生物医用材料研发与组织器官修复替代-中国科学技术大学

生物医用材料研发与组织器官修复替代-中国科学技术大学
生物医用材料研发与组织器官修复替代-中国科学技术大学

“生物医用材料研发与组织器官修复替代”

重点专项2018年度项目申报指南

“生物医用材料研发与组织器官修复替代”重点专项旨在面向国家发展大健康产业和转变经济发展方式对生物医用材料的重大战略需求,把握生物医用材料科学与产业发展的趋势和前沿,抢抓生物医用材料革命性变革的重大机遇,充分利用我国生物医用材料科学与工程研究方面的基础和优势,以新型骨骼—肌肉系统、心血管系统材料、植入器械及高值医用耗材为重点,开发一批新产品,突破一批关键技术,培育一批具有国际竞争力的高集中度多元化生产的龙头企业以及创新团队,构建我国新一代生物医用材料产业体系,引领生物医用材料产业技术进步,为我国生物医用材料产业跻身国际先进行列提供科技支撑。

本专项按照多学科结合、全链条部署、一体化实施的原则,鼓励产、学、研、医联合申报,围绕项目的总体目标,部署前沿科学及基础创新、关键核心技术、产品开发、典型示范4大研究

任务,以及涉及前沿科学及基础创新、关键核心技术、产品开发、典型示范等的医用级原材料的研发及产业化、标准和规范研究、临床及临床转化研究3项重点任务。

2018年将继续围绕前沿科学及基础创新、关键核心技术、产品开发、典型示范4大研究任务部署12个方向,拟支持19个项目,国拨经费约为3亿元。实施周期为2018—2020年。

1. 前沿科学及基础创新

1.1纳米生物材料及其纳米生物学效应与风险的基础研究

研究内容:自然组织的纳米结构及其装配;合成纳米生物材料的积极和负面的纳米生物学效应及其临床应用前景和风险,包括:特定自然组织的纳米分层结构及其自装配原理及高通量计算模拟和实验研究,纳米粒子对细胞选择性凋亡和增殖的作用机制研究,纳米生物材料在体内的降解机制、降解产物对组织再生的影响及生物学风险研究,纳米生物陶瓷及复合材料的高生物活性及其产生的机制及与纳米晶粒的化学组成、尺度和结构的关系,

模拟自然组织装配或制备纳米生物材料的软纳米技术探索等。

考核指标:在国内外一流期刊发表12篇以上高水平学术论文(被SCI收录且他引多次,或被学术期刊或权威机构正面点评或推荐等),申请或获得发明专利不少于8项;实验装配或制备硬、软组织纳米材料各1~2种,提供第三方理化检测及生物学试验报告。

拟支持项目数:1~2项。

有关说明:鼓励学科交叉联合申报,并且鼓励海外团队参与合作研究。

1.2材料及组织工程化制品与机体免疫防御和再生系统的相互作用及对组织再生的影响

研究内容:植入材料和组织工程化制品对机体免疫防御和再生系统的作用和调节机制;炎症反应和巨噬细胞对细胞行为和组织再生的影响;植入材料和组织工程化制品中,细胞增殖、分化、回归及材料和宿主免疫再生系统对其影响和机理。

考核指标:揭示植入材料和工程化组织激发的机体免疫耐受机制和材料的调节作用,对机体再生系统的动员和分子调控机制,以及两者的相互作用对组织再生和细胞回归的影响;利用研究结果构建具有低免疫原性的1~2种硬、软组织生物活性材料并通过临床前试验;在国内外一流期刊发表10篇以上高水平学术论文(被SCI收录且他引多次,或被学术期刊或权威机构正面点评或推荐等);申请或获得发明专利不少于5项。

拟支持项目数:1~2项。

有关说明:多学科交叉联合申报,鼓励海外单位团队参与合作研究。

1.3植入材料物理特性对细胞行为、组织结合与再生的调控作用及其分子机制

研究内容:植入材料宏观及表面/界面力学性质(强度、弹性模量、刚性)、表面/界面电荷、电位及分布、晶粒度、粗糙度、拓扑构型,以及孔隙结构(孔隙率、孔隙尺度及分布等)的表征

及其对细胞招募、迁移、锚定、增殖、分化、凋亡及与组织结合的影响及其定性及半定量关系;对组织再生及与软、硬组织结合的影响及分子机制。

考核指标:揭示植入材料物理特性对细胞行为的影响及其转导为细胞内分子信号调控组织再生的机制,及其对材料与硬、软组织结合的影响和机制;基于材料物理特性构建1~2种组织再生性植入器械及2~3种骨键合及经皮或经粘膜生物密封植入器械,并进入临床试验;在国内外一流期刊发表12篇以上高水平学术论文(被SCI收录且他引多次,或被学术期刊或权威机构正面点评或推荐等);申请或获得发明专利不少于8项。

拟支持项目:1~2项。

有关说明:鼓励学科交叉联合申报,并且鼓励海外团队参与合作研究。

2. 关键核心技术

2.1植、介入器械表/界面生物功能化及改性技术

2.1.1肌肉—骨骼系统修复材料和植入器械及其表面改性的工程化技术

研究内容:研究用于肌肉—骨骼系统修复和经皮植入器械的表面生物活化及抗菌等生物功能化改性的工程化技术,包括具有骨诱导性的生物活性陶瓷涂层及复合涂层技术,基体及其深部孔隙表面生物矿化,表面纳米化、接枝功能团等赋予表面生物活性、抗菌、经皮生物密封等生物功能的工程化技术;突破提高涂层与基底材料界面结合强度的关键技术。

