(完整版)专题一:集合中的题型归类解析

(完整版)专题一:集合中的题型归类解析
(完整版)专题一:集合中的题型归类解析

教学心得:理解概念,运用性质;掌握题型,举一反三。

集合单元的精典题型

集合问题为每年必考题型之一,特别是近几年高考试卷中出现了一些以集合为背景的试题,这些试题涉及的知识面广,灵活性较强.实际上,这方面问题的本质是以集合为载体,将一些数学问题的已知条件“嵌入”集合之中,只不过是在语言形式方面做了些变通罢了,而解决问题的理论依据、方法等仍类似于其他问题的求解.因此,在集合题型上应引起我们的足够重视.

题型一:集合元素的性质

例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 的值。

分析:集合元素的确定性和互异性是集合的两个重要性质,是本单元一个重要考点,确定性是入手点,互异性是检验结论的工具。

解:∴∈A 1Θ根据集合元素的确定性,得:

133,11,1222=++=+=+a a a a 或)或( 若a +2=1, 得:1-=a , 但此时21332+==++a a a ,不符合集合元素的互异性。

若1)1(2=+a ,得:2-,0或=a 。但2-=a 时,2

2)1(133+==++a a a ,不符合集合元素的互异性。

若,1332=++a a 得:。或-2,1-=a

1)1(-2a 1;2a ,-1a 2=+==+=a 时,时但,都不符合集合元素的互异性。 综上可得,a = 0。

【小结】集合元素的确定性和互异性是解决问题的理论依据。确定性是入手点,互异性是检验结论的工具。

练习一、

1. 集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )

A a b P +∈

B a b Q +∈

C a b R +∈

D a b +不属于P 、Q 、R 中的任意一个

2.已知集合 =A {2,3,2a +4a +2},B ={0,7,2

a +4a -2,2-a },且A ∩B={3,7},求a 值.

题型二:集合相等问题

集合相等问题,主要是利用集合中元素的互异性,集合中元素的互异性是集合的重要属性,在解题中集合中元素的互异性常常被我们忽略,从而导致解题的失败,所以在解题中应引起足够的重视.

例2,已知集合{,,2}A a a b a b =++,2{,,}B a ac ac =,若A B =,求c 的值

分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合的元素完全相同,及集合中元素的确定性、互异性、无序性建立关系式

解:根据题意,分两种情况进行讨论:

(1)若2,2,

a b ac a b ac +=??+=?,消去b ,得220a ac ac +-= 当0a =时,集合B 中的三个元素均为零,与元素的互异性相矛盾,故0a ≠

∴2210c c -+=,即1c =,此时B 中的三个元素又相同,∴1c ≠

∴此时无解.

(2)若2,2,

a b ac a b ac ?+=?+=?消去b ,得220ac ac a --= ∵0a ≠,∴2210c c --=,即(1)(21)0c c -+=

又1c ≠,∴12

c =- 评注:(1)解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验和修正.

(2)有些数学问题很难从整体着手解决,需从分解入手,把整体科学合理地划分为若干个局部独立的问题,通过逐一判断来解决这些问题,从而达到整体问题的解决,这种重要的数学方法 就是分类讨论的方法 ,要学会这种思维方法.

练习二

1.下列各集合中相等的两个集合是( )

A=﹛x ▏y=2x+1﹜,B= ﹛x ▏x ≥1﹜,C=﹛x ▏y=x 2+1﹜,D=﹛y ▏y=x 2+1﹜,E=﹛x ▏y=2x+1﹜,F=﹛﹙x,y ﹚▏y=2x+1﹜。

2.设x 、y ∈R ,A=﹛3,x 2+xy+y ﹜,B=﹛1,x 2 +xy+x-3﹜,且A=B,求x 、y 的值。

3.已知M={2,a ,b},N={2a ,2,b 2}且M=N ,求a ,b 的值.

题型三:证明、判断两集合的关系

集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此要予以重视。反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的。因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.

例3设集合{|32,A a a n n ==+∈Z },集合{|31,B b b k k ==-∈Z },试判断集合A 、B 的关系。

分析:先判断元素与集合的关系,再判断集合与集合的关系

解:任设a A ∈,则323(1)1,a n n n =+=+-∈Z ,

∵n ∈Z ,∴1n +∈Z .∴a B ∈.故A B ?.

又任设b B ∈,则313(1)2,b k k k =-=-+∈Z .

∵k ∈Z ,∴1k -∈Z .∴b A ∈.故B A ?.

综上可知A B =.

评注:在说明a B ∈,或b A ∈的过程中,关键是先要变(或凑)出形式,然后再推理.

练习三

1.设A=﹛x ▏x=2k+1,k ∈Z ﹜,B=﹛x ▏x=4k ±1,k ∈Z ﹜, 试判断集合A 、B 的关系。

2.设A=﹛x ▏x=2n ,n ∈Z ﹜,B=﹛x ▏x=2n-2,n ∈Z ﹜,试问A 、B 是否相等?若相等请说明理由.

