华师数学建模作业(1)

华师数学建模作业(1)
华师数学建模作业(1)

数学建模作业

一、教材76页第1章习题1第7题(来自高中数学课本的数学探究问题,满分10分) 表是某地一年中10天的白昼时间(单位:小时),请选择合适的函数模型,并进行数据拟合.

解:根据地理常识,某地的白昼时间是以一年为周期而变化的,以日期在一年中序号为自变量x ,以白昼时间为因变量y ,则根据表的数据可知在一年(一个周期)内,随着x 的增加,y 大约在6月21日(夏至)达到最大值,在12月21日(冬至)达到最小值,在3月21日(春分)或9月21日(秋分)达到中间值。选择函数2sin(

)365

x

y A b π=+?+作为函数值。根据表的数据,推测A,b 和

?

的值,作非线性拟合得

26.9022sin(

)12.385365

x y π=-1.3712+,预测该地12月21日的白昼时间为小时。

二、教材100页第2章习题2第1题(满分10分)

继续考虑第节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗“两秒准则”是否足够安全对于安全车距,你有没有更好的建议

解(1)按照节中的“汽车刹车距离”案例,“两秒准则”和“一车长度准则”在模型分析与模型建立差不多相同,只是K 1的取值不同。

D ~ 前后车距(m ); v ~ 车速(m/s );

K 1 ~ 按照“两秒准则”,D 与v 之间的比例系数(s ). 于是“两秒准则”的数学模型为: D= K 1* v ;(K1= ; 已经知道,刹车距离的数学模型为 d=k 1v+k 22

v ;

;

比较()与()式得 d-D=(k 1+k 2v-K 1)v;

所以当k 1+k 2v-K 1>0时,即前后车距大于刹车距离的理论值,可以为是足够安全;k 1+k 2v-K 1<0时,可以为是不够安全。

代入k 1=,k 2=,K 1=,计算得到当车速超过s 时,“两秒准则"就不够安全了。

(2)

下面的程序及图像也是很好的证明。

源程序:

v=(20:5:80).*;

d2=[18, 25, 36, 47, 64, 82, 105, 132, 162, 196, 237, 283, 334

22, 31, 45, 58, 80, 103, 131,165, 202, 245, 295, 353, 418

20,28,,,72,,118,,182,,266,318,376];

d2=.*d2;

K1=;k1=; k2=; d=d2+d1;

plot([0,40],[0,2*40],'--k', [0,40]),hold on

plot(0:40,polyval([k2,k1,0],0:40),':k')

plot([v;v;v],d,'ok','MarkerSize',2),hold off

title('比较刹车距离实测数据、理论值、两秒准则')

legend('两秒准则','刹车距离理论值',...

'刹车距离的最小值、平均值和最大值',2)

xlabel('车速v(m/s)'), ylabel('距离(m)')

(3)

根据汽车的最高速度一般不超过120km/h (约s),k2= , k1= ,

*k2+k1= + = s ,所以我认为可以采取“秒准则"。这在理论上和实际上都是比较安全的。

三、教材100页第2章习题2第3题(满分10分)

继续考虑第节“生猪出售时机”案例,做灵敏度分析,分别考虑农场每天投入的资金

对最佳出售时机和多赚的纯利润的影响.

解:(1)考虑每天投入的资金c 发生的相对为

c

c

?,则生猪饲养的天数t

发生的相对变化

t

t

?是

c

c

?的多少倍,即定义t 对c 的灵敏度为

S (t,c )=

△t/t

△c/c

因为△c →0,所以重新定义t 对c 的灵敏度为 S (t,c )=

△t/t △c/c =dt dc ×c

t

① 由课本上可知t= rp(0)-gω(0)-c

2gr ②

所以t=

rp(0)-g ω(0)2gr -c

2gr

,所以t 是c 的减函数

为了使t ﹥0,c 应满足rp(0)-g ω(0)-c>0

结合①②

可得S (t,c )= —

c

rp(0)-g ω(0)-c

= - 错误!= -2这个结果表示的意思是

如果农场每天投入的资金c 增加1%,出售时间就应该提前2% 。 (2)同理(1)总收益Q 对每天投入资金c 的灵敏度为

S (Q,c )= dQ dc ×c

Q

Qmax=[rp(0)-g ω(0)-c]2

4gr ④

结合③④得

Qmax=- 2c

rp(0)-g ω(0)-c =- 错误!=-4这结果表示的意思是如果每天投

入的资金c 增加1%,那么最大利润就会减少4%

四、教材143页第3章习题3第2题(满分10分)