考核指标:研发金属及PEEK(聚醚醚酮)等合成高分子材料的表面生物活化改性工程化技术,包括组织诱导性生物活性涂层、表面生物矿化等工程化技术,以及表面掺杂、纳米化、接枝功能团等抗菌或高生物活性等生物功能化技术;要求涂层与基底材料界面结合均匀且强度>40MPa,并具有骨诱导性或经皮生物密封性等;抗菌表面抑菌率≥85%;建立符合GMP(药品生产质量管理规范)要求的中试生产线;应用研发的技术制备具有或兼具

上述生物功能的涂层及表面改性植入器械3种以上,不少于2种申请或获得CFDA(国家食品药品管理总局)产品注册证,其他通过临床前试验;申请或获得发明专利8项以上。

拟支持项目数:1~2项。

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。

2.1.2心脑血管系统修复材料和植/介入器械表面改性技术

研究内容:突破心脑血管系统修复材料和植/介入器械抗凝血、抗组织增生的表面改性技术;针对医用高分子小口径人工血管、人工机械心脏瓣膜、医用导管、脑血管支架等产品,研究开发表面抗凝血和抗组织增生涂层、接枝官能团或生物分子、微图案化以及提高亲水性等改性技术,实现诱导内皮化、抗凝血、抗组织增生,以及防粘连和高润滑性等生物功能。

考核指标:突破4~5种植/介入器械表面抗凝血涂层、接枝官能团或生物分子、微图案化以及超亲水性改性等的关键工程化

技术,建立符合GMP要求的中试生产线;技术用于人工机械瓣膜,优于市售各种同类抗凝血涂层;用于高分子人工血管,可制备直径小于4mm的小口径人造血管;用于脑血管支架,可治疗脑血管缺血性和出血性卒中等疾患;用于输注类和介入治疗等医用导管可替代进口产品,并可较长期(>14天)存留于体内,且无感染,无组织粘连发生。申请或获得CFDA产品注册证3项以上,发明专利8项以上。

拟支持项目数:1~2项。

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。

2.2天然生物材料和组织免疫原性消除技术

2.2.1海洋源生物材料的制备及纯化技术

研究内容:重点研究高纯羧甲基壳聚糖的低成本、规模化的绿色制备工程化技术及其杂蛋白、内毒素的去除纯化和高脱乙酰度的控制技术;海藻酸钠中的杂蛋白、内毒素及杂多酚等去除的

纯化技术;医用海洋源生物材料的纳米颗粒、凝胶、纤维、薄膜、纺织品等的产业化生产技术。

考核指标:研发的羧甲基壳聚糖规模化绿色制备技术较之现有技术节水80%以上,效率提高1倍以上,壳聚糖脱乙酰度达85%以上,重金属≤10μg/g,蛋白质≤0.2%,内毒素≤50 EU/g;海藻酸钠植入材料分子量75~200kDa,古洛糖醛酸含量≥60%,内毒素≤100 EU/g。研发出用于快速止血、心衰治疗、神经导管及创伤敷料等5种以上医用三类新产品,建立符合GMP要求的中试生产线,申请或获得CFDA产品注册证3项以上;纤维、薄膜、纺织品等一、二类产品实现自动化大规模生产;申请或获得发明专利8项以上。

拟支持项目数:1~2项。

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。

2.3纳米生物材料制备技术

2.3.1促进组织再生的纳米生物材料制备及载药技术

研究内容:根据不同组织再生修复的特点和周期,选择典型软、硬组织缺损修复和再生作为模型,研发具有促进缺损或病变组织再生和修复等生物功能的纳米有机、无机药物/活性元素或因子的载体及其制备技术,包括可促进各种组织再生修复的纳米材料及具有多级结构的原位复合纳米材料设计和制备,以及材料中活性元素/因子的固载、控制释放等技术。

考核指标:研发4~5种具有重要应用前景的可促进组织再生的纳米或其原位复合控释载体及其控释(药物、基因、生长因子等)系统的制备技术;申请核心发明专利8项以上;建立符合GMP要求的中试生产线,申请或获得2种以上利用上述关键技术开发的组织修复器械CFDA产品注册证,其它产品进入临床试验。

拟支持项目数:1~2项。

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。

2.4组织工程技术

2.4.1组织工程的生物力学微环境研究及实验技术

研究内容:建立生理和病理条件下组织工程产品或组织工程支架植入后与周围宿主细胞及组织相互作用的生物力学和力学生物学模型,以及生物力学特性测试技术及试验装置;建立基于多孔支架结构传质特性、细胞及组织力学生物学特性、结构组织或器官生物力学强度的计算机仿真模拟技术和组织植入体形态、结构优化设计软件,提供体外试验装置和动物实验验证技术。

考核指标:提供2~3种典型组织或器官的组织工程产品的生物力学优化设计软件及体外试验装置;利用研究结果构建2~3种组织工程产品,并通过动物实验验证,申请或获得发明专利5项以上。