题型四:集合中的参数问题

所谓集合中的参数问题,是指集合{|p p 适合的条件}中“p 适合的条件”里面含有参数的问题,解答这类问题类似于其他含有参数的问题,灵活性极强,难度也很大.因此,解决此类问题要注意思维的严谨性.

例4.已知集合{|2A x =-≤x ≤5},{|1B x m =+≤x ≤21}m -,满足B A ?,则实数m 的取值范围为 .

解:(1)当B =?时,121m m +>-,得2m <,满足B A ?.

(2)当B ≠?时,121,12,21 5.m m m m +≤-??+≥-??-≤?

解得2≤m ≤3.

综合(1)、(2)得m 的取值范围是m ≤3.

评注:有关子集问题讨论中不要忽视了对空集的讨论,特别不能认为子集是由原来集合中的部分元素所组成的集合.在B A ?中,含有B =?这种可能,应注意.在集合单元中含有丰富的分类讨论内容,所以要注意增强运用分类讨论的思想和方法解决问题的意识,掌握分类方法,培养周密的思维品质.

练习四

1.已知集合M =

{}012|2=++∈x ax R x 中只含有一个元素,求a 的值。

2.已知集合{|2A x =-<x ≤5},B=﹛x ▏x <a ﹜ ,且A ∩B ≠?,求a 的取值范围。 举一反三⑴、已知集合{|2A x =-<x ≤5}B=﹛x ▏x >a ﹜且A ∩B ≠?,求a 的取值范围。 ⑵.已知集合{|2A x =-<x ≤5}B=﹛x ▏x ≥a ﹜且A ∩B ≠?,求a 的取值范围。

⑶.已知集合{|2A x =-<x ≤5},B=﹛x ▏x ≤a ﹜ ,且A ∩B ≠?,求a 的取值范围。 3.已知集合{}1,1A =-,B=}

{220x x ax b -+=,若B ≠?,且A B A ?= 求实数a ,b 的值。

举一反三⑴已知集合{}1,1A =-,B=}

{220x x ax b -+=,若B ≠?,且A ∩B=A 求实数a ,b 的值。 ⑵.?

⑶.?

4.设全集U={}

22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。

5.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值。

6.已知集合B,A }02|{},04|{22?>--=<++=且x x x B p x x x A 求实数p 的范围。

7. 已知}065|{},019|{222=+-==-+-=x x x B a ax x x A ,且A ,B 满足下列三个条

件:① B A ≠ ② B B A =Y ③ ΦB A I ,求实数a 的值。

8.已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。

题型五:利用韦恩图或数轴求交集、并集、补集

有的集合问题比较抽象,解题时若借助韦恩图进行数形分析或利用数轴、图象,采用数形结合思想方法,往往可使问题直观化、形象化,进而能使问题简捷、准确地获解.

例5.设全集,{|U R A x x ==≤2},B=﹛x ▏x >1﹜

(1)求A B I 及A B U ;(2)求()A B I 及()A B U .

解:(1)如图,利用数轴可直观地得到结果:

A ∩B=﹛x ▏1<x ≤2};A

B R =U .

(2) (){|A B x x =I ≤1,或2}x >;()A B =?U . 评注:有关用不等式表示的集合的并、交、补运算,常常借助于数轴的几何直观来帮助思考.

练习五

1.集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,求A B I 及A B U

2.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

3.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( )

A .0

B .{}0

C .φ

D .{}1,0,1-

题型六:开放型、定义新运算问题

近几年在高考试题的帮助带动下,一大批以集合为背景的开放型试题不断出现.在用描述法表示的集合中,集合的形式被表示为{|x x 所适合的条件},其中的代表元素“x 的任

x

2 1 。

意性”和“x 所适合的条件的灵活性”决定了这类题目具有涉及的知识面广、灵活性强等特点.

例 6.设{1,2,3,4,5,6}A =,{1,2,7,8}B =,定义A 与B 的差集为{|A B x x A -=∈,且}x B ?,则()A A B --=

解:由所给的新定义:差集{|A B x x A -=∈,且}x B ?,得{3,4,5,6}A B -=,从而(){1,2}A A B --=.

评注:差集中的“差”与我们平时所接触的“差”的意义是不同的.我们可能会犯这样的错误:(){1,2,7,8}A A B A A B B --=-+==.

★ 例7.已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z } 22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠?I ,(2)(,)a b C ∈同时成立.

分析:假设存在,a b 使得(1)成立,得到a 与b 的关系后与22x y +≤14联立,然后讨论联立的不等式组.

