高中物理--万有引力与天体运动--最全讲义及习题及答案详解说课讲解

高中物理--万有引力与天体运动--最全讲义及习题及答案详解说课讲解
高中物理--万有引力与天体运动--最全讲义及习题及答案详解说课讲解

高中物理--万有引力与天体运动--最全讲义及习题及答案详解

第四节万有引力与天体运动

一.万有引力定律

1、内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间距离r的平方成反比.

2、公式:

其中G=6.67×10-11 N·m2/kg2,称为引力常量.

3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.

二.万有引力定律的应用

1、行星表面物体的重力:重力近似等于万有引力.

⑴表面重力加速度:因则

⑵轨道上的重力加速度:因则

2、人造卫星

⑴万有引力提供向心力:人造卫星绕地球的运动可看成是匀速圆周运动,所需的向心力是地球对它的万有引力提供的,因此解决卫星问题最基本的关系是:

⑵同步卫星:地球同步卫星,是相对地面静止的,与地球自转具有相同的周期

①周期一定:同步卫星绕地球的运动与地球自转同步,它的运动周期就等于地球自转的周期,T=24 h.

②角速度一定:同步卫星绕地球运动的角速度等于地球自转的角速度.

③轨道一定:所有同步卫星的轨道必在赤道平面内.

④高度一定:所有同步卫星必须位于赤道正上方,且距离地面的高度是一定的(轨道半径都相同,即在同一轨道上运动),其确定的高度约为h=3.6×104 km.

⑤环绕速度大小一定:所有同步卫星绕地球运动的线速度的大小是一定的,都是3.08

km/s,环绕方向与地球自转方向相同.

3、三种宇宙速度

⑴第一宇宙速度:

要想发射人造卫星,必须具有足够的速度,发射人造卫星最小的发射速度称为第一宇宙速度,v1=7.9 km/s。但却是绕地球做匀速圆周运动的各种卫星中的最大环绕速度。

当人造卫星进入地面附近的轨道速度大于7.9 km/s 时,它绕地球运行的轨迹就不再是圆形,而是椭圆形.

⑵第二宇宙速度:

当卫星的速度等于或大于11.2 km/s 时,卫星就会脱离地球的引力不再绕地球运行,成为绕太阳运行的人造行星或飞到其他行星上去,我们把v2=11.2 km/s 称为第二宇宙速度,也称脱离速度。

⑶第三宇宙速度:

当物体的速度等于或大于16.7 km/s 时,物体将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间中去,我们把v3=16.7 km/s 称为第三宇宙速度,也称逃逸速度。

说明:宇宙速度是指发射速度,不是卫星的运行速度。

三、万有引力定律的应用例析 基本方法:

⑴天体运动都可以近似地看成匀速圆周运动,其向心力由万有引力提供

⑵在地面附近万有引力近似等于物体的重力

1、人造卫星的v 、ω、T 、a 与轨道半径r 的关系

r 越大,v 越小。

r 越大,ω越小。

r 越大,T 越大。

r 越大,a 向越小。

补充:V T W a 与r 的正比关系

F ∝

2

1r ;a ∝

21r ; v ∝r 1; ∝3

1r ;T ∝3r 。

规律:越高越慢

2、天体质量M 、密度ρ的估算(以地球为例) ⑴若已知卫星绕地球运行的周期T 和半径 r

①地球的质量:

②地球的密度(设地 球半径R 已知):

⑵若已知卫星绕地 球运行的线速度v 和半径 r

①地球的质量:

②地球的密度(设地 球半径R 已知):

⑶若已知卫星绕地球运行的线速度v 和周期T (或角速度ω)

①地球的质量:

②地球的密度(设地球半径R 已知):

⑷若已知地球半径R 和地球表面的重力加速度g

①地球的质量:

②地球的密度(设地球半径R 已知):

3、卫星变轨和卫星的能量问题

⑴人造卫星在圆轨道变换时,总是主动或由于其他原因使速度发生变化,导致万有引力与向心力相等的关系被破坏,继而发生近心运动或者离心运动,发生变轨。在变轨过程中,由于动能和势能的相互转化,可能出现万有引力与向心力再次相等,卫星即定位于新的圆轨道。

⑵轨道半径越大,速度越小,动能越小,重力势能越大,但机械能并不守恒,且总机械能也越大。也就是轨道半径越大的卫星,运行速度虽小,但发射速度越大。 ⑶解卫星变轨问题,可根据其向心力的供求平衡关系进行分析求解 ①若 F 供=F 求,供求平衡——物体做匀速圆周运动. ②若 F 供<F 求,供不应求——物体做离心运动. ③若 F 供>F 求,供过于求——物体做向心运动.

卫星要达到由圆轨道变成椭圆轨道或由椭圆轨道变成圆轨道的目的,可以通过加速(离心)或减速(向心)实现.

⑷速率比较:同一点上,外轨道速率大;同一轨道上,离恒星(或行星)越近速率越大.

⑸加速度与向心加速度比较:同一点上加速度相同,外轨道向心加速度大;同一轨道上,近地点的向心加速度大于远地点的向心加速度。

4.近地卫星、赤道上物体及同步卫星的运行问题

近地卫星、同步卫星和赤道上随地球自转的物体三种匀速圆周运动的异同: 1.轨道半径:r 同>r 近=r 物 2.运行周期:T 同=T 物>T 近 3.向心加速度:a 近>a 同>a 物

5.双心问题

在天体运动中,将两颗彼此距离较近的恒星称为双星.

它们围绕两球连线上的某一点做圆周运动.由于两星间的引力而使它们在运动中距离保持不变.已知两星质量分别为 M1 和M2,相距 L ,求它们的角速度.

如图 ,设 M1的轨道半径为 r1,M2 的轨道半径为 r2,由于两星绕 O 点做匀速圆周运动的角速度相同,都设为ω,根据万有引力定律有:

1.双星系统模型的特点:

(1)两星都绕它们连线上的一点做匀速圆周运动,故两星的角速度、周期相等.