某种山猫在较好、中等及较差的自然环境下,年平均增长率分别为%、%和%. 假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:

(1) 三种自然环境下25年的变化过程,结果要列表并图示;

(2) 如果每年捕获3只,山猫数量将如何变化会灭绝吗如果每年只捕获1只呢

(3) 在较差的自然环境下,如果要使山猫数量稳定在60只左右,每年要人工繁殖多少只

解:①解记第k年山猫 x k,设自然坏境下的年平均增长率为r,则列式得

x k+1=(1+r)x k, k=0,1,2…

其解为等比数列

x k=x0(1+r)k, k=0,1,2…

当分别取r= , 和时,山猫的数量在25年内不同的环境下的数量演变为

年较好中等较差

0 100 100 100

1 10

2 101 96

2 10

3 101 91

3 105 102 87

4 107 102 83

5 109 103 79

6 111 103 76

7 112 104 72

8 114 104 69

9 116 105 66

10 118 106 63

11 120 106 60

12 122 107 58

13 124 107 55

14 126 108 52

15 128 109 50

16 131 109 48

17 133 110 46

18 135 110 44

19 137 111 42

20 140 112 40

21 142 112 38

22 144 113 36

23 147 113 35

24 149 114 33

25 152 115 32

(1)在较好的自然环境下即r=时,x k单调增趋于无穷大,山猫的数量将无限增长;

(2)在中等的自然环境下即r=时,x k单调增并且趋于稳定值;

(3)在较差的环境中即r=时,x k单调衰减趋于0,山猫将濒临灭绝。

②若每年捕获3只,b=-从上可以得出结论:

3,则列式为

X k+1=(1+r)x k-b

则山猫在25年内的演变为

年较好中等较差

0 100 100 100

1 99 98 93

2 97 95 85

3 96 93 78

4 9

5 90 72

5 93 88 66

6 92 85 60

7 90 83 54

8 89 80 49

9 87 77 43

10 86 75 39

11 84 72 34

12 83 70 29

13 81 67 25

14 79 64 21

15 78 62 17

16 76 59 13

17 74 56 10

18 73 54 6

19 71 51 3

20 69 48 0

21 67 46 -3

22 65 43 -6

23 63 40 -9

24 61 37 -11

25 59 35 -14

由图上可知,无论在什么环境下,如果每年捕获山猫3只,单调减趋于0,那么最终山猫的数量都会灭绝,在较差的环境中第20年就会灭绝。

最新数学建模习题答案资料

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况), 即从数学角度来看,地面是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间 距和椅腿的长度而言,地面是相对平坦的。因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 和B,D 对换了。因此,记A ,B 两脚与地面竖直距离之和为)(θf ,C,D 两脚之和为 )(θg ,其中[]πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。

数学建模大作业

兰州交通大学 数学建模大作业 学院:机电工程学院 班级:车辆093 学号:200903812 姓名:刘键学号:200903813 姓名:杨海斌学号:200903814 姓名:彭福泰学号:200903815 姓名:程二永学号:200903816 姓名:屈辉