解:假设存在实数,a b ,使得A B ≠?I ,(,)a b C ∈同时成立,则集合{(,)|,,A x y x n y an b n ===+∈Z }与集合2{(,)|,315,B x y x m y m m ===+∈Z }分别对应集合1{(,)|,A x y y ax b x ==+∈Z }与21{(,)|315,B x y y x x ==+∈Z },1A 与1B 对应的直线y ax b

=+与抛物线2315y x =+至少有一个公共点,所以方程组2315y ax b y x =+??=+?

有解,即方程2315x ax b +=+必有解.

因此212(15)a b ?=--≥20a ?-≤12180b -,①

又∵22a b +≤14 ②

由①②相加,得2b ≤1236b -,即2(6)b -≤0.∴6b =.

将6b =代入①得2a ≥108,

再将6b =代入②得2a ≤108,因此63a =±, 将63a =±,6b =代入方程2315x ax b +=+得236390x x ±+=, 解得3x =±?Z .

所以不存在实数,a b ,使得(1),(2)同时成立.

评注:对于存在性探索性问题,首先要假设这样的问题存在,以此出发,依据已知条件、公理、定理进行推理论证,推出一个较为明显的结论,最后根据这样的结论有无矛盾,得出问题的结论.

练习六

1. 定义集合A 与B 的运算:A ⊙B ={x |x ∈A ,或x ∈B ,且x ?A ∩B },已知集合A ={1,2,3,4},B ={3,4,5,6,7},则(A ⊙B )⊙B 为( )

(A) {1,2,3,4,5,6,7} (B) {1,2,3,4} (C) {1,2} (D) {3,4,5,6,7}

2. M ,P 是两非空集合,定义M 与P 的差集为M -P ={x |x ∈M 且x ?P },则M -(M -P )=( )

(A) P (B) M ∩P (C) M ∪P (D) M

3.设I ={1,2,3,4},A 与B 是I 的子集,若A I B ={1,3},则称(A 、B )为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(A 、B )与(B 、A )是两个不同的“理想配集”)( )

A .4

B .8

C .9

D .16

4.定义集合A ,B 的一种运算:A *B ={x |x =x 1+x 2,其中x 1∈A ,x 2∈B },若A ={1,2,

3},B ={1,2},则A *B 中的所有元素之和为( )

(A) 9 (B) 14 (C) 18 (D) 21

5.设M ,P 是两个非空集合,定义M 与P 的差集为M -P ={x |x ∈M 且x ?P }.已知A ={1,3,5,7},B ={2,3,5},则集合A -B 的子集个数为( )

(A) 1 (B) 2 (C) 3 (D) 4

6.全集{}321,3,32S x x x =++,{}1,21A x =-,如果{},0=A C S 则这样的

实数x 是否存在?若存在,求出x ;若不存在,请说明理由。

7.【试一试】【2012北京海淀区期末】若集合A 具有以下性质:

①A ∈0,A ∈1;

②若A y x ∈,,则A y x ∈-,且0≠x 时,A x

∈1. 则称集合A 是“好集”.

(Ⅰ)分别判断集合{1,0,1}B =-,有理数集Q 是否是“好集”,并说明理由;

(Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+;

高三文科数学(集合) A 组

1.(2007年高考广东文科卷)已知集合M=}01{>+x x ,N=?

?????>-011x x ,则=N M I ( )

A . }11{<≤-x x

B . }1{>x x

C .}11{<<-x x

D .}1{-≥x x

2.(2008年高考广东文科卷)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合{A =参加北京奥运会比赛的运动员},集合{B =加北京奥运会比赛的男运动员},集合{C =加北京奥运会比赛的女运动员},则下列关系正确的是( )

A.A B ?

B. B C ?

C. B C A =U

D. A B C =I

3.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为 ( )

A .1

B .—1

C .1或—1

D .1或—1或0

4.(2009年高考广东文科卷)已知全集U=R ,则正确表示集合M={—1,0,1}和N={210x x +=}关系的韦恩(Venn )图是( )

5.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( )

A 、 ()M P S I I

B 、 ()M P S I U

C 、 ()u M P C S I I

D 、 ()u M P C S I U

6.已知集合A={1,2,3,4},那么A 的真子集的个数是

7..已知全集U={}22,3,23a a +-,若A={},2b ,{}5U C A =,求实数的a ,b 值

答案

(1)---(5) DBCDA

(6)2 (7)()(){}1124,,,

一、集合部分

1.准确理解集合元素的两个性质

集合是一个原始的,不定义的概念,集合中的元素具有确定性和互异性.确定性是对某一集合来说,任一对象或者是该集合的元素,或者不是该集合的元素,二者必居其一;互异性是指集合中的元素互不相同.在进行集合的交、并运算时,根据元素的互异性,同一个元素在集合中是不能重复出现的.而当把一个对象用集合来表示时,也必须以此为依据进行考虑.比如,方程2440x x -+=的解集,若用列举法来表示,只能写成{}2而不能写成{}22,.