3

22)(33R h R GT GT +==

近ππρ(2)两星之间的万有引力提供各自做匀速圆周运动的向心力,所以它们的向心力大小相等;

(3)两星的轨道半径之和等于两星间的距离,即r 1+r 2=L . 2.双星系统模型的三大规律: (1)双星系统的周期、角速度相同. (2)轨道半径之比与质量成反比.

(3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星个体的质量无关.

6.三星模型

宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星等间距地位于同一直线上,外侧的两颗星绕中央星在同一圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.

附录:万有引力相关公式

1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)

2公式:G 2r

Mm =ma n ,又a n =r )T 2(r r v 22

2π=ω=

3求中心天体的质量M 和密度ρ

由G 2r

Mm ==m 2

ωr =m r

)T 2(2π?M=

232GT r 4π (恒量=23

T

r

) ρ=233

3

3

43T GR r R M ππ=(当

r=R

即近地卫星绕中心天体运行时)?ρ=2

G T 3π

=

(M=ρV 球=ρπ34r 3) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠=2πRh

轨道上正常转:

题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。

【讨论】(v 或E K )与r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小

的发射速度); T 最小=84.8min=1.4h

①沿圆轨道运动的卫星的几个结论: v=

r

GM ,3

r GM =

ω,T=GM

r 23π

②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v 第一宇宙=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h ③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V 同步=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o /h(地理上时区) a=0.23m/s 2 ④运行速度与发射速度、变轨速度的区别

⑤卫星的能量,地面上需要的发射速度越大⑦卫星在轨道上正常运行时处于完全失重状态,与重力有关的实验不能进行

⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天

例题精讲

1. 对万有引力定律的理解

(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。 (2)公式表示:F=

2

2

1r m Gm 。 (3)引力常量G :①适用于任何两物体。 ②意义:它在数值上等于两个质量都是1kg 的物体(可看成质点)相距1m 时的相互作用力。 ③G 的通常取值为G=6。67×10-11Nm 2/kg 2。是英国物理学家卡文迪许用实验测得。④一个重要物理常量的意义:根据万有引力定律和牛顿第二定律可得:G

2

r

Mm =mr 2

)2(T π∴k GM

T r ==2

234π

.这实际上是开普勒第三定律。它表明k T r =23是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。

(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。 ②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r 是指两球心间的距离。 ③当所研究物体不能看成质点时,可以

把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路) (5)万有引力具有以下三个特性:

①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。 ②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。

③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。天体间的主要作用力就是万有引力了。 【例1】设地球的质量为M ,地球的半径为R ,物体的质量为m ,关于物体与地球间的万有引力的说法,正确的是: A 、地球对物体的引力大于物体对地球的引力。

B 、物体距地面的高度为h 时,物体与地球间的万有引力为F=2

h

GMm 。

C 、物体放在地心处,因r=0,所受引力无穷大。

D 、物体离地面的高度为R 时,则引力为F=2

4R

GMm

答案D

〖总结〗(1)物体与地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。 (2)F=

2

2

1r m Gm 。中的r 是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。

(3)F=

2

2

1r m Gm 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C 的推理是错误的。 【例2】对于万有引力定律的数学表达式F=2

2

1r

m Gm ,下列说法正确的是: A 、公式中G 为引力常数,是人为规定的。 B 、r 趋近于零时,万有引力趋于无穷大。

C 、m 1、m 2之间的引力总是大小相等,与m 1、m 2的质量是否相等无关。

D 、m 1、m 2之间的万有引力总是大小相等,方向相反,是一对平衡力。 答案C

2.关于万有引力和重力的关系

地面上物体所受万有引力F 可以分解为物体所受的重 力mg 和随地球自转而做圆周运动的向心力F ’。 其中2

R

Mm G

F = 2

ωmr F =' ① 当物体在赤道上时,F 、mg 、F ’三力同向,此时满足F ’+mg =F ② 当物体在两极点时,F ’=0 ,F=mg=2R

Mm

G

③ 当物体在地球的其他位置时,三力方向不同。

【例3】 地球赤道上的物体由于地球自转产生的向心加速度a =3.37×10-2 m/s 2,赤道上重力加速度g 取10m/s 2 试问:

(1)质量为m kg 的物体在赤道上所受的引力为多少?

(2)(2)要使在赤道上的物体由于地球的自转而完全失重,地球自转的角速度应加快到实际角速度的多少倍?

解析:(1)物体所受地球的万有引力产生了两个效果:一是使物体竖直向下运动的重力,一是提供物体随地球自转所需的向心力,并且在赤道上这三个力的方向都相同,有F 引=mg+F 向=m(g+a)=m(9.77+3.37×10-2)=9.804m(N)

(2)设地球自转角速度为ω,半径为R ,则有a =ωR ,欲使物体完全失重,即万有引力完全提供了物体随地球自转所需的向心力,即m ω’R =F 引=9.804m ,解以上两式得ω’=17.1ω. 3.计算重力加速度

1、 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。

g=G 2R M =6.67*11

10-*2

324)

10*6730(10*98.5=9.8(m/2s )=9.8N/kg 即在地球表面附近,物体的重力加速度g =9.8m/2s 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。

2、 即算地球上空距地面h 处的重力加速度g ’。有万有引力定律可得:

g ’=2)(h R GM +又g =2R GM ,∴g g '=2

2

)

(h R R +,∴g ’=2)(h R R +g 3 计算任意天体表面的重力加速度g ’。有万有引力定律得: g ’=2

''

R GM (M ’为星球质量,R ’卫星球的半径),又g =2R GM ,

g g '=

2

)'

