 三、解决问题思路及关键程序代码分析 (一) 最短寻找时间优先调度算法简介 最短寻找时间调度算法总是使寻找时间最短的请求最先得到服务,跟请求者的请求时间先后顺序无关。这种算法具有比先来先服务更好的性能。但是该算法可能会出现请求者被“饿死”的情况,当靠近磁头的请求源源不断地到来,这会使早来的但离磁头较远的请求长时间得不到服务。 该算法的优点是可以得到较短的平均响应时间,有较好的吞吐量。该算法的缺点是缺乏公平性,对中间磁道的访问比较“照顾”,对两端磁道访问比较“疏远”,相应时间的变化幅度较大。该算法与先来先服务算法一样,都会导致移动臂频繁改向。 (二) 算法模拟 1. 对算法设计进行说明 该算法的实现中,主要是选择调度处理的磁道是与当前磁头所在磁道距离最近的磁道,以使每次的寻道时间最短。当选择了某个离当前磁头所在磁道最近的磁道,下一轮的当前磁道便改成了上一轮的最近磁道,并且把这个最近的磁道从请求序列取消,直到请求序列中不再有请求的磁道。 2. 关键代码分析 import java.io.*; import java.util.*; public class { private static int maxsize = 100; private static int Disc[] = new int[maxsize]; //请求序列 private static int count;//要访问的磁道数 private static int disc; //当前磁道号 private static int perTime;//移过每个柱面需要时间 private static int Distance=0;//总寻道长度 private static int FindTime;//查找时间 private static double AvgDistance;//平均寻道长度 public Suanfa(int disc,int count,int perTime,int Disc[]) { this.disc=disc;

多级反馈队列调度算法

#include #include <> #include<> #define NULL 0 #define MAL(type) (type *)malloc(sizeof(type)) using namespace std; typedef struct LNode {char name[5]; char state; int runtime; int needtime; struct LNode *next; }LNode; LNode *H; int T,D,J; void print() {LNode *p=H; printf("\n进程名需执行时间已执行时间状态\n"); for(int i=0;iname,p->needtime,p->runtime,p->state); p=p->next; } system("PAUSE");

void input() {int i; printf("请输入进程数:"); scanf("%d",&J); for(i=0;iname); printf("请输入第%d个进程需要的执行时间:",i+1); scanf("%d",&q->needtime); if(q->needtime<=0) {printf("所需时间要大于0\n 请重新输入——\n");i--;} else {q->runtime=0; q->state='N'; q->next=NULL; } if(i==0) H=p=q; else {p->next=q;p=q;} } printf("\n进程初始化态为:"); print();

操作系统实验 磁盘调度算法

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第六讲磁盘调度算法 一、实验概述 1. 实验名称 磁盘调度算法 2. 实验目的 (1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机; (2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法; (3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。 3. 实验类型 验证性+设计性实验 4. 实验内容 (1)验证先来先服务(FCFS)磁盘调度算法; (2)验证最短寻道时间优先(SSTF)磁盘调度算法; (3)验证SSTF算法造成的线程“饥饿”现象; (4)验证扫描(SCAN)磁盘调度算法; (5)改写SCAN算法。 二、实验环境 在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。 三、实验过程 1. 设计思路和流程图 (1)改写SCAN算法 在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。算法流程图如下图所示。 图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法 在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside 确定磁头移动的方向,而是规定磁头只能从外向内移动。当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。算法流程图如下图所示。

DCS课程设计解析

课程设计报告 ( 2014-- 2015年度第2学期) 名称:控制装置与仪表A (DCS部分)课程设计题目:过热汽温控制系统组态院系:自动化系 班级:测控1201 学号:201202030105 学生姓名:范征宇 指导教师:翟永杰 设计周数:一周 成绩: 日期:2015 年7 月13 日