2.准确把握各种不同的表示方法

集合的表示方法通常有列举法和描述法两种. 列举法是将给定集合的元素一一列出写在“{ }”中.用列举法表示集合时,首先要注意集合元素具有怎样

的形式.例如,把方程组86x y x y +=??-=?

的解集写成{}71,或{}71x y ==,都是错误的.这是因为{}71,的元素是两个数,{}71x y ==,的元素是两个方程,而方程组的解是一个点,因此其解集应为{}(71),.其次,用列举法表示由许多元素或无限多个元素组成的集合时,若元素间具有明显的规律性,则可在大括号内列举出部分元素,而其余的元素用省略号表示.用描述法表示集合时,注意不要把集合二字连同元素一起放在花括号内造成错误,如把“所有正方形组成的集合”写成{所有正方形组成的集合},而应写为{正方形}.

对有限集,在元素不太多的情况下,宜采用列举法;对无限集合,一般采用描述法表示.

3.准确掌握元素与集合的关系(∈)及集合与集合的关系()=?,,ü

集合相等是两个集合之间的一个重要关系.按照定义,对于两个集合A 和B ,如果A ?B ,同时B ?A ,那么就说这两个集合相等,记作A =B .由此知,集合A 与集合B 相等,是指A 的每一个元素都在B 中,而且B 中的每一个元素都在A 中.

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

复数高考题型归类

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1|z-z1|的取值范围 是;

五、技巧运算型 六、知识交汇型 七、轨迹方程型 练习: 1.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A .1个圆 B.线段 C.2个点 D.2个圆 2.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最小值是( ) A.1 B. 2 C.2 D. 5 3.若|z -2|=|z +2|,则|z -1|的最小值是 .

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1,则|z-z1|的最大值. 五、技巧运算型 六、知识交汇型

七、轨迹方程型 已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A.1个圆 B.线段 C.2个点 D.2个圆 答案 A 解析 由题意可知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1. ∵|z |≥0,∴|z |=3. ∴复数z 对应的轨迹是1个圆. 5.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最 小值是( ) A.1 B. 2 C.2 D. 5 答案 A 解析 设复数-2i,2i ,-(1+i)在复平面内对应的点分别为Z 1,Z 2,Z 3,因为|z +2i|+|z -2i|=4,Z 1Z 2=4,所以复数z 的几何意义为线段Z 1Z 2,如图所示,问题转化为:动点Z 在线段Z 1Z 2上移动,求ZZ 3的最小值. 因此作Z 3Z 0⊥Z 1Z 2于Z 0,则Z 3与Z 0的距离即为所求的最小值,Z 0Z 3=1.故选A. 8.若|z -2|=|z +2|,则|z -1|的最小值是 . 答案 1 解析 由|z -2|=|z +2|,知z 对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴.|z -1|表示z 对应的点与(1,0)的距离.∴|z -1|min =1. 12.集合M ={z ||z -1|≤1,z ∈C },N ={z ||z -1-i|=|z -2|,z ∈C },集合P =M ∩N . (1)指出集合P 在复平面上所表示的图形; (2)求集合P 中复数模的最大值和最小值. 解 (1)由|z -1|≤1可知,集合M 在复平面内所对应的点集是以点E (1,0)为圆心,以1为半径的圆的内部及边界;由|z -1-i|=|z -2|可知,集合N 在复平面内所对应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线l ,因此集合P 是圆面截直线l 所得的一条线段AB ,如 图所示.

2021年高考文科数学《集合与简易逻辑》题型归纳与训练(有解析答案)

2021年高考文科数学《集合与简易逻辑》题型归纳与训练 【题型归纳】 题型一 集合的交并补运算 例1 :已知集合{0,2}=A ,{21012}=--, ,,,B ,则A B =( ) A .{0,2} B .{1,2} C .{0} D .{21012}--, ,,, 【答案】A 【解析】由题意{0,2}A B =,故选A . 【易错点】交并不分 【思维点拨】概念的应用 例2已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{3} B .{5} C .{3,5} D .{}1,2,3,4,5,7 【答案】C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C . 【易错点】交并不分 【思维点拨】概念的应用 题型二 集合的交并补与不等式结合 例3:已知集合{|2}A x x =<,{320}B x =->,则( ) A .3{|}2A B x x =< B .A B =? C .3 {|}2 A B x x =< D .A B =R 【答案】A 【解析】∵3{|}2 B x x =<,∴3 {|}2 A B x x =<, 选A . 【易错点】不等式解错 【思维点拨】掌握常规不等式的解答 例4:设集合2 {|}M x x x ==,{|lg 0}N x x =≤,则M N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]