('R R M M ?。 4.估算中心天体的质量和密度

1 中心天体的质量,根据万有引力定律和向心力表达式可得:G

2

r Mm

=mr 2

)2(T

π,∴M =2324GT r π

2 中心天体的密度

方法一:中心天体的密度表达式ρ=

V M ,V =34

3

R π(R 为中心天体的半径),根据前面M 的表达式可得:ρ=3

23

3R

GT r π。当r =R 即行星或卫星沿中心天体表面运行时,ρ=

2

3GT π

。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T ,就可简捷的估算出中心天体的平均密度。

方法二:由g=2R

GM ,M=G gR 2进行估算,ρ=V M ,∴ρ=R G g

π43

地球的同步卫星(通讯卫星)

同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,同步卫星的运行方向与地球自转方向相同,周期T=24h ,同步卫星又叫做通讯卫星。 同步卫星必定点于赤道正上方,且离地高度h ,运行速率v 是唯一确定的。 设地球质量为m ',地球的半径为6R=6.410m ×,卫星的质量为m ,根据牛顿第二定律()

()2

2

m m

2πG

=m R+h T R+h '??

???

设地球表面的重力加速度2g=9.8m s ,则2Gm =R g '

以上两式联立解得:

7=4.210m

×

同步卫星距离地面的高度为

()767h=4.210 6.410m=3.5610m ×××-

注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别

在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R ,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。

地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。

赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度

224πR

a=T

≈20.034m s ;而绕地球表面运行的近地卫星,其线速度即我们所说的

第一宇宙速度,

它的周期可以由下式求出:2

22Mm 4πG =m R R T

求得T=2R 与质量,可求出地球近地卫星绕地球的运

行周期T 约为84min ,此值远小于地球自转周期,而向心加速度

2

2GM a =

=9.8m R

'远大于自转时向心加速度。 【例4】 已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8m/s 2,地球半径R =6.4×104m ,可求得地球的质量为多少?(结果保留一位有效数字) 解析:在地球表面质量为m 的物体所受的重力等于地球对物体的引力,有

mg R

Mm G =2 ,得kg kg G R g M 24

112

62106106.67106.48.9?=???==-)( 【例5】一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量 A .飞船的轨道半径 B .飞船的运行速度 C .飞船的运行周期 D .行星的质量

解析:“飞船在某行星表面附近沿圆轨道绕该行星飞行”,可以认为飞船的轨道半径与行星的半径相等,飞船做圆周运动的向心力由行星对它的万有引力提供,由万有引力定律和牛顿第二定律:R T m R

Mm G

2

2

)2(π=, 由上式可知: 2233

443

4GT R M ?=?π

ππ

,即行星的密度2

3GT

π

ρ=

; 上式表明:只要测得卫星公转的周期,即可得到行星的密度,选项C 正确。

【例6】已知地球的半径为R=6400km ,地球表面附近的重力加速度

2g=9.8m s ,若发射一颗地球的同步卫星,使它在赤道上空运转,其高度和速

度应为多大?

[思路分析]:设同步卫星的质量为m ,离地面的高度的高度为h ,速度为v ,周期为T ,地球的质量为M 。同步卫星的周期等于地球自转的周期。

2Mm

G =mg R ① ()

()2

2

Mm

2πG

=m R+h T R+h ??

???

由①②两式得

3

7

640010m

3.5610m

=-?

=?

又因为

()()

2

2

Mm v

G=m

R+h

R+h

由①③两式得

3

m s 3.110m

==?

[答案]:3

7

h 3.5610m v 3.110m s

=?=?

[总结]:此题利用在地面上

2

Mm

G=mg

R

和在轨道上

()

()2

2

Mm2π

G=m R+h

T

R+h

??

?

??

两式联立解题。

【例7】下面关于同步卫星的说法正确的是()

A .同步卫星和地球自转同步,卫星的高度和速率都被确定

B .同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小

C .我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低

D .同步卫星的速率比我国发射的第一颗人造卫星的速率小

[答案]:ACD

5.双星问题

【例8】两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动,现测得两星中心距离为R,其运动周期为T,求两星的总质量?

2

21L m m 答案 4π2r 3/GT 2

【例9】两颗靠得很近的恒星,必须各以一定的速率绕它们连线上某一点转动,才不至于由于万有引力的作用而将它们吸引到一起.已知这两颗恒星的质量为m1、m2,相距L ,求这两颗恒星的转动周期. 解

析:由万有引力定律和向心力公式来求即可.m1、m2做匀速圆

周运动的半径分别为R1、R2,它们的向心力是由它们之间的万有引力提供,所以

G =m122

4T πR1

G 2

2

1L m m =m2224T πR2

② R1+R2=L

由①②③得:

1

2

21m m R R =,得:R1=

2

12m m m +L

代入①式

T2=)(442122222

122m m L

m Gm L Gm R L +?

=ππ 所以:T =2π)

(213

m m G L + 答案:2π)

(213

m m G L +

第四节 万有引力与天体运动

创新训练

1.同步卫星离地心距离为r ,运行速率为v1,加速度为a1,地球赤道上物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R ,则( AD ) A. a1/a2=r/R B. a1/a2=R2/r2 C. v1/v2=R2/r2 D. v1/v2 r R /=

2.若航天飞机在一段时间内保持绕地球地心做匀速圆周运动则( C ) A.它的速度大小不变

B.它不断地克服地球对它的万有引力做功

C.它的动能不变,重力势能也不变

D.它的速度大小不变,加速度等于零

3.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗天体各有一颗靠近

表面飞行的卫星,并测得两颗卫星的周期相等,以下判断错误的是( B )

A .天体A 、

B 表面的重力加速度与它们的半径成正比 B .两颗卫星的线速度一定相等

C .天体A 、B 的质量可能相等

D .天体A 、B 的密度一定相等 4.将卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同步轨道3。轨道1、2相切于Q 点,2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( BD )

A .卫星在轨道3上的速率大于轨道1上的速率。

B .卫星在轨道3上的角速度大于在轨道1上的角速度。

C .卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度。

D .卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点时的加速度。

P

5.关于万有引力公式F =G m1m2

r2

,以下说法中正确的是

( C )

A .公式只适用于星球之间的引力计算,不适用于质量较小的物体

B .当两物体间的距离趋近于0时,万有引力趋近于无穷大

C .两物体间的万有引力也符合牛顿第三定律

D .公式中引力常量G 的值是牛顿规定的

6.一宇航员在某星球上以速度v 0竖直上抛一物体,经t 秒落回原处,已知该星球半径为R 那么该星球的第一宇宙速度是( B ) A.v 0t R

B.