《控制装置与仪表A(DCS部分)课程设计》 课程设计 任务书 一、目的与要求 1.了解DCS应用过程中的主要工作内容及应该注意的问题,并能根据应用目的,进行分散控制系统的设计组态、调试操作等工作。 2.以LN2000分散控制系统为平台,完成过热汽温控制系统的组态。 3.进行DCS的调试工作。 二、主要内容 分为组态设计和系统调试两个部分: 1.组态设计 1.1系统配置组态 主要是指DCS中工程师站、操作员站、控制站的主机系统配置信息及外设类型,I/O-卡件信息,电源布置,控制柜内安装接线等。 此部分内容作为了解内容,不进行具体组态。 1.2实时数据库组态 数据库组态是系统组态中应尽早完成的工作,因为只有有了数据库,其他的组态工作(控制回路组态、画面组态等)才可以调试。数据库组态一般通过专用 软件进行,数据录入时一定要认真仔细,数据库中一个小的错误就会给运行带来 极大的麻烦,如造成显示错误、操作不当甚至死机故障。 1.3控制算法组态 控制算法组态指的是将系统设计时规定的模拟量控制、开关量控制等功能用DCS算法予以实现。 本设计以主汽温度串级控制策略为对象,并且模拟控制对象,构成闭环回路,完成这些控制算法的组态工作。 1.4操作员站显示画面组态 运行人员主要通过操作员站画面来观察生产过程运行情况,并通过画面提供的软操作器来干预生产过程,因此画面设计是否合理、操作是否方便都会对运行 产生重要影响。 本设计要求设计关于主汽温控制的简单流程图画面、趋势画面、参数显示画面、操作画面,并把有关的动态点同控制算法连接起来。

操作系统论文-----多级反馈队列调度算法

在多道程序环境下,主存中有着多个进程,其数目往往多过于处理机数目。这就要求系统能按某种算法,动态的把处理机分配给就绪队列中的一个进程,使之执行。 在OS中的调度的实质是一种资源分配,因而调度算法是指:根据系统的资源分配策略所规定的资源分配算法。对于不同的系统和系统目标,通常采用不同的调度算法,目前存在的多种调度算法中,有的算法适用于作业电镀,有的算法适用于进程调度;但也有些调度算法即可用于作业调度,也可用于进程调度。 多级反馈队列调度算法是一种CPU处理机调度算法,它不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。 多级反馈队列调度算法的思想 设置多个就绪队列,并为各个队列赋予不同的优先级和不同长度的时间片;第一个队列的优先级最高,进程所执行时间片最小。 新创建的进程挂到第一优先级的队列后,然后按FCFS 原则排队等待调度。当轮到其执行时,如它能在时间片内完成,便撤离系统;如果不能完成,便被挂入第二级队列后,……; 仅当第一级队列空闲时,调度程序才调度第二级队列中的进程运行,依次类推……;新进程可抢占低级进程的处理机。 多级(假设为N级)反馈队列调度算法可以如下原理: 1、设有N个队列(Q1,Q2....QN),其中各个队列对于处理机的优先级是不一样的,也就是说位于各个队列中的作业(进程)的优先级也是不一