拟支持项目数:1~2项。

有关说明:其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于2:1。

3. 产品开发

3.1组织诱导性生物材料及植入器械

3.1.1关节软骨再生性植入材料研发及功能评价

研究内容:突破可保障关节长期负重功能的可再生软骨的生物材料空间结构设计及制备关键技术;开发针对修复不同类型关节软骨的个性化植入器械和临床植入手术,建立临床手术规范及术后康复计划,包括影像学在内的临床试验评价的术后跟踪统计分析的模型和方法。

考核指标:开发具有负重功能的可再生修复软骨损伤的生物材料,建立产品体内外安全性和有效性检测技术,突破其工程化制备技术,建立符合GMP要求的中试生产线;至少两种产品进入临床试验,不少于1种产品申请或获得CFDA产品注册证;建立相应产品规范化临床手术技术方案;提供示范性手术和视频资料;完成相应产品临床应用专用手术器械的研发;研究制定术后康复指导方案,以及用于临床效果评价及术后跟踪分析模型。申

请或获得发明专利4项以上。

拟支持项目数:1~2项。

有关说明:要求企业牵头,产、学、研、医联合申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.1.2角膜再生性材料

研究内容:研究材料组成、结构对干细胞、角膜上皮细胞、内皮细胞及基质细胞定向生长和分化的影响,突破材料有序结构装配和角膜植入体成型关键技术,建立中试生产线,进行安全性评价及角膜再生有效性评价,开展临床试验。

考核指标:提出角膜构建、再生设计原理,突破人工(高分子)角膜装配的关键工程化技术,制备出透明、生物力学性能良好、生物相容性佳的人工角膜材料,其生物相容性符合ISO10993要求,植入后愈合良好,透光率、生物力学性能等接近正常人眼角膜;建成符合GMP要求的人工角膜中试生产线,申请或获得

CFDA产品注册证;申请或获得发明专利不少于4项。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.1.3眼科高值耗材

研究内容:研发恢复眼眶组织正常生理结构和功能的眼眶软、硬组织再生性材料,揭示材料组织诱导性对眼眶软、硬组织再生及功能的影响;基于新型超支化聚合物和超分子结构的人工玻璃体、新型眼科粘弹剂,以及用于视网膜病变、青光眼治疗等的填充物及药械组合植入器械等;提出上述材料的设计原理,突破工程化制备技术,开展临床试验。

考核指标:眼眶硬、软组织修复材料具有组织再生性,植入器械满足个性化修复要求,建成符合GMP要求的中试生产线,申请或获得CFDA产品注册证至少1项;人工玻璃体植入动物眼内180天以上不出现浑浊现象并可提供有效的视网膜保护,新型

眼科粘弹剂在角膜保护、术后眼压变化等方面优于市售产品,两者完成或进入临床试验,申请或获得CFDA产品注册证不少于1项;1种以上药械组合产品进入临床试验;上述各类材料申请或获得核心发明专利总计10项以上。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.1.4高强度韧带再生性材料

研究内容:以高强度韧带再生和十字韧带修复为主要目标,研发合成高分子基韧带再生性材料,实现韧带的再生或重建;以实现十字韧带与骨的融合为重点,研发十字韧带撕裂后的高效修复材料;扩大材料对其他承力管腔组织修复的应用。

考核指标:除满足临床试验前检验评价要求外,韧带修复材料:拉伸强度>80Mpa,刚度>570N/mm,植入体内6个月后再生韧带拉伸强度≈正常对照的50%;十字韧带—骨融合材料:具

有骨和韧带组织诱导性,韧带与骨固定后8~12周基本实现骨—韧带组织融合,植入后一年拉伸强度不低于对照(自然韧带)50%;韧带再生性材料完成临床试验,建立符合GMP要求的中试生产线,申请或获得CFDA产品注册证;韧带—骨融合材料完成临床试验;申请或获得发明专利6项以上。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.1.5促进成骨细胞增殖且诱导骨组织再生的纳米生物材料

研究内容:研发可预防和治疗骨质疏松的纳米生物材料,重点突破可促进骨细胞增殖和骨组织再生的可注射型纳米材料的设计和制备技术,以及纳米粒子的化学组成、粒度和浓度的优化设计。

考核指标:材料植入后骨质疏松部位成骨相关细胞增殖、分化功能上调,植入后8~12周,新骨生成,骨密度显著提高,用

于骨折修复,骨不连发生率显著低于对照组;研发预防和治疗骨质疏松骨折的可注射型纳米修复材料2种以上,其中不少于1种申请或获得CFDA产品注册证,建立符合GMP的中试生产线;申请或获得发明专利5项以上。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.2血液净化材料和体外循环系统或人工器官

3.2.1生物人工肝

研究内容:优化大规模体外培养肝细胞的新型生物反应器结构、材料与设计,建立新型肝细胞保存运输新技术和新方法;基于人工肝治疗原理构建生物型或混合型人工肝系统,并通过肝衰竭大动物模型实验;构建治疗乙型重型肝炎肝衰竭的有效性和安全性评价体系;在优化新型人工肝治疗仪的基础上,集成含生物反应器、供氧系统等的生物反应箱,优化多变量协同控制策略,

以期获得性能优越的人工肝装置并开展临床试验。

考核指标:建立一次性获取≥1011个成熟肝细胞的生物反应器或系统;研制完成不少于1套新型生物型或混合型人工肝系统及人工肝装置(样机),其中细胞源传代50代细胞不发生分化,细胞功能丢失率≤5%,建立生物型人工肝系统细胞源评价体系,系统毒素清除率≥50%;研究制定产品技术要求,建立评价体系,完成临床试验,申请或获得CFDA产品注册证不少于1项,发明专利不少于5项。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