2v 0R

t

C.

v 0R t

D.

v 0Rt

解析 设该星球表面重力加速度为g ,由竖直上抛知识知,t =2v 0g ,所以g =2v 0

t

;由牛顿1.

7.如图7所示,飞船从轨道1变轨至轨道2.若

飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于 在轨道1上,飞船在轨道2上的 ( CD )

A .动能大

B .向心加速度大

图7

C .运行周期长

D .角速度小

解析 飞船绕中心天体做匀速圆周运动,其万有引力提供向心力,即F

引=F 向,所以

GMm r 2=ma 向=m v 2r =4π2mr T 2=mrω2,即a 向=GM r 2,E k

=12m v 2=GMm 2r ,T = 4π2r 3

GM

,ω= GM r 3(或用公式T =2π

ω求解).因为r 1E k2,a 向1>a 向2,T 1ω2,选项C 、D 正确.

8.关于环绕地球运动的卫星,下列说法正确的是

( B )

A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期

B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率

C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同

D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合

解析 根据开普勒第三定律,a 3

T

2=恒量知,当圆轨道的半径R 与椭圆轨道的半长轴a 相

等时,两卫星的周期相等,故选项A 错误;卫星沿椭圆轨道运行且从近地点向远地点运行时,万有引力做负功,根据动能定理知,动能减小,速率减小;从远地点向近地点移动时动能增加,速率增大,且两者具有对称性,故选项B 正确;所有同步卫星的运行周期相等,根据G Mm r 2=m (2π

T )2r 知,同步卫星轨道的半径r 一定,故选项C 错误;根

据卫星做圆周运动的向心力由万有引力提供,可知卫星运行的轨道平面过某一地点时,轨道平面必过地心,但轨道平面不一定重合,故北京上空的两颗卫星的轨道平面可以不重合,选项D 错误.

9.2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v 1

v 2等于( B )

A.

R 3

1R 3

2 B. R 2

R 1 C.R 22R 21

D.R 2R 1

解析 “天宫一号”运行时所需的向心力由万有引力提供,根据G Mm R 2=m v 2R 得线速度v

GM

R ,所以v 1v 2

= R 2

R 1

,故选项B 正确,选项A 、C 、D 错误. 10.由于通信和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的

( A )

A .质量可以不同

B .轨道半径可以不同

C .轨道平面可以不同

D .速率可以不同

答案 A

解析 同步卫星运行时,万有引力提供向心力,GMm r 2=m 4π2T 2r =m v 2r ,故有r 3T 2=GM

4π2,v

GM

r

,由于同步卫星运行周期与地球自转周期相同,故同步卫星的轨道半径大小是确定的,速度v 也是确定的,同步卫星的质量可以不同.要想使卫星与地球自转同步,轨道平面一定是赤道平面.故只有选项A 正确. 第二定律得:mg =m v 2

R

,所以v =gR =

2v 0R

t

.

10.天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5 382秒的运行轨道.由此可知( AD )

A .天宫一号在该轨道上的运行周期比同步卫星的运行周期短

B .天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小

C .天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小

D .天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小 解析 由题意知天宫一号的轨道半径比同步卫星要小,由GMm r 2=m v 2

r 知v =

GM

r

,即v 天>v 同.由GMm r 2=mr 4π2

T 2知T =

4π2r 3GM ,知T 天

r

2,从而a 天>a 同.故选项A 、D 正确.

11.“天宫一号”被长征二号火箭发射后,

准确进入预定轨道,如图所示,“天宫一号”在轨道1上运行 4周后,在Q 点开启发动机短时间加速,关闭发动机后,“天宫 一号”沿椭圆轨道2运行到达P 点,开启发动机再次加速,进入 轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上

图1

正常运行时,下列说法正确的是

( D )

A .“天宫一号”在轨道3上的速率大于在轨道1上的速率

B .“天宫一号”在轨道3上的角速度大于在轨道1上的角速度

C .“天宫一号”在轨道1上经过Q 点的加速度大于它在轨道2上经过Q 点的加速度

D .“天宫一号”在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度 解析 根据v =

GM

r

,可知v 3

r 3

可知ω3<ω1,选项B 错误;加速度与万有引力大小有关,r 相同,则a 相同,与轨道无关,选项C 错误,选项D 正确.

12. 一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( B ) A.m v 2GN

B.m v 4GN

高三物理一轮复习专题5万有引力定律(含高考真题)

专题5 万有引力定律 1.(15江苏卷)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕.“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径为 1 20 ,该中心恒星与太阳的质量比约为 A . 1 10 B .1 C .5 D .10 答案:B 解析:根据2224T r m r GMm π?=,得2 3 24GT r M π=, 所以 14 365201)()(23251351=?=?=)()(地地日恒T T r r M M . 2.(15北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么 A.地球公转周期大于火星的公转周期 B .地球公转的线速度小于火星公转的线速度 C .地球公转的加速度小于火星公转的加速度 D .地球公转的角速度大于火星公转的角速度 答案:D 解析:根据万有引力公式与圆周运动公式结合解题.再由地球环绕太阳的公转半径小于火星环绕太阳的公转半径,利用口诀“高轨、低速、大周期”能够非常快的判断出,地球的轨道 “低”,因此线速度大、周期小、角速度大.最后利用万有引力公式a=2 R GM ,得出地球的 加速度大. 因此为D 选项. 3.(15福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2, 线速度大小分别为v 1 、 v 2.则 ( ) 12. v A v = 12B.v v = 21221C. ()v r v r = 21122 C.()v r v r =