高速公路问题 1 实验案例 (2) 1.1 高速公路问题(简化) (2) 1.1.1 问题分析 (3) 1.1.2 变量说明 (3) 1.1.3 模型假设 (3) 1.1.4 模型建立 (3) 1.1.5 模型求解 (4) 1.1.6 求解模型的程序 (4) 1实验案例 1.1 高速公路问题(简化) A城和B城之间准备建一条高速公路,B城位于A城正南20公里和正东30公里交汇处,它们之间有东西走向连绵起伏的山脉。公路造价与地形特点有关,图4.2.4给出了整个地区的大致地貌情况,显示可分为三条沿东西方向的地形带。 你的任务是建立一个数学模型,在给定三种地形上每公里的建造费用的情况下,确定最便宜的路线。图中直线AB显然是路径最短的,但不一定最便宜。而路径ARSB过山地的路段最短,但是否是最好的路径呢? A B 图8.2 高速公路修建地段

1.1.1 问题分析 在建设高速公路时,总是希望建造费用最小。如果要建造的起点、终点在同一地貌 中,那么最佳路线则是两点间连接的线段,这样费用则最省。因此本问题是一个典型的最优化问题,以建造费用最小为目标,需要做出的决策则是确定在各个地貌交界处的汇合点。 1.1.2 变量说明 i x :在第i 个汇合点上的横坐标(以左下角为直角坐标原点),i =1,2,…,4;x 5=30(指目的地B 点的横坐标) x=[x 1,x 2,x 3,x 4]T l i :第i 段南北方向的长度(i =1,2, (5) S i :在第i 段上地所建公路的长度(i =1,2, (5) 由问题分析可知, () ()() () 2 542552 432442 322332212 222 1211x x l S x x l S x x l S x x l S x l S -+=-+=-+=-+=+= C 1:平原每公里的造价(单位:万元/公里) C 2:高地每公里的造价(单位:万元/公里) C 3:高山每公里的造价(单位:万元/公里) 1.1.3 模型假设 1、 假设在相同地貌中修建高速公路,建造费用与公路长度成正比; 2、 假设在相同地貌中修建高速公路在一条直线上。在理论上,可以使得建造费用最少, 当然实际中一般达不到。 1.1.4 模型建立 在A 城与B 城之间建造一条高速公路的问题可以转化为下面的非线性规划模型。优化目标是在A 城与B 城之间建造高速公路的费用。 () 4,3,2,1300. .)(min 5142332211=≤≤++++=i x t s S C S C S C S C S C x f i

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

数学建模习题集及标准答案

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学 生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模平时作业

华师大网络教育学院 专业:数学与应用数学 《初等数学建模》平时作业 一、选择题(本题20分;有10小题,每小题2分) 1. 单词Matlab是下列哪个语句的缩写…………(A) (A)Matrix Laboratory;(B)Matrics Laboratory; (C)Matrix Laboratry;(D)Matrics Laboratry。 2. 单词Lindo是下列哪个语句的缩写…………( B ) (A)LINEAR INTERACTION DISCRETE OPTIMIZER; (B)LINEAR INTERACTION AND DISCRETE OPTIMIZER; (C)LINEAR INTERACTION AND DISCRETE OPTIMIZOR; (D)LINEAR INTERACTION DISCRETE OPTIMIZOR。 3. Matlab语言中的符号函数是…………( A ) (A)sign (B)sin (C)sgn (D)sig 4. 不是Matlab语言的符号计算函数的是…………( B ) (A)diff (B)factor (C)int (D)sum 5. 用Lindo语言求解线性规划模型的程序中,表示非负整数的是…( C ) (A)diff (B)gin (C)int (D)sum 6. Matlab中的可作空间曲线的函数是…………( A ) (A)plot (B)plot3 (C)mesh (D)surf 7. 不是Matlab语言的关键词的是…………( D ) (A)if (B)else (C)elseif (D)else if 8. Matlab语言中的注解语句用以下字符开头…………( C ) (A)! (B)# (C)% (D)* 9. Matlab语言最大实数是…………( B ) (A)约10-308(B)约10308(C)约-10-308(D)约-10308 10. Lindo语言中的注解语句用以下字符开头…………( A ) (A)! (B)# (C)% (D)* 二、解答题(本题80分;有8小题,每小题10分) 11. 数学建模和列方程解应用题的有什么差别? 意数学建模和列方程解应用题的差别。两者初看起来都和实际问题有关,但是至少在三个方面有着质的差别:问题的起点不同:应用题的情景是经过数学教师加工提炼出来的,而数学建模面对的是实际问题本身。