3.3心脑血管植、介入材料和器械

3.3.1人用红细胞代用品中试工艺优化及功能评价

研究内容:利用现代生物学技术,研制具有携释氧功能的人用红细胞代用品及其工程化制备技术,并建立相关产品的质量评

价技术要求、中试生产质量管理体系、产品的稳定性及药包材与产品的相容性;开展产品用于灵长类动物的安全性和有效性试验研究,重点开展在特殊病理条件下(如超量换血模型、低血容量休克模型等)产品的安全性及有效性研究。

考核指标:产品可有效替代天然人红细胞,无血型限制,适用任何血型人员无明显不良反应;在2~8℃可稳定保存一年以上;中试生产线符合GMP要求,生产规模达到每批次50升以上;完成灵长类动物的安全性和有效性评价;制定产品技术要求,进入临床试验;申请或获得发明专利不少于4项。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,鼓励产学研相结合,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

4. 医用级原材料的研发与标准研究及产业化

4.1医用级原材料的研发与标准研究及产业化

4.1.1新型医用金属材料及其产业化研究

研究内容:研发具备高强度、低模量、无有害杂质、形状记忆、抗感染、可生物降解等性能的新型医用金属和合金,突破均质化、微纳化、低成本、质量稳定等全流程产业化技术;建立中试或产业化生产线,完成临床试验。

考核指标:研发出不含有害元素的高强度低模量钛合金及形状记忆合金,高强度纯钛以及用于矫形外科的可生物降解金属等,建立符合GMP要求的中试或产业化生产线,其中3种以上新产品符合CFDA产品申报指南要求,申请或获得CFDA产品注册证;申请或获得发明专利8项以上。

拟支持项目数:1~2项。

有关说明:要求企业牵头申报,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于3:1。

4.1.2新型医用金属材料及植入器械产品标准及其审评科学基础研究

生物医用材料产业发展现状及思考

生物医用材料产业发展现状及思考生物医用材料是用于诊断、治疗、修复或替换人体组织或器官或增进其功能的一类高技术新材料,与人类的健康息息相关。随着经济发展水平提高,大健康概念日趋升温,加之当代材料科学与技术、细胞生物学和分子生物学的进展在分子水平上深化了材料与机体间相互作用的认识,当代生物医用材料产业已经成为快速发展的高科技新兴产业。 一、生物医用材料及其产业概述生物医用材料又称为生物材料,其传统领域主要包括支持运动功能人工器官(骨科植入物、人工骨、人工关节、人工假肢等),血液循环功能人工器官(人工血管、人工心脏瓣膜等)整形美容功能人工器官、感觉功能人工器官(人工晶体、人工耳蜗等)等,新型领域主要包括分子诊断、3D 打印等。 生物医用材料的特征主要包括:安全性、耐老化、亲和性,及物理和力学性质稳定、易于加工成型、价格适当。同时,便于消毒灭菌、无毒无热源,不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。其产业特征包括:低原材料消耗、低能耗、低环境污染、高技术附加值,高投入、高风险、高收益、知识与技术密集。 二、生物医用材料及其产业发展现状 (一)市场分析

2016 年全球生物医用材料市场规模为709 亿美元,预计2021 年将达到1491.7 亿美元,2016 ~2021 年的复合年增长率为16% 。骨科植入材料和心血管材料是生物医用材料市场占比最高的两个细分领域,其中骨科植入材料占据了全球生物医用材料市场的头把交椅,市场占有率为37.5% 。心血管材料占据生物医用材料市场的36.1% 。其他的主要细分领域还包括牙科材料、血液净化材料、生物再生材料和医用耗材。 (二)竞争态势全球生物医用材料和制品持续增长,美国、欧盟、日本仍然占据绝对领先优势。2015 年,在全球医疗器械生产和消费方面,美国、欧盟、日本的市场占比分别为41% 、31% 和14% 。 美国的生物医用材料产业集聚于技术资源丰富的硅谷、128 号公路科技园、北卡罗来纳研究三角园,以及临床资源丰富的明尼阿波利斯及克利夫兰医学中心等;德国聚集于巴州艾尔格兰、图林根州等地区;日本聚集于筑波、神奈川、九州科技园等。 图1 :主要国家生物医用材料销售收入占全球医疗器械市场比例分析 中国和印度拥有最多的人口,且其医疗保健系统正在发展 当中尚未成熟,因此在医学发展和临床巨大需求的驱动下最具

生物医用材料详解

2011–2012学年第2学期 生物医用材料期末论文 题目:壳聚糖生物材料的研究进展姓名:黄清优 学号: 20090413310072 专业: 09材料科学与工程 学院:材料与化工学院 任课教师:曹阳王江唐敏 完成日期: 2012年6月7日

壳聚糖生物材料的研究进展 黄清优 (海南大学材料科学与工程专业海口570228) 摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。 关键词:壳聚糖;化学改性;应用;生物材料 The Research Progress of Chitosan Biomaterial Qingyou Huang (Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted. Keywords: chitosan; chemical modification; application; biomaterial 1前言 壳聚糖是一种新型的天然生物医用材料。虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。 由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。