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

万有引力和天体运动

万有引力和天体运动 一、知识点击 1.开普勒定律 第一定律(轨道定律):所有行星分别在大小不同的椭圆轨道上围绕太阳运动。太阳是在这些椭圆的一个焦点上。 第二定律(面积定律):对每个行星来说,太阳和行星的连线(叫矢径)在相等的时间内扫过相等的面积。“面积速度”: 1 sin 2 S r t υθ?=?(θ为矢径r 与速度υ的夹角) 第三定律(周期定律):所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值 相等。即:2 3T a =常量. 2.万有引力定律 ⑴万有引力定律:自然界中任何两个物体都是相互吸引的.任何两个质点之间引力的大小跟这两个质点的质量的乘积成正比,跟它们的距离的二次方成反比. 2 Mm F G r = , 1122 6.6710/G N m kg -=??,称为引力常量. ⑵重力加速度的基本计算方法 设M 为地球的质量,g 为地球表面的重力加速度. 在地球表面附近(h R << )处:2Mm G mg R =,2 2 GM g R ==9.8m/s 在地球上空距地心r=R+h 处:2r M g G r =, 222()r g R R g r R h ==+ 在地球内部跟离地心r 处:3 2244 33 r r r M g G G G r r r πρπρ===,r g r g R = , r r g g R = 3.行星运动的能量 ⑴行星的动能 当一颗质量为m 的行星以速度υ 绕着质量为M 的恒星做平径为r 的圆周运动: 2122K Mm E m G r υ= = ,式中υ=

⑵行星的势能 对质量分别为M 和m 的两孤立星系,取无穷远处为万有引力势能零点,当m 与M 相距 r 时,其体系的引力势能:P Mm E G r =- ⑶行星的机械能:2122K P Mm Mm E E E m G G r r υ=+=-=- 4.宇宙速度和引力场 ⑴宇宙速度(相对地球) 第一宇宙速度:环绕地球运动的速度(环绕速度). 第二宇宙速度:人造天体发射到地球引力作用以外的最小速度(脱离速度). 第三宇宙速度:使人造天体脱离太阳引力范围的最小速度(逃逸速度). ⑵引力场、引力半径与宇宙半径. 对于任何一个质量为M ,半径为r 的均匀球形体系都有类似于地球情况下的这两个特征 速度.如果第二宇宙速度超过光速,即c < 22GM r c < 在这种物体上,即使发射光也不能克服引力作用,最终一定要落回此物体上来,这就是牛顿理论的结论,近代理论有类似的结论,这种根本发不了光的物体,被称为黑洞,这个临界的r 值被称为引力半径,记为2 2g GM r c = 用地球质量代入,得到r g ≈0.9 cm ,设想地球全部质量缩小到1 cm 以下的小球内,那么外界就得不到这个地球的任何光信息. 如果物质均匀分布于一个半径为r 的球体内,密度为ρ,则总质量为343 M r πρ= 又假设半径r 正好是引力半径,那么32 4 23g g G r r c πρ?=,得1223()8g c r G πρ= 此式表示所设环境中光不可能发射到超出r g 的范围,联想起宇宙环境的质量密度平均值为10-29g/cm 3,这等于说,我们不可能把光发射到1028cm 以外的空洞,这个尺度称为宇宙半径. 二、方法演练 类型一、天体运动中一类应用开普勒定律的问题,解这类问题时一定要注意运动的轨道、面积、周期,但三者之间也是有关联的,正因为如此,解题时要特别注意“面积速度”。 例1.要发射一艘探测太阳的宇宙飞船,使其具有与地球相等的绕日运动周期,以便发射一年 后又将与地球相遇而发回探测资料。在地球发射这一艘飞船时,应使其具有多大的绕日

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

5万有引力

万有引力 一、选择题 1、(上海崇明县期终考试)我们的银河系的恒星中大约四分之一是双星。某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动。由天文观察测得其运动周期为T 。S 1到C 点的距离为r 1,,S 1和S 2的距离为r ,已知引力常量为G 。由此可求出S 2的质量为( D ) (A )212)(4GT r r r -π ; (B) 2 314GT r π (C ) 23 4GT r π ; (D )2124GT r r π 2、(上海长宁区期终考试)我国神舟六号载人飞船圆满完成太空旅程,凯旋而归.飞船的升空和返回特别令人关注,观察飞船运行环节的图片,下列正确的说法是 [ BD ] A .飞船抛助推器,使箭、船分离,其作用是让 飞船获得平衡. B .飞船的变轨发动机点火工作,使得飞船由椭 圆轨道变为圆轨道. C .飞船与整流罩分离后打开帆板,其作用是让 飞船飞得慢一些. D .飞船返回时要转向180 o ,让推进舱在前,返 回舱在后,其作用是减速变轨. 3、(上海黄浦区期终考试)神舟六号载人飞船2005年10月12日升空,在太空环绕地球飞行77圈后于10月17日顺利返回,这标志着我国航天事业又迈上了一个新台阶。假定正常运行的神舟六号飞船和通信卫星(同步卫星)做的都是匀速圆周运动。下列说法正确的是 …………( C ) A.神舟六号飞船的线速度比通信卫星的线速度小 B.神舟六号飞船的角速度比通信卫星的角速度小 C.神舟六号飞船的运行周期比通信卫星的运行周期小 D.神舟六号飞船的向心加速度比通信卫星的向心加速度小 4、(上海浦东新区期终考试)2005年10月12日9时“神舟六号”载人飞船发射升空,进入预定轨道后绕地球自西向东作匀速圆周运动,每90min 转一圈。航天员费俊龙、聂海胜在轨道舱作了许多科学实验,10月17日凌晨4时33分返回舱成功着陆。着地前1.5m 返回舱底座发动机开始向下喷气,返回舱垂直着地,“神舟六号”航天实验圆满完成。关于“神舟六号”下列说法正确的是( ABC )。 A .航天员在24h 内可以见到日落日出的次数应为16次 B .载人飞船的轨道高度小于地球同步卫星的轨道高度 C .载人飞船绕地球作匀速圆周运动的速度略小于第一宇宙速度7.9km/s D .在着地前1.5m 内宇航员处于失重状态 5、(上海青浦区期终考试)随着“神舟6号”的发射成功,可以预见,随着航天员在轨道