2 【答案】A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1]. 【易错点】方程解错,对数不等式不会解答 【思维点拨】基本函数和方程思想的掌握 题型三 四种命题的基本考查 例5:设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 A .若方程20x x m +-=有实根,则0m > B .若方程20x x m +-=有实根,则 0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤ 【答案】D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【易错点】概念混淆 【思维点拨】加强对四种命题的强化 题型四 充要条件的判断 例6:设x ∈R ,则“38x >”是“||2x >” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“3 8x >”是“||2x >” 的充分而不必要条件,故选A . 【易错点】解不等式 【思维点拨】加强部分不等式的解答 例7:设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B

高中数学集合总结+题型分类+完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且| 并集:{}B x A x x B A ∈∈=或| 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2 与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构 成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A

详解:在①中方程022=++-y x 等价于? ??=+=-020 2y x ,即???-==22y x 。因此解集应为 (){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理, {}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( ) A.9 B.8 C.7 D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性. 答案:B 详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6; 当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8; 当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;

高中数学主要题型与方法归纳

高中数学重点题型与思维方法归纳 一、集合、逻辑、函数、导数、定积分 1.集合的运算——①图示法P1 9;②验证法P111;③空集分类法P2 14;④转化法P14 2.子集(元素)个数——①列举法;②2n法P1 6;③转化法P125 8 3.充分必要条件——①大小法(小充分,大必要)P3 1;②推导法(推出充分被推必要互推充要)P3 3 4.命题的否定——①结论否定法;②全特互化法)P3 4 5.求定义域——①有意义法(具体函数或实际问题)P6 12;②整体不变法(抽象函数)P5 5 6.求值域——①图象法;②单调性法P5 8、P7 8;③反函数法;④分离常数法P12 13(1); ⑤配方法P10 13;⑥最值法 7.求最值——①函数值域法P7 8、P21 8、P86 13;②均值不等式法P11 4;③线性规划法; ④导数法P103 6;⑤转化法(立体与平面、同侧与异侧P67 5、P73 7、相离与相切P101 11) 8.求解析式——①换元法;②待定系数法P10 13(1);③构造方程法P6 13;④化归法P22 13 9.画图——①特殊点法P15 9;②变换图象法P15 8、P27 7;③假设验证法P15 6; ④奇偶分析法P15 9;⑤导数法(原增导在上,原减导在下)P103 3 10.零点或交点——①图象法P9 8;②零点交点转化法P18 11;③韦达定理法P17 8; ④解方程法P17 1、P17 10;⑤估算法P17 5;⑥导数法 11.一元二次方程根的分布——①图象法P67 9;②判别韦达法P9 9 12.单调性问题——①图象法P7 9;②复合法(同增异减)P9 11;③定义法; ④导数法P12 13、P101 10、P103 5、P103 9;⑤性质法 13.奇偶性问题——①特殊值法P7 6;②定义法P16 14(1);③化半法P8 13;④图象法P21 12 14.周期性问题——①图象法;②定义法P7 7;③三角公式法 15.对数计算——①逆运算转化法P13 3、P21 9;②化同法P13 5;③换底法 16.函数的应用——①列式法P19 4;②建模法P20 14、P64 14;图表法 17.求导数——①定义法P103 1;②公式法P101 2 18.求切线方程——①△=0法;②导数法P102 13、P104 11;③距离法(适用于圆) 19.求极值——①图象法P103 2;②导数法(左正右负极大值,左负右正极小值)P104 10、P104 13 20.求定积分或曲线围成面积——①图象法P105 11;②积分公式法P105 5;③概率法 二、三角函数、平面向量 1.三角函数符号(或角的象限)——①单位圆法P23 7;②πk2法P23 5 Rt法P25 2;②同角公式法 2.三角函数知一求余——①? 3.三角化简求值——①化切法P25 9;②化弦法;③1的代换P24 13;④和积互化P25 4; ⑤公式法P29 10;⑥换角法P30 13;⑦转化法(化同角、化同名、化同次)P25 8、P28 14 4.对称问题——①图象P21 12;②整体不变法;③公式法;④验证法P28 12 5.解三角形——①正弦定理P33 8;②余弦定理P33 9;③化边法P34 13;④化角法 6.平面向量的运算——①图解法P35 10、P97 9;②公式法P41 3;③坐标法P37 1、P41 10 7.向量平行(共线)问题——①成比例法P37 2;②公式法P35 2、P73 11、P99 7、12 8.向量垂直问题——①几何法P39 10;②公式法P39 7、P96 14 9.求夹角——①几何法P37 5;②公式法P41 11 10.求长度(模)——①平方法P37 9;②解三角形法P41 2