生物医用材料探究进展

医用羟基磷灰石的研究进展 摘要: 羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。 羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。 关键词:羟基磷灰石;特性;医用功能 前言: 生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。 生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。 纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位. 羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。 正文: 羟基磷灰石概念: 羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:

含氟高分子生物材料的表面改性研究进展

第38卷第10期2010年10月化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S Vo l 38No 10 21 作者简介:文晓文(1985-),女,在读硕士研究生,研究方向为含氟功能高分子材料。联系人:张永明,教授,博士生导师。 含氟高分子生物材料的表面改性研究进展 文晓文 李 虹 艾 飞 陈 欢 张永明* (上海交通大学化学化工学院,上海200240) 摘 要 含氟高分子材料因具有优异的稳定性和物理机械性能而成为目前研究和应用广泛的医用生物材料,但是,生物相容性的不足影响和限制了其作为体内长期植入材料的应用。因此,提高含氟高分子材料的生物相容性,尤其是通过表面改性的方法提高其生物相容性是一项有意义的研究课题。分别从改性手段和改性物质两方面综述了近年来国内外含氟高分子生物材料表面改性的研究发展。 关键词 含氟高分子材料,表面改性,生物相容性 Surface modification of fluoropolymer biomaterials Wen Xiao w en Li H o ng Ai Fei Chen H uan Zhang Yongming (Shang hai Jiao T ong U niv ersity ,Shanghai 200240) Abstract Fluoro po ly mer is w idely used as biomedical mater ials due to its o ut standing mechanical pr operty ,chemi cal st abilit y and biolog ical inertness.H owev er,the biocompatibility of fluor opolymer is not satisfied when it is used as lo ng term implant biomedical mater ial.T herefor e,to impro ve t he fluor opolymer s bio compatibility via differ ent strateg ies,especially via surface modificatio n is of sig nificant impo rtance.Recent prog r esses in surface mo dificatio n on fluor opolymers wer e review ed and wer e detailed illustr ated in tw o aspects including t he mo dif ication methods and modifier s. Key words fluor opolymer ,surface modificatio n,biocompatibilit y 含氟高分子材料具有优良的机械性能和化学稳定性,因而成为高分子生物材料中的研究热点。在现有的医用材料中,含氟高分子材料已被广泛应用于人造血管、组织充填物、人造血液、载药体、眼科修复,超声核磁检测等方面[1 3]。总体而言,含氟高分子材料无毒无害,表面能低,所制成的材料在体内呈现惰性,不被生物降解也不引起严重生理反应。但是,现有含氟高分子材料的生物相容性还不能完全令人满意。为了解决这一难题,以含氟高分子材料为基质材料,通过合适的表面改性手段,既保留了含氟材料本体的优点,又赋予其表面更好的生物相容性和特殊功能,可以获得具有理想性能的生物材料[4]。 Kang E T [5] 曾详细介绍了基于分子设计的氟材料表面改 性,但对含氟高分子生物材料研究还比较少。由于含氟材料特殊的表面性能和化学稳定性,对其进行表面改性较一般材料困难,可行方法有限。本文综述了含氟高分子生物材料的表面改性研究概况,并就改性手段和改性物质两方面进行简要介绍。 1 含氟高分子生物材料的改性手段 从改性手段上,主要分为物理吸附法和化学接枝法。物理吸附最为简便也最早使用。例如,可将一次性手术用品直接浸泡肝素溶液,在其表面形成肝素涂层,可以减少使用时与血液接触产生的凝血和不良反应,但失效快,只限临时使用[1]。与物理吸附相比,化学接枝法更为有效,可控性强,稳 定性好,可构建具有生物活性的分子结构,从而达到改变材料生物相容性的目的,目前应用较多。化学接枝法包括等离子 法、辐射法、臭氧活化法、表面A T R P 法、化学试剂法、偶联剂法等,其中前四种较为常用。 1 1 等离子体法 等离子体法是目前使用最广泛的方法。等离子体是电子、离子、自由基、紫外线等的集合体,它能在材料表面引起化学反应和聚合反应。等离子法在材料表面进行接枝聚合主要包括两步:(1)在材料表面引入活性基团;(2)单体在活性基团上开始聚合。T u C Y 等[6]用氧气等离子处理膨体四氟乙烯(eP T F E)表面,将处理后的材料浸入单体溶液进行表面接枝聚合,成功地在表面接枝聚丙烯酰胺,改变了ePT F E 的表面性能,提高了细胞与表面的结合能力。 Zou X P 等[7]通过等离子体法将甲基丙烯酸聚乙二醇酯(P EGM A )接枝到聚四氟乙烯(P T F E)表面:预先将PT F E 表面进行氢气等离子处理,再利用氩气等离子引发PEG M A 在该表面接枝聚合,可以通过控制氩气等离子的射频电源功率和辉光放电时间来控制表面接枝密度。蛋白吸附实验证明,通过表面接枝PEG M A ,可有效降低PT FE 表面对蛋白质的吸附从而提高生物相容性,如图1所示。 K onig U 等[8]用水等离子体处理PT FE 膜,产生自由基,然后进行丙烯酸气相表面接枝反应,在P T FE 膜表面形成稳定均相的聚丙烯酸层,厚度约70nm,用于固定蛋白质。Ko nig U [9]还研究了几种常用等离子体对PT F E 表面的处理效果,结