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

2017届高考物理二轮复习训练:5万有引力定律及其应用:含解析

训练5 万有引力定律及其应用 选择题(本大题共10小题,每小题10分,共100分.第1~5题只有一项符合题目要求,第6~10题有多项符合题目要求.) 1.(2016· 全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律 C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D .开普勒总结出了行星运动的规律,发现了万有引力定律 解析:本题考查开普勒和牛顿在行星运动方面的主要成就,意在考查学生对相关物理学史的理解和识记能力. 开普勒在第谷的观测数据的基础上,总结出了行星运动的规律,B 项正确;牛顿在开普勒总结的行星运动规律的基础上发现了万有引力定律,找出了行星运动的原因,A 、C 、D 项错. 答案:B 2.宇航员站在星球表面上从某高度处沿水平方向抛出一小球,经过时间t 小球落回星球表面,测得抛出点和落地点之间的距离为L ,若抛出时的速度增大为原来的2倍,则抛出点到落地点之间的距离为3L .已知两落地点在同一水平面上,该星球半径为R ,引力常量为G ,则该星球的质量为( ) A.4LR 23Gt 2 B.3LR 2 2Gt 2 C.2LR 23Gt 2 D.3LR 2 4Gt 2 解析:据题意,由平抛运动规律,可得抛出点距离星球表面高度为h =12gt 2,若 抛出时的速度增大为原来的2倍,则水平位移增大为原来的2倍,x 2+h 2=L 2,(2x )2 +h 2=(3L )2,而g =GM R 2,联立解得M =2LR 23Gt 2 ,故选项C 正确. 答案:C 3.(2016· 北京卷)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( ) A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同 B .不论在轨道1还是轨道2运动,卫星在P 点的加速度都相同 C .卫星在轨道1的任何位置都具有相同加速度 D .卫星在轨道2的任何位置都具有相同动量 解析:本题考查万有引力定律、牛顿第二定律和动量的定义,意在考查学生的理解能力和分析能力. 卫星由轨道1进入轨道2,需在P 点加速做离心运动,故卫星在轨道2运行经过P 点时的速度较大,A 项错误;由G Mm r 2=ma 可知,不论在轨道1还是在轨道2运行, 卫星在P 点的加速度都相同,在轨道1运行时,P 点在不同位置有不同的加速度,B

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

万有引力与天体运动..

万有引力与天体运动 一、开普勒三定律 1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个__________上. 2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的__________相等. 3.开普勒第三定律:所有行星的轨道的__________的三次方跟__________的二次方的比值都相等. 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成________,跟它们的距离的二次方成________. 2.公式:________________ (其中引力常量G =6.67×10-11 N·m 2/ kg 2). 3.适用条件:公式适用于质点间的相互作用.当两个物体间的距离远大于物体本身的大小时,物体可视为质点,均匀的球体视为质点时,r 是两球心间的距离. 【对点检测】 一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,该星球的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受万有引力的( ) A .1 4 B .1 2 C .2倍 D .4倍 三、天体运动问题的分析 1.运动学分析:将天体或卫星的运动看成_________________运动.

2.动力学分析:(1)万有引力提供__________,即F 向=G Mm r 2=ma =m v 2r =mω2 r =m ? ??? ?2πT 2r .(2)在星球表面附近物体所受万有引力近似等于__________,即G Mm r 2=mg (g 为星球表面的重力加速度). 考点一 万有引力的计算和应用 1.万有引力的特点:两个物体相互作用的引力是一对作用力和反作用力,它们大小相等,方向沿两物体的连线且相反,分别作用在两个物体上,其作用效果一般不同. 2.万有引力的一般应用: 万有引力的一般应用问题主要涉及万有引力的基本计算、天体质量和密度的计算等.在这类问题的分析中应注意:(1)万有引力公式F =G m 1m 2 r 2中的r 应为两物体球心间距,如果某一物体内部存在球形空腔,则宜采取“割补法”分析;(2)万有引力提供向心力情景下的天体运动,根据万有引力定律和牛顿第二定律有G m 1m 2 r 2=m 1a ,且a =ω2r =v 2r =? ????2πT 2r ;(3)根据万有引力等于重力,得G Mm R 2=mg ,GM =gR 2(黄金代换公式),利用黄 金代换公式进行天体质量和天体重力加速度之间的代换. 例 1 [2014·北京卷]万有引力定律揭示了天体运行规律与地上物体运动规律具有内在的一致性. (1)用弹簧测力计称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值F 1 F 0 的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道地面称量,弹簧测力计读数为F 2,求比值F 2 F 0 的表达式.