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模期末大作业

数学建模期末大作业论文 题目:A题美好的一天 组长:何曦(2014112739) 组员:李颖(2014112747)张楚良(2014112740) 班级:交通工程三班 指导老师:陈崇双

美好的一天 摘要 关键字:Dijkstra算法多目标规划有向赋权图 MATLAB SPSS

1 问题的重述 Hello!大家好,我是没头脑,住在西南宇宙大学巨偏远的新校区(节点22)。明天我一个外地同学来找我玩,TA叫不高兴,是个镁铝\帅锅,期待ing。我想陪TA在城里转转,当然是去些不怎么花钱的地方啦~~。目前想到的有林湾步行街(节点76)、郫郫公园(节点91),大川博物院(节点72)。交通嘛,只坐公交车好了,反正公交比较发达,你能想出来的路线都有车啊。另外,进城顺便办两件事,去老校区财务处一趟(节点50),还要去新东方(节点34)找我们宿舍老三,他抽奖中了两张电影票,我要霸占过来明晚吃了饭跟TA一起看。电影院嘛,TASHIWODE电影院(节点54)不错,比较便宜哈。我攒了很久的钱,订了明晚开心面馆(节点63)的烛光晚餐,额哈哈,为了TA,破费一下也是可以的哈。哦,对了,老三说了,他明天一整天都上课,只有中午休息的时候能接见我给我票。 我主要是想请教一下各位大神: 1)明天我应该怎么安排路线才能够让花在坐车上的时间最少? 2)考虑到可能堵车啊,TA比较没耐心啊,因为TA叫不高兴嘛。尤其是堵车啊,等车啊,这种事,万一影响了气氛就悲剧了。我感觉路口越密的地方越容易堵,如果考虑这个,又应该怎么安排路线呢? 3)我们城比较挫啊,连地图也没有,Z老师搞地图测绘的,他有地图,跟他要他不给,只给了我一个破表格(见附件,一个文件有两页啊),说“你自己画吧”。帮我画一张地图吧,最好能标明我们要去的那几个地方和比较省时的路线啊,拜托了~ 2 问题的分析 2.1 对问题一的分析 问题一要求安排路线使得坐车花费的时间最少。 对于问题一,假设公交车的速度维持不变,要使花费的时间最少,则将问题转化为对最短路径的求解。求解最短路径使用Dijkstra算法很容易进行求解,在运用MATLAB编程,得到最优的一条路径,则这条路径所对应的时间即为最少用时。 2.2 对问题二的分析 问题二要求在考虑堵车的情况下,路口越密越容易发生拥堵,安排路线是乘车时间最短。 对于问题二,在问题的基础上增加了附加因素,即公交车的速度会因道路的密集程度而发生改变,从而问题一建立的基本Dijkstra算法对于问题二就不再适用了,因此对问题一的基本Dijkstra算法进行改进,并结合蚁群算法的机理与特点,运用MATLAB求解出最短路径,保证了花费时间的最少性。 2.3 对问题三的分析 问题三要求根据提供的附件,画出一张地图,标明要去的那几个地方和比较省时的路线。 对于问题三,在问题一和问题二的基础上,根据求解的结果,运用SPSS软件画出地图。

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

数学建模作业及答案

数学建模作业 姓名:叶勃 学号: 班级:024121

一:层次分析法 1、 分别用和法、根法、特征根法编程求判断矩阵 1261/2141/61/41A ????=?????? 11/2433 217551/4 1/711/21/31/31/52111/31/5 3 1 1A ????????=? ?????? ? 的特征根和特征向量 (1)冪法求该矩阵的特征根和特征向量 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0; while(1){ max=X[0]; for(i=0;i