《生物医用材料》论文

《生物医用材料》课程论文生物医用材料的发展与应用 姓名 学院 专业 学号 指导教师 2015年5月16日

生物医用材料的发展与应用 摘要:随着社会文明进步、经济发展和生活水平日益提高,人类对自身的医疗康复事业格外重视。生物医用材料是近年来发展迅速的新型高科技材料,生物医用材料的应用对挽救生命和提高人民健康水平做出了重大贡献,随着现代医学飞速发展不断获得关注,发展前景广阔。本文主要介绍了近年生物医用材料的发展状况、分类以及在医学上的一些应用。 关键词:生物医用材料;发展;应用 The development and application of biomedicalmateria ls Abstract:Withtheprogressof social civilization,economic development and the improvement of the livinglevel,the cause of human medicalrehabilitation for their attention.Biomedicalmaterialsisa newhigh-techmaterial developed rapidly in recent years,the application ofbiomedical materials has madegreat contributionto savelives and improvepeople'shealth level,along with t he rapid developmentof modernmedicinehas gained attention,broad prospectsfor development.Thispaper mainly introduces thestatus and development of biomedicalmaterials,classification and applicationin medicine. Keyword:Biomedicalmaterials; Development;Application

生物医用材料

生物医用高分子材料课程总结 一、生物医用材料定义 生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗;生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。 研究内容包括:各种器官的作用;生物医用材料的性能;组织器官与材料之间的相互作用 分类方法:按材料的传统分类法分为: (1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、) (2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖) (3)金属与合金材料(4)无机材料(5)复合材料 按材料的医用功能分为: (1)血液相容性材料(2)软组织相容性材料(3)硬组织相容性材料 (4)生物降解材料(5)高分子药物 二、生物相容性与安全性 生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。 主要包括:1.组织相容性:指材料用与心血管系统外的组织和器官接触。要求医用材料植入体内后与组织、细胞接触无任何不良反应。典型的例子表现在材料与炎症,材料与肿瘤方面。影响组织相容性的因素:1)材料的化学成分;2)表面的化学成分;3)形状和表面的粗糙度: 2.血液相容性:材料用于心血管系统与血液直接接触,主要考察与血液的相互作用材料,影响因素:材料的表面光洁度;表面亲水性;表面带电性,具体作用机理表现在:血小板激活、聚集、血栓形成;凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;红细胞膜破坏、产生溶血;白细胞减少及功能变化;补体系统的激活或抑制;对血浆蛋白和细胞因子的影响。主要发生在凝血过程,生物材料与血小板,生物材料与补体系统的作用过程。 三、生物医用材料表面改性 生物材料长期(或临时)与人体接触时,必须充分满足与生物体环境的相容性,即生物体不发生任何毒性、致敏、炎症、致癌、血栓等生物反应,这取决于材料表面与生物体环境的相互作用。研究表明:生物材料表面的成分、结构、表面形貌、表面的能量状态、亲(疏)水性、表面电荷等表面化学、物理及力学特性均会影响材料与生物体之间的相互作用。通过物理、化学、生物等各种技术手段改善材料表面性质,可大幅度改善生物材料与生物体的相容性。 主要体现在: 1表面形貌与生物相容性:表面平整光洁的材料与组织接触容易形成炎症和肿瘤,粗糙的材料表面则促使细胞和组织与材料表面附着和紧密结合。不仅增加了接触面积,更会在粗糙表面择优粘附成骨细胞、上皮细胞。粗糙表面的形态对细胞生长有“接触诱导”作用,即细胞在材料表面的生长形态受材料表面形态的调控。例如: 1),与骨接触的医用生物材料表面要求粗糙,表面具有一定粗糙度可促进骨与材料的接触,可显著促进矿化作用。 2)与血液接触的医用生物材料,一般要求材料的表面应尽可能光滑。因为光滑的表面产生的激肽释放酶少,从而使凝血因子转变较少。但孔表面有促进内皮细胞生长的作用。

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

全球生物医用材料市场分析

全球生物医用材料市场分析 一、市场规模 生物材料是一门新兴的多学科交叉融合的前沿科学。自20世纪90年代后期以来,世界生物材料科学和技术迅速发展,全球的生物医用材料和医疗器械市场以每年13%的速度快速增长。即使在当今全球经济低迷的大环境下,生物材料和医疗器械仍是少数几个保持高增长的朝阳产业之一,充分体现了生物材料具有强大的生命力和广阔的发展前景。 近年来,世界生物材料市场发展势头更为迅猛,其发展态势可与信息、汽车产业在世界经济中的地位相比。根据1988年美国国家健康统计中心调查,美国已有1100万人(不包括齿科材料)植入了一件以上的生物医用材料,全球达3000万人以上,1995年世界生物医用材料市场已达200亿美元。中国科学院在2002年《高技术发展报告》中披露,1990年至1995年,世界生物医用材料市场以每年大于20%的速度增长。2000年,全球医疗器械市场已达1650亿美元,其中生物医学材料及制品约占40%至50%,发展到2005年,全球生物材料市场已超过2300亿美元。 生物医学材料在2010年的全球市场规模达3209亿美元,年增长率为10.8%。就市场需求面而言,主要市场增长动能来自于欧、美、日等国家老年人口数目提升及慢性疾病问题逐渐增加,对于人工关节等骨科应用及心脏支架等心血管应用的需求持续攀升,预期未来市场将仍维持稳定成长趋势。同时由于全球生医材料的应用领域的扩展、产品技术的改良和人们对生物材料产品接受度的逐渐提升,也是促使生物材料市场需求和提升市场规模的主要推动力。 近20年来,全球生物医用材料和制品持续增长,美国、西欧、日本仍然占据绝对领先优势。中投顾问发布的《2017-2021年中国生物医用材料行业投资分析及前景预测报告》数据显示:2015年,美国、欧盟、中国、日本销售收入占全球医疗器械市场之比分别为39%、28%、12%和11%。 图表主要国家生物医用材料销售收入占全球医疗器械市场比重 中投顾问·让投资更安全经营更稳健