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

步步高考前三个月练习5万有引力定律及应用

步步高考前三个月练习5万有引力定律及应用 1、万有引力定律的发明实现了物理学史上的第一次大统一:“地上力学”和“天上力学”的统一、它说明天体运动和地面上物体的运动遵循相同规律、牛顿在发明万有引力定律的过程中将行星的椭圆轨道运动假想成圆周运动;另外,还应用到了其它的规律和结论,其中有 () A 、开普勒的研究成果 B 、牛顿第二定律 C 、牛顿第三定律 D 、卡文迪许通过扭秤实验得出的引力常量 2、我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T .假设以R 表示月球的半径,那么 () A 、卫星运行时的向心加速度为4π2R T 2 B 、物体在月球表面自由下落的加速度为4π2R T 2 C 、卫星运行时的线速度为2πR T D 、月球的第一宇宙速度为2π R R +h 3TR 3、美国国家科学基金会2017年9月29日宣布,天文学家发明一颗迄今为止与地球最类似的行星,该行星绕太阳系外的红矮星Gliese581做匀速圆周运动、这颗行星距离地球约20光年,公转周期约为37天,它的半径大约是地球的1.9倍,表面重力加速度与地球相近、以下说法正确的选项是 () A 、该行星的公转角速度比地球大 B 、该行星的质量约为地球质量的3.61倍 C 、该行星第一宇宙速度为7.9km/s D 、要在地球上发射航天器到达该星球,发射速度只需达到地球的第二宇宙速度即可 4、美国宇航局2017年12月5日宣布,他们发明了太阳系外第一颗类似地球的、可适合居 住 的行星——“开普勒—22b ”,其直径约为地球的2.4倍、至今其确切质量和表面成分仍不清晰,假设该行星的密度和地球相当,依照以上信息,估算该行星的第一宇宙速度等于 () A 、3.3×103m/s B 、7.9×103m/s C 、1.2×104m/s D 、1.9×104m/s 5、(2018·山东理综·15)2017年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接、任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接、变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对 应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.那么v 1 v 2等于 () A.R 31R 32 B.R 2R 1 C.R 22 R 21 D.R 2R 1 6、(2018·福建理综·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .引力常量为G ,那么这颗行星的质量为 () A.mv 2 GN B.mv 4GN C.Nv 2Gm D.Nv 4Gm

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

天体运动和万有引力总结

精心整理 天体运动总结 1. 开普勒三定律 1.1所有绕太阳运动的行星轨道都是椭圆,太阳在椭圆的一个焦点上(后简化为所有轨道都是圆,太阳在圆心上),注意:第一定律只是描述了一个图像,并没有需要计算的东西,而且太阳究竟在哪个焦点上还得看第二定律 1.2对于某一颗行星来说,它的扫面速度是恒定的。这句话也可以说成是:离太阳越近,速度越大。这是判断近日点远日点的根据。 第二定律有个计算是研究近日点远日点速度与到太阳距离关系的。 ab 2.m 1的错误,将会直接导致后面计算错误。 C.万有引力的方向肯定在两物体之间的连线上而指向对方 D.甲对乙的引力和乙对甲的引力是一对作用力反作用力 2.2万有引力的规律 2.2.1从公式上来看,当两个物体质量一定时,万有引力随着距离的增大而减小,并且 和距离的“平方”成反比。所以一定要养成这样的意识,距离是原来n 倍,力就 变为原来的n 2分之一倍,或者,力变为原来的n 分之一倍,倍。这样会缩短做题时间,一般做题的时候不要在这方面浪费时间。 2.2.2地球对地球表面的物体都有吸引力,这个力就表现在重力上,但要清楚,重力只

是万有引力的一个分力。可以这么想:万有引力首先得提供物体由于随地球自转 而所需的向心力,剩下来的那部分就是重力。这样就需要注意,向心力指向自转 轴,所以重力就不能指向地心了。又由于这个向心力很小,所以重力很接近万有 引力。当然,地球不同纬度所需向心力是不同的,赤道所需向心力最大,两极点 不需要向心力,所以赤道表面的重力加速度最小,两极点重力加速度最大。 2.2.3一个物体受到另一个物体的吸引力和第三个物体无关,所以太空中一个物体所受 吸引力应为所有其他物体对它的吸引力的矢量和,只不过我们现在所考虑的都是 吸引力最大的那个力(其他的引力比起这个引力小的不是一点半点)。不过也有例 外情况,最常见的就是在地球和月球的连线上,肯定会有那么一个点,使得地球 和月球对这一点上的物体的吸引力大小相等方向相反。 3.天体运动 参阅八大行星的公转周期。 3.4关于开普勒第三定律 上面三个公式推导过程都是用了万有引力提供向心力,从 2 2 2 Mm G m r r T π ?? = ? ?? 可知: 3 22 4 r GM Tπ =,只要中心天体质量M一样,那么轨道半径的三次方和周期平方只比就 是固定值,这也就是为什么第三定律在应用时必须绕同一中心天体。 其实我们可以推导出这样的定律: 对于所有绕同一中心天体运动的行星来说,轨道半径的三次方与角速度的平方的乘积是固定值

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

万有引力定律与天体运动知识总结

万有引力定律与天体运动知识总结 一、开普勒行星运动定律 1) 轨道定律:近圆,太阳处在圆心(焦点)上 2) 面积定律:对任意一个行星来说, 它与太阳的连线在相等的时间内扫过的面积相等。 K= k 取决于中心天体 3) 周期定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值相等。 k= ,[r 为轨道半径] 二、万有引力定律 F 引=2r Mm G G=6.67×10-11Nm 2/kg 2 卡文迪许扭秤 测量出来 三、重力加速度 1. 星体表面:F 引≈G =mg 所以:g = GM/ R 2(R 星体体积半径) 2. 距离星体某高度处:F ’引 ≈G’ =mg ’ 3. 其它星体与地球 重力加速度的比值 四、星体(行星 卫星等)匀速圆周运动 状态描述 1. 假设星体轨道近似为圆. 2. 万有引力F 引提供星体圆周运动的向心力Fn F n =r m v 2 F n=22T mr 4π F n = m ω2r Fn=F 引 r m v 2=2r Mm G =2 2T mr 4π = m ω2r r GM v =,r 越大,ν越小; 3r GM =ω,r 越大,ω越小 GM r T 3 24π=,r 越大,T 越大。 23 T a 23T r