样的。一般来说,优先级Priority(Q1) > Priority(Q2) > ... > Priority(QN)。怎么讲,位于Q1中的任何一个作业(进程)都要比Q2中的任何一个作业(进程)相对于CPU的优先级要高(也就是说,Q1中的作业一定要比Q2中的作业先被处理机调度),依次类推其它的队列。 2、对于某个特定的队列来说,里面是遵循时间片轮转法。也就是说,位于队列Q2中有N个作业,它们的运行时间是通过Q2这个队列所设定的时间片来确定的(为了便于理解,我们也可以认为特定队列中的作业的优先级是按照FCFS来调度的)。 3、各个队列的时间片是一样的吗?不一样,这就是该算法设计的精妙之处。各个队列的时间片是随着优先级的增加而减少的,也就是说,优先级越高的队列中它的时间片就越短。同时,为了便于那些超大作业的完成,最后一个队列QN(优先级最低的队列)的时间片一般很大(不需要考虑这个 问题)。 多级反馈队列调度算法描述: 1、进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。 2、首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:Q1,Q2,Q3三个队列,只有在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。 3、对于同一个队列中的各个进程,按照时间片轮转法调度。比如Q1 队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。 4、在低优先级的队列中的进程在运行时,又有新到达的作业,那么在运行完这个时间片后,CPU马上分配给新到达的作业(抢占式)。 我们来看一下该算法是如何运作的: 假设系统中有3个反馈队列Q1,Q2,Q3,时间片分别为2,4,8。 现在有3个作业J1,J2,J3分别在时间 0 ,1,3时刻到达。而它们所需要的CPU时间分别是3,2,1个时间片。 1、时刻0 J1到达。于是进入到队列1 ,运行1个时间片,时间片还未到,此时J2到达。 2、时刻1 J2到达。由于时间片仍然由J1掌控,于是等待。 J1在运行了1个时间片后,已经完成了在Q1中的 2个时间片的限制,于是J1置于Q2等待被调度。现在处理机分配给 J2。 3、时刻2 J1进入Q2等待调度,J2获得CPU开始运行。 4、时刻3 J3到达,由于J2的时间片未到,故J3在Q1等待调度,J1也在Q2等待调度。

容错计算

Degree: MASTER OF SCIENCE (Part-time) Postgraduate Teaching Timetable (2009-2010) Division:COMPUTER SCIENCE & ENGINEERING Programme:COMPUTER SCIENCE #=The first language will be used but will change to the second language when there is any student who does not know the first language. Remarks: CSC7251 must be paired with CSC7260. Special topic for CSC7112: "Web Service Security for E-Business Applications" Page 1 of 4 Explanatory Notes:Lang: Class Period/Location: Language of instruction where C=Cantonese; E=English; P=Putonghua; &=Both the first and the second languages are used; TSA Teacher-student arrangement

Degree: MASTER OF SCIENCE (Part-time) Postgraduate Teaching Timetable (2009-2010) Division:COMPUTER SCIENCE & ENGINEERING Programme:COMPUTER SCIENCE #=The first language will be used but will change to the second language when there is any student who does not know the first language. Remarks: CSC7251 must be paired with CSC7260. Special topic for CSC7112: "Web Service Security for E-Business Applications" Page 2 of 4 Explanatory Notes:Lang: Class Period/Location: Language of instruction where C=Cantonese; E=English; P=Putonghua; &=Both the first and the second languages are used; TSA Teacher-student arrangement

操作系统移动臂调度算法的实现

操作系统移动臂调度算 法的实现 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

南京工程学院 上机实验报告课程名称:操作系统 实验项目名称:移动臂调度算法的实现 学生班级: 学生学号: 学生姓名: 指导教师: 实验时间: 实验地点:信息楼专业机房 实验成绩评定: 2016-2017-1学期

一、实验目的及内容 掌握操作系统的设备管理功能,熟悉移动臂调度算法,设计恰当的数据结构和算法,模拟实现移动臂调度算法。要求至少模拟实现一种磁盘移臂调度算法。 二、实验相关知识简介 磁盘移臂调度的目标就是要使磁盘访问的总时间中的寻找时间最小。因此,磁盘移臂调度要尽量减少磁盘移动臂移动的距离。磁盘移臂调度算法很多,常用的也有好几种,一个好的磁盘调度算法,不仅要使磁盘寻找时间最小,同时,还要避免移动臂频繁地改变移动方向,因为频繁的改向不仅使时间增加,还容易损耗机械部件。 常用的磁盘移臂调度算法有:先来先服务、最短寻找时间优先、单向扫描、双向扫描调度算法等。 三、解决问题思路及关键程序代码分析 (一) 最短寻找时间优先调度算法简介 最短寻找时间调度算法总是使寻找时间最短的请求最先得到服务,跟请求者的请求时间先后顺序无关。这种算法具有比先来先服务更好的性能。但是该算法可能会出现请求者被“饿死”的情况,当靠近磁头的请求源源不断地到来,这会使早来的但离磁头较远的请求长时间得不到服务。 该算法的优点是可以得到较短的平均响应时间,有较好的吞吐量。该算法的缺点是缺乏公平性,对中间磁道的访问比较“照顾”,对两端磁道访问比较“疏远”,相应时间的变化幅度较大。该算法与先来先服务算法一样,都会导致移动臂频繁改向。 (二) 算法模拟