高中数学《集合》知识点归纳及题型练习

高中数学《集合》知识点归纳及题型练习 【知识点】 1.集合的三个特性:确定性,互异性,无序性 2.自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。 3.集合的三种表示方法:列举法,描述法,文氏图。 4.集合的分类:有限集,无限集,空集 5.子集:若a A ∈,则a B ∈,称为A 是B 的子集,记作:A B ?或B A ?, 读作:“集合A 包含于集合B ”或“集合B 包含集合A ”。 6.真子集:若A B ?且B A ?,则称集合A 与集合B 相等,记作:A B =; 若A B ?且A B ≠,则称集合A 是集合B 的真子集,记作: 【注意】空集φ是任何集合的真子集。 一个集合的子集个数为2n ,真子集个数为21n -,非空真子集个数为22n -。 7.补集:已知A U ?,由所有属于U 但不属于A 中的元素组成的集合称为A 的补 集,记作:U A e, 读作:A 在U 中的补集。即:{|,}U A x x U x A =∈?且e 8.交集:由两个集合中的公共元素组成的集合,即:{|}A B x x A x B =∈∈,且 9.并集:由两个集合中的所有元素组成的集合,即:{|}A B x x A x B =∈∈,或 10.集合的包含关系:A B ??A B A A B B =?= 题型1.集合性质的应用 1.判断能否构成集合:【根据集合的确定性】 (1)我国的所有直辖市; (2)我校的所有大树; (3)深圳机场学校的所有优秀学生; (4)深圳市的全体中学生; (5)不等式220x x ->的所有实数解; (6)所有的正三角形。 2.用,∈?填空:2 N , , -3 Z , , R ; 已知2{|20}A x x x =--=,则1 A ,2 A ,-1 A ,-2 A 。

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结 知识点精讲 一、集合的有关概念 1.集合的含义与表示 某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象. 2.集合元素的特征 (1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法 集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示 R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集* N 或N +一正整数集 C 一复数集 二、集合间的关系 1.元素与集合之间的关系 元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ?)两种. 空集:不含有任何元素的集合,记作?. 2.集合与集合之间的关系 (1)包含关系. 子集:如果对任意a A A B ∈?∈,则集合A 是集合B 的子集,记为A B ?或B A ?,显然A A ?.规定:A ??. (2)相等关系. 对于两个集合A 与B ,如果A B ?,同时B A ?,那么集合A 与B 相等,记作A B =. (3)真子集关系. 对于两个集合A 与B ,若A B ?,且存在b B ∈,但b A ?,则集合A 是集合B 的真子集,记作A B ü或 B A Y.空集是任何集合的子集,是任何非空集合的真子集. 三、集合的基本运算 集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.

高中数学必修一集合题型归纳总结

集合题型归纳总结 题型一 集合的表示(列举法、描述法) 1. 下列说法:①集合{x ∈N|x 3 =x }用列举法表示为{-1,0,1}; ②实数集可以表示为{x |x 为所有实数}或{R};③方程组????? x +y =3x -y =-1的解集为{x =1,y =2}. 其中正确的有( ). A .3个 B .2 C .1个 D .0个 题型二 集合与集合的关系(子集) 1、已知集合A={x |x 个2-x -2<0},B={x |-1,2{|0}Q x x x =->,则下列结论正确的是 A .P Q = B .P Q R =U C .Q P ? D .P Q ? 3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )个,非空子集有( )个 题型三 集合的运算 ※有限集:直接算 1、已知集合2{2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A.? B. {}2 C. {0} D. {2}- 2. 已知全集}6,5,4,3,2,1{=U ,集合{1,2}A =,},42|{Z x x x B ∈≤≤=则集合)(B A C U Y 中元素的个数为( ) A .1 B .2 C.3 D .4 ※ 无限集:借助数轴算 4.已知集合},41|{},32|{>-<=≤≤-=x x x B x x A 或那么集合=)(B C A R I ( ) A.{x ︱-2≤x <4} B.{x ︱x ≤3或x ≥4} C .{x ︱-2≤x <-1} D.{-1︱-1≤x ≤3} 5.已知集合}04 4{≤+-=x x x A ,}034{2≤-+-=x x x B (1)求A ∪B , (2)求A ?Cu B

最新集合-知识点与题型归纳

●高考明方向 1.了解集合的含义,元素与集合的属于关系; 能用列举法或描述法表示集合. 2.理解集合之间包含与相等的含义,能识别给定集合的子集; 了解全集与空集的含义. 3.理解并会求并集、交集、补集; 能用Venn图表达集合的关系与运算. ★备考知考情 对于本节的考查,一般以选择题或填空题形式出现,难度中低档. 命题的规律主要体现在集合与集合、元素与集合之间的关系以及集合 的交集、并集、补集的运算,同时注意以集合为工具,考查对集合语言、 集合思想的理解和运用,往往与映射、函数、方程、不等式等知识融合 在一起,体现出一种小题目综合化的特点. 在考查集合知识的同时突出考查准确使用数学语言能 力及用数形结合、分类讨论思想解决问题的能力; 以集合为载体考查对信息的收集、捕捉、加工能力. 一、知识梳理《名师一号》P1 知识点一元素与集合 某些指定的对象集在一起就成为一个集合.其中每个对象 叫做集合中的元素. 1、集合中的元素具有三个特性确定性、互异性和无序性. 2、集合中元素与集合的关系分为属于与不属于两种, 分别用∈和?来表示. 3、常见数集的符号表示: 4 还可以用区间来表示集合. 5、集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集