3. 计算中心星体质量M 1) 根据 g 求天体质量 mg= M= M 为地球质量,R 为物体到地心的距离 2 )根据环绕星体的圆周运动状态量, F 引=Fn 2r Mm G =22T mr 4π M= (M 为中心天体质量,m 为行星(绕行天体)质量 4. 根据环绕星体的圆周运动状态量(已知绕行天体周期T ,环绕半径≈星体半径), 计算中心星体密度ρ ρ=v m =323R GT r 3π [v=3r 34π] 若r≈R ,则ρ=2GT 3π 5. 计算卫星最低发射速度 (第一宇宙速度VI = (近地)= (r 为地球半径 黄金代换公式) 第一宇宙速度(环绕速度):s km v /9.7=; 第二宇宙速度(脱离速度,飞出地月系):s km v /2.11=; 第三宇宙速度(逃逸速度,飞出太阳系):s km v /7.16=。 6. 人造卫星上失重的现象 分析卫星上某物体受合力及圆周运动的状态 F 万 – N = m v 2/r 物体视重 N= F 万 - m v 2/r ( r=R 地 + h ) ∵F 万 = m v 2/r ∴ N=0 即卫星在围绕地球做圆周运动时,它上面物体处于失重状态 7. 同步卫星升轨,全球通信 8. 其它功能人造卫星: 1)全球定位系统 GPS ,由24颗卫星组成 分布在6个轨道平面 2)人造月球卫星 G 2 23 2GT r 4πr GM

5万有引力

万 有 引 力 一.开普勒三定律 1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上. 2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等. 如图1所示:设行星在A 处的速度为V A ,距太阳的距离为r A ,在B 处的速度为V B , 距太阳的距离为r B ,则由____________________得_________。 3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。 即_____________. 注意:对同一星系中的所有行星,k 值____等;对不同星系间的两颗行星,k 值____等. 比如: 对太阳系中的所有行星,有:R 地3 / T 地2 = R 金3 / T 金2 = R 木3 / T 木2 = R 水3 / T 水2 =……= k 1; 对地球系中的所有行星,有:R 月3 / T 月2 = R 人造卫星3 / T 人造卫星2 = ……= k 2;注意这里k 1_____k 2. 例1:已知某地球卫星的运行轨道为椭圆,近地点与远地点的距离之比为1:9,则对应的速度之比为______. 例2:把火星和地球绕太阳运行的轨道视为圆周。由火星和地球绕太阳的周期之比可求得( ) A .火星和地球的质量之比 B.火星和太阳的质量之比 C. 火星和地球到太阳的距离之比 D.火星和地球绕太阳运行速度大小之比 二.万有引力定律及应用 1.万有引力定律: 表达式:F 引=_________,其中引力常量G =_____________.由英国物理学家________测出,适用条件:两物体的大小与两者之间的距离相比可以忽略不计. 常见规律:当两物间的距离增大为原来的2倍时,其作用力将变为原来的_____倍;当两物间的作用力变为原来的2倍时,其距离应变为原来的______倍. 2.万有引力定律在地(星)球表面的应用:对地球表面上静止的物体m: 由mg = ________,有: (1)地(星)球表面物体的重力加速度:g = __ _; (2)地(星)球的质量:M =___________;据此人们称卡文迪许为“ 能称出地球质量的人”. (3)一个重要的关系式:GM = gR 2 . 3.重力的产生:考虑到地球的自转影响,地球表面物体的重力实际上并不等于万有引力,而只是万有引力的一个分力(另一个分力为物体绕地球转动所需的向心力),如图2-1所示,由此可见:同一物体在赤道处所受的重力____(大、小)于在两极处所受的重力. 例1:地球表面的重力加速度为g ,地球半径为R ,若高空中某处的重力加速度为g/2,则该 处 距地球表面的高度为________. 例2:A 、B 两颗行星,质量之比为M A :M B =p,半径之比R A :R B =q,则两行星表面的重力加速度之比为______. 例3: (08年东城三模)2007年10月29日18时01分,嫦娥一号卫星成功实施入轨后的第 三 次变轨。30日17时40分,嫦娥一号卫星到达48小时周期轨道远地点,距地面高度12万公里,创下中国航天器飞行测控新纪录。已知地球半径6400公里,则在距地面12万公里高处,嫦娥一号卫星所受地球的万有引力与绕地表面飞行时的万有引力大小之比最接近( ) A .1∶20 B .1∶200 C .1∶400 D .1∶600 例4: (09年西城一模)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落 回 原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。已知该星球的半径与地球半径之比为R 星:R 地 = 1 : 4,地球表面重力加速度为g ,设该星球 表面附近的重力加速度为g ′,空气阻力不计。则( ) A .g ′: g = 5 : 1 B .g ′: g = 5 : 2 C .M 星 : M 地 = 1 : 20 D .M 星 : M 地 = 1 : 80 例5:设地球的质量为M ,赤道半径为R ,自转周期为T.则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力常量)( ) A .GMm/R 2 B .22222)/4()/(T mR R GMm π+ C .GmM/R 2-4π2mR/T 2 D .GmM/R 2+4π2mR/T 2 例6:(08年宣武二模)某一颗星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体,水平射程为60m ,如果在该星球上,从相同高度以相同的初速度平抛同一物体,那么其水平射程应为( ) A .10m B .15m C .90m D .360m 例7:( 08年崇文二模)一火箭从地面由静止开始以5m/s 2的加速度匀加速上升,火箭中有一质量为1.6kg 的科考仪器。在火箭上升到距地面某一高度时科考仪器的视重为9N ,则此时火箭离地球表面的距离为地球半径R 的(地球表面处重力加速度g =10m/s 2)( ) 图 1-1 图 2-1 图 2-2

相关文档
最新文档