常见算法在实际项目中的应用

原文出处:StackExchange译文出处:infoQ 近日Emanuele Viola在Stackexchange上提了这样的一个问题,他希望有人能够列举一些目前软件、硬件中正在使用的算法的实际案例来证明算法的重要性,对于大家可能给到的回答,他还提出了几点要求: 使用这些算法的软件或者硬件应该是被广泛应用的; 例子需要具体,并给出确切的系统、算法的引用地址; 在经典的本科生或者博士的课程中应该教过这些算法或者数据结构; Vijay D的回复获得了最佳答案,他的具体回复内容如下: Linux内核中的基本数据结构和算法 双向链表和B+ 树,代码中的注释将会告诉你一些教科书中不能学到的内容: 这是一个简单的B+树实现,我写它的目的是作为练习,并以此了解B+树的工作原理。结果该实现发挥了它的实用价值。 … 一个不经常在教科书中提及的技巧:最小值应该放在右侧,而不是左侧。一个节点内所有被使用的槽位应该在左侧,没有使用的节点应该为NUL,大部分的操作只遍历一次所有的槽位,在第一个NUL处终止。 互斥锁、红黑树区间树 优先级堆,文字上的描述,主要是在教科书中实现,用于https://www.360docs.net/doc/a82177410.html,/techreports/reports/citi-tr-00- 1.pdf 这些选择的素数是位稀疏的,也就是说对他们的操作可以使用位移和加法来替换机器中很慢的乘法操作; 有些代码,比如这个哈希表,用于实现文件系统完整性检查等; Semaphores和中断处理、使用B-树进行二叉树查找; 目录配置; 在命名空间树中执行一个修改过的深度优先算法,开始(和终止于)start_handle所确定的节点。当与参数匹配的节点被发现以后,回调函数将会被调用。如果回调函数返回一个非空的值,搜索将会立即终止,这个值将会回传给调用函数; 合并排序用于文件系统管理等; 在某个Knuth-Morris-Pratt 字符串匹配; Knuth、Morris和 Pratt [1]实现了一个线性时间复杂度字符串匹配算法。该算法完全规避了对转换函数DELTA的显式计算。其匹配时间为O(n)(其中n是文本长度),只使用一个辅助函数PI[1…m](其中m是模式的长度),模式的预处理时间是O(m)。PI这个数组允许DELTA函数在需要时能迅速运行。大体上,对任意状态q=0,1,…,m和任意SIGMA中的字符”a”,PI[“q”]保存了独立于”a”的信息,并用于计算DELTA(“q”, “a”)。由于PI这个数组只包含m个条目,而DELTA包含O(m|SIGMA|)个条目,我们通过计算PI进而在预处理时间保存|SIGMA|的系数,而非计算DELTA。 [1] Cormen, Leiserson, Rivest, Stein Introdcution to Algorithms, 2nd Edition, MIT Press [2] See finite automation theory Boyer-Moore模式匹配,如下是引用和对其他算法的使用建议; Boyer-Moore字符串匹配算法: [1] A Fast String Searching Algorithm, R.S. Boyer and Moore. Communications of the Association for Computing Machinery, 20(10), 1977, pp. 762-772. http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf 注意:由于Boyer-Moore(BM)自右向左做匹配,有一种可能性是一个匹配分布在不同的块中,这种情况下是不能找到任何匹配的。 如果你想确保这样的事情不会发生,使用Knuth-Pratt-Morris(KMP)算法来替代。也就是说,根据你的设置选择合适的字符串查找算法。 如果你使用文本搜索架构来过滤、网络入侵检测(NIDS)或者任何安全为目的,那么选择KMP。如果你关乎性

相关文档
最新文档