知识点二集合间的基本关系 知识点三集合的基本运算及性质 1.集合的基本运算 2.集合的运算性质 并集的性质:A∪φ=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A 交集的性质:A∩φ=φ;A∩A=A;A∩B=B∩A;A∩B=A?A?B 补集的性质:A∪(?U A)=U;A∩(?U A)=φ;?U(?U A)=A

高一数学集合基本题型

[集合基本题型] 题型一:集合的判断 集合元素的特征: ⑴确定性特征:集合中的元素必须是明确的,不允许出现模棱两可、无法断定的陈述。设集合A 给定,若有一具体对象x ,则x 要么是A 的元素,要么不是A 的元素,二者必居其一,且只居其一。 ⑵互异性特征:集合中的元素必须是互不相同的。设集合A 给定,A 的元素是指含于其中的互不相同的元素,相同的对象归于同一集合时只能算集合的一个元素。 例1、“①难解的题目;②方程012=+x ;③平面直角坐标系内第四象限的一些点;④很多多项式”中,能组成集合的是()。 A .② B .①③ C .②④ D .①②④ 解析:解这类题目要从集合元素的特征-----确定性、互异性-----出发。 ①③④不符合集合元素的确定性特征。 答案:A 例2、下列命题正确的个数为…………………()。 ① 很小两实数可以构成集合; ② }1|{2-=x y y 与}1|),{(2-=x y y x 是同一集合 ③ 5.0,2 1,46,23,1-这些数组成的集合有5个数; ④ 集合},,0|),{(R y x xy y x ∈≤是指第二、四象限内的点集; A .0个 B .1个 C .2个 D .3个 解析: ①中的元素不符合集合元素的确定性,不对; ②先看“|”左边描述的元素,第一个集合是函数12-=x y 的值域,第二个集合是点集,所以不是同一集合; ③根据集合元素的互异原则:5.02 1,4623=-=,所以集合有3个数,③不对; ④先看“|”左边描述的元素,集合是点集,再看“|”右边规定的元素的公共属性0≤xy ,第二、四象限内的点集的公共属性应为0

(完整版)集合问题中常见易错点归类分析答案与解析

集合问题中常见易错点归类分析 有关集合问题,涉及范围广,内容多,难度大,题目灵活多变.初学时,由于未能真正理解集合的意义,性质,表示法或考虑问题不全,而造成错解.本文就常见易错点归纳如下: 1.代表元素意义不清致误 例1 设集合A ={(x , y )∣x +2 y =5},B ={(x , y )∣x -2 y =-3},求A I B . 错解: 由???-=-=+3252y x y x 得???==2 1y x 从而A I B ={1,2}. 分析 上述解法混淆了点集与数集的区别,集合A 、B 中元素为点集, 所以A I B ={(1,2)} 例2 设集合A ={y ∣y =2x +1,x ∈R },B ={x ∣y =x +2},求A∩B. 错解: 显然A={y ∣y≥1}B={x ∣y≥2}.所以A ∩B=B . 分析 错因在于对集合中的代表元素不理解,集合A 中的代表元素是y ,从而A ={y∣y≥1},但集合B 中的元素为x , 所以B ={ x ∣x ≥0},故A ∩B=A . 变式:已知集合}1|{2+==x y y A ,集合}|{2y x y B ==,求B A I 解:}1|{}1|{2≥=+==y y x y y A ,R y x y B ===}|{2 }1|{≥=y y B A I 例3 设集合}06{2=--=x x A ,}06|{2 =--=x x x B ,判断A 与B 的关系。 错解:}32{,-==B A 分析:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。元素的属性可以是方程,可以是数,也可以是点,还可以是集合等等。集合A 中的元素属性是方程,集合B 中的元素属性是数,故A 与B 不具包含关系。 例4设B ={1,2},A ={x |x ?B },则A 与B 的关系是( ) A .A ? B B .B ?A C .A ∈B D .B ∈A 错解:B 分析:选D.∵B 的子集为{1},{2},{1,2},?, ∴A ={x|x ?B}={{1},{2},{1,2},?},从集合与集合的角度来看待A 与B ,集合A 的元素属性是集合,集合B 的元素属性是数,两者不具包含关系,故应从元素与集合的角度来看待B 与A,∴B ∈A. 评注:集合中的代表元素,反映了集合中的元素所具有的本质属性,解题时应认真领会,以防出错. 2 忽视集合中元素的互异性致错 例5 已知集合A={1,3,a },B={1,2a -a +1}, 且A ?B ,求a 的值. 错解:经过分析知,若2a -,31=+a 则2a ,02=--a 即1-=a 或2=a .若2a ,1a a =+-则2a ,012=+-a 即1=a .从而a =-1,1,2.