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

医用高分子材料论文

医用高分子材料 高分子材料科学与工程,高材1006班,王中伟, 摘要:随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。 关键词:医用高分子材料人工人体器官对人类健康的促进相容性 前言:现代医学的发展,对材料的性能提出了复杂而严格的多功能要求,这是大多数金属材料和无机材料难以满足的;而合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,化学结构的相似性决定了它们在性能上能够彼此接近从而可能用聚合物制作人工器官,作为人体器官的替代物。另外,除人工器官用材料之外, 医药用高分子材料、临床检查诊断和治疗用高分子材料的开发研究也在积极地展开,它们被统称为医用高分子材料.医用高分子材料是一类令人瞩目的功能高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、医学、病理学等多种边缘学科。医用高分子材料是生物材料的重要组成部分。医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,是科学技术中的一个正在发展的新领域,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。 正文:

生物医用纺织材料及其器件研究进展

生物医用纺织材料及其器件研究进展 生物医用纺织材料是生物医用材料的重要组成部分,是以纤维为基础、纺织技术为依托、医疗应用为目的的医用材料,用于临床诊断、治疗、修复、替换以及人体的保健与防护。生物医用纺织材料是纺织与材料、生物、医学及其他相关基础学科深度交叉融合产生的一类医用材料,其产品是医疗器械的一个重要组成部分,由各级食品药品监督部门监管。与服用和家用纺织品相比,生物医用纺织品研发流程长,产品审批手续复杂,故新产品注册上市所需时间更长。 生物医用纺织材料按来源分类可分为生物医用金属纤维( 如不锈钢丝缝合线) 、生物医用无机非金属纤维( 如氧化铝纤维) 和生物医用高分子纤维。其中,以高分子纤维居多。生物医用高分子纤维包括: 1) 天然高分子基生物医用纤维,含纤维状的天然物质直接分离、精制而成的天然纤维和用天然高分子为原料经化学和机械加工制成的纤维,如纤维素及其衍生物纤维( 氧化纤维素) 、甲壳素及其衍生物纤维、蚕丝和骨胶原纤维等; 2) 合成高分子基生物医用纤维,如聚酯、聚酰胺、聚烯烃、聚丙烯腈、聚四氟乙烯、聚丙烯、聚乳酸纤维等。 生物医用纺织材料纤维的主要成型方法有: 干法纺丝、湿法纺丝、熔融纺丝、干湿纺丝、乳液纺丝、凝胶纺丝等。不同的纺丝方法可获得不同的截面形态和直径尺度的纤维。截面形态包括圆形、三角、核壳及中空型等。根据不同的成型方法可获得从纳米级到毫米级的不同纤维尺度。熔融和湿法纺丝的纤维直径与大多数动植物细胞尺度相近,而静电纺丝纤维更接近于病毒的尺度。 生物医用纤维可经纺织手段制备成一维(线状)、二维(平面) 或三维(管状)纺织品。其手段主要是指机织、针织、编织、非织、静电纺及复合成型方法。实际研发过程中,常常根据医疗产品的需求,可选择1种或数种纺织手段来进行成型。生物医用纺织品具有规则的多孔结构且连续贯穿,表面拓扑形貌规则且易控,厚度可在1 × 102~ 1 × 107nm范围内调节。通过不同的纺织手段获得的纺织品,其力学性能各具特色且调节范围大。 生物医用纺织材料在临床上具有广泛的用途,可独立或参与制成人体器官或组织的替代物,不同的产品具有不同的医学功能。1) 支持运动功能: 人工关节、人工骨、人工肌腱等; 2) 血液循环功能: 人工心脏瓣膜、人工血管等; 3) 呼吸功能: 人工肺、人工气管、人工喉等; 4) 血液净化功能: 人工肾、人工肝等; 5) 消化功能:人工食管、人工胆管、人工肠等;6) 泌尿功能: 人工输尿管、人工尿道等; 7) 生殖