X[i]=0; for(j=0;j

数学建模作业

分析,我们仅利用1x 和2x 来建立y 的预测模型。 四、模型建立 (显示模型函数的构造过程) (1)为了大致地分析y 与1x 和2x 的关系,首先利用表一的数据分别作出y 对1x 和2x 的散点图 y 与x1的关系 程序代码: x1=[ 0 0 ]; y=[ ]; A=polyfit(x1,y,1) y1=polyval(A,x1); plot(x1,y1,x1,y,'go') y 与x2的关系 x2=[ ]; y=[ ]; A=polyfit(x2,y,2) x3=::; y2=polyval(A,x3); plot(x2,y,'go',x3,y2)

图1 y 对x1的散点图 图2 y 与x2的散点图 从图1 可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型 011y x ββε=++ (1) 拟合的(其中ε是随机误差),而在图2中,当2x 增大时,y 有向上弯曲增长的趋势,图中的曲 线是用二次函数模型 2 01122y x x βββε=+++ (2) 拟合的。 综合上面的分析,结合模型(1)和(2)建立如下的回归模型 2 0112232y x x x ββββε=++++ (3) (3)式右端的1x 和2x 称为回归变量(自变量),2 0112232x x x ββββ+++是给定价格差1x ,广告费 用2x 时,牙膏销售量y 的平均值,其中的参数0123,,,ββββ称为回归系数,由表1的数据估计,影响y 的其他因素作用都包含在随机误差ε中,如果,模型选择的合适,ε应大致服从均值为0的正态分布。 五、模型求解 (2)确定回归模型系数,求解出教程中模型(3); 程序代码:

初等数学建模试题极其标准答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 :顶=1:a:b ,选坐v>0,而设语雨速 L( 1q -+v x ),v≤x Q(v)= L( v x -q +1),v>x 2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周

数学建模作业

2016年数学建模作业 作业要求 1. 由于时间的原因,同学们只需将题目做在word上,不需要做在ppt上。 2. 详细的写出模型或方法、程序、程序运行的重要结果,并做结果分析。 3. 你做的答案将与全体同学分享。结业考试也是以你的答案为参考。如果因为你的不认真导致题目做错。从而误导了大家,你将负全部责任。切记要认真做题。如果你不会,那一定要虚心向学霸们请教。 第一部分优化与控制 2016-01 灵敏度分析 某公司计划生产I、II两种产品,每天生产条件如表,问: (1)该公司应如何安排生产计划才能使总利润最多? (2)若产品Ⅰ的利润降至1.5百元/单位,而产品Ⅱ的利润增至2百元/单位,最优生产计划有何变化? (3)若产品Ⅰ的利润不变,则产品Ⅱ的利润在什么范围内变化时,该公司的最优生产计划将不发生变化? (4)设备A和设备C每天能力不变,而设备B能力增加到32,问最优生产计划如何变化? 资源产品ⅠⅡ每天可用能力 设备A(h)0 5 15 设备B(h) 6 2 24 设备C(h) 1 1 5 利润(百元) 2 1 2016-02 投资问题 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其它证券的收益需按50%的税率纳税。此外还有以下限制:①政府及代办机构的证券总共至少要购进400万元;②所购证券的平均信用等级不超过1.49,信用等级数字越小,信用程度越高;③所购证券的平均到期年限不超过3年;④不允许重复投资。 (1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?

数学建模作业43950

题目: 某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。 若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值? 要求:①作出全局最优解 ②列出这个问题的整数规划模型

假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后 可靠性可以相互叠加。 建模: 设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整 个设备的可靠性为p,则由题意可得到: p=xp*yp*zp; 2x+4y+6z<=20; 20x+30y+40z<=150; x,y,z均为整数; 求出适当的x,y,z使p的值最大。 运用穷举法,编写C++程序如下: #include void main() { using namespace std; int x=0,y=0,z=0;//备à?用??零¢?件t数oy目? double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1}; double p=0,temp=0;//可¨|靠?性? int i=0,j=0,k=0; cout<<"x\ty\tz\tp\n"; for(i=0;i<6;i++) { y=0; for(j=0;j<4;j++) { z=0; for(k=0;k<3;k++) {if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)) {temp=p; p=xp[x]*yp[y]*zp[z]; cout<

相关文档
最新文档