高中数学集合总结题型分类完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且|I 并集:{}B x A x x B A ∈∈=或|Y 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构

成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A 详解:在①中方程022=++-y x 等价于? ??=+=-0202y x ,即???-==22y x 。因此解集应为(){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理,{}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,

高考文科数学专题一:集合题型总结含解析

第一章 集合 第一节 集合的含义、表示及基本关系 练习一组 1.已知A ={1,2},B ={}|x x A ?,则集合A 与B 的关系为________. 解析:由集合B ={}|x x A ?知,B ={1,2}.答案:A =B 2.若{}2,|a a R x x N??,则实数a 的取值范围是________. 解析:由题意知,2x a £有解,故0a 3.答案:0a 3 3.已知集合A ={}2|21,y y x x x R =--?,集合B ={}|28x x -#,则集合A 与B 的关系是________. 解析:y =x 2-2x -1=(x -1)2-2≥-2,∴A ={y|y ≥-2},∴B A . 答案: B A 4.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________. 解析:由N={}2|0x x x +=,得N ={-1,0},则N M .答案:② 5知集合A ={}|5x x >,集合B ={}|x x a >,若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是________. 解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件,∴A B ,∴a <5. 答案:a <5 6.已知m ∈A ,n ∈B ,且集合A ={x |x =2a ,a ∈Z },B ={x |x =2a +1,a ∈Z },又C ={x |x =4a +1,a ∈Z },判断m +n 属于哪一个集合? 解:∵m ∈A ,∴设m =2a 1,a 1∈Z ,又∵n ∈B ,∴设n =2a 2+1,a 2∈Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈Z ,∴m +n ∈B . 练习二组 1.设a ,b 都是非零实数,y =a |a |+b |b |+ab |ab | 可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0,讨论得y =3或y =-1.答案:{3,-1} 2.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ?A ,则实数m =________. 解析:∵B ?A ,显然m 2≠-1且m 2≠3,故m 2=2m -1,即(m -1)2=0,∴m =1.

集合问题中常见易错点归类分析答案解析

集合问题中常见易错点归类分析 有关集合问题,涉及范围广,内容多,难度大,题目灵活多变.初学时,由于未能真正理解集合的意义,性质,表示法或考虑问题不全,而造成错解.本文就常见易错点归纳如下: 1.代表元素意义不清致误 例1 设集合A ={(x ,y )∣x +2y =5},B ={(x ,y )∣x -2y =-3},求A I B . 错解: 由???-=-=+3252y x y x 得???==2 1y x 从而A I B ={1,2}. 分析 上述解法混淆了点集与数集的区别,集合A 、B 中元素为点集, 所以A I B ={(1,2)} 例2 设集合A ={y ∣y =2x +1,x ∈R },B ={x ∣y =x +2},求A∩B. 错解: 显然A={y ∣y≥1}B={x ∣y≥2}.所以A ∩B=B . 分析 错因在于对集合中的代表元素不理解,集合A 中的代表元素是y ,从而A ={y∣y≥1},但集合B 中的元素为x , 所以B ={x ∣x ≥0},故A ∩B=A . 变式:已知集合}1|{2+==x y y A ,集合}|{2 y x y B ==,求B A I 解:}1|{}1|{2≥=+==y y x y y A ,R y x y B ===}|{2 }1|{≥=y y B A I 例3 设集合}06{2=--=x x A ,}06|{2=--=x x x B ,判断A 与B 的关系。 错解:}32{,-==B A 分析:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。元素的属性可以是方程,可以是数,也可以是点,还可以是集合等等。集合A 中的元素属性是方程,集合B 中的元素属性是数,故A 与B 不具包含关系。 例4设B ={1,2},A ={x |x ?B },则A 与B 的关系是( ) A .A ? B B .B ?A C .A ∈B D .B ∈A 错解:B 分析:选D.∵B 的子集为{1},{2},{1,2},?, ∴A ={x|x ?B}={{1},{2},{1,2},?},从集合与集合的角度来看待A 与B ,集合A 的元素属性是集合,集合B 的元素属性是数,两者不具包含关系,故应从元素与集合的角度来看待B 与A,∴B ∈A. 评注:集合中的代表元素,反映了集合中的元素所具有的本质属性,解题时应认真领会,以防出错. 2 忽视集合中元素的互异性致错 例5 已知集合A={1,3,a },B={1,2a -a +1}, 且A ?B ,求a 的值. 错解:经过分析知,若2a -,31=+a 则2a ,02=--a 即1-=a 或2=a .若2a ,1a a =+-则2a ,012=+-a 即1=a .从而a =-1,1,2.

相关文档
最新文档