生物材料小论文

生物材料是用于与生命系统接触和发生相互作用的,并能对其细胞、组织和器官进行诊断,治疗,替换,修复,诱导再生的一类天然或人工合成的特殊功能材料。整体来看,生物材料学是一门高度综合性的学科,涉及到化学、物理、生物化学、等等各方问题。例如在天然生物材料方面,涉及到了生物的相关知识,天然生物材料包括结构蛋白质,结构多糖,生物矿物,生物复合材料。在结构蛋白和多糖方面涉及到了一些高中时学过的生物知识,像蛋白质的结构特征,多样性等等。还有像生物材料中存在的氢键等化学键有涉及到无机化学方面的相关知识。 学习过程中给我印象最深的是有一个很形象的比喻,人的身体像机器一样,机器的零件会随时间的推移而老化,人体的器官也是一样会老化,机器的零件很容易换,人体的器官也会很容易换吗?想的这个比喻就会想到生物医用材料,以前生物医用材料不发达的时候,人体器官的短缺造成很多人生活很不方便,也有的人因此失去生命,现在有很多人造器官应用成功的例子。比如课上看的视频中旅馆的老板安装的人造手臂,开始时肯定是很不适应新手臂,动作上会很不协调,但是随着磨合,人造手臂肯定会带来一定的方便之处。还有美国的一男子用尸体的手臂代替了原来自己被爆竹炸毁的手臂的案例都让我感到生物医用材料减缓了人体残疾的痛苦。 生物材料又有很多种,像生物医用材料,生物无机材料,生物高分子材料,以及生物金属材料等等。每种材料都存在各自的优缺点。生物医用金属材料:优点:良好的化学和力学性质而得到较广泛的应用。主要用于骨骼、关节、牙齿等硬组织的修复和替换。主要缺点是不具有生物活性,难于和生物组织形成牢固的结合;长期植入人体后由于化学稳定性下降,会有杂质离子析出,对周围组织造成危害;而且金属材料的弹性模量要比人骨大得多,这会造成局部应力屏蔽现象,使材料易断裂和人体不适。生物陶瓷材料:主要用于人工肩关节、膝关节、肘关节、足关节以及能够负重骨杆和椎体人工骨。优点是能在生理环境中具有高的强度和耐腐蚀性,化学稳定性好;缺点:它们不具有生物活性,与生物组织间的结合基本是机械嵌连。生物高分子材料:广泛用于人工皮肤、角膜、肌腱、韧带、血管、人工脏器等组织和器官的修复与制造;缺点是大多不具有生物活性优点是植入人体后,被降解为对人体无害的小分子产物,可通过新陈代谢途径排出体外,不影响人体组织的正常生长。 生物材料正在逐渐走入人们的生活,尤其是在医用方面,早期的生物材料的发展完全依附于材料科学的发展;现代的生物材料是相对独立的一门学科和研究领域,不断开发新型生物材料,应用领域的逐渐扩大,对生命现象的再认识,材料与生物体相互作用的理论研究,仿生材料与结构(原位诱导再生),高速增长的市场和经济效益无一不告诉我们生物材料的发展在逐渐趋向于成熟,以前人们对生物医用材料了解很少,比如人造器官等,但是现在人造器官不再是触不可及,甚至已经有人提出用动物心脏解决人体心脏的短缺。在未来20~30年内,生物医用材料和植入器械科学和产业将发生革命性变化:一个为再生医学提供可诱导组织或器官再生或重建的生物医用材料和植入器械新产业将成为生物医用材料产业的主体;表面改性的常规材料和植入器械作为其重要的补充。保守估计,2030 年左右两者可能导致世界高技术生物材料市场增长至≈US.5万余亿元,与此相应,带动相关产业新增间接经济效益可达US.5万余亿元。①数字来源于中国生物技术信息网。 生物医用金属材料 生物医用金属材料是指一类用作生物材料的金属或合金,又称外科用金属材料。它是一类生物惰性材料。通常用于整形外科、牙科等领域,具有治疗、修复固定和置换人体硬组织系统的功能。在生物医学材料中,金属材料应用最早,已有数百年的历史。人类在古代就已经尝试使用外界材料来替换修补缺损的人体组织。与生物陶瓷及生物高分子材料相比,生物医用金属材料,如不锈钢、钴基合金、钛和钛合金以及贵金属等具有高的强度、良好的韧性及抗弯曲疲劳强度、优异的加工性能等许多其它医用材料不可替代的优良性能。 生物医用金属材料的研究和发展要严格满足如下的生物学要求:良好的组织相容性 ,包括无毒性、无热源反应、不致畸、不致癌、不引起过敏反应或干扰机体的免疫机理、不破坏临近组织,也不发生材料表面的钙化沉着等;良好的物理、化学稳定性,包括强度、弹性、尺寸稳定性、耐腐蚀性、耐磨性

医用钛合金表面改性及其生物摩擦学的研究进展_陈昌佐

第26卷第1期2014年1月 腐蚀科学与防护技术 CORROSION SCIENCE AND PROTECTION TECHNOLOGY V ol.26No.1 Jan.2014 专题介绍 医用钛合金表面改性及其生物摩擦学的 研究进展 陈昌佐1,2丁红燕2周广宏2庄国志1印风2 1.江苏大学材料科学与工程学院镇江212013; 2.淮阴工学院江苏省介入医疗器械研究重点实验室淮安223003 摘要:综述了医用钛合金常用的化学改性和物理改性方法,介绍了改性后涂层的生物摩擦学性能,并对医用钛合金在提高耐磨性方面的改性技术进行了展望。提出了工艺改进和新材料开发等方面的建议。 关键词:医用钛合金表面改性耐磨性 中图分类号:TH171.1,TG146.2文献标识码:A文章编号:1002-6495(2014)01-0069-04 1前言 目前临床骨科应用最广泛的生物材料多为金属材料,其主要包括不锈钢、钴基合金、钛合金以及形状记忆合金等[1,2]。不锈钢、钴基合金等在临床应用中还存在着诸多问题,如:生物相容性差、组织反应严重、强烈的致敏、致癌反应和易产生应力遮挡等[3]。Ti及钛合金具有低的弹性模量、良好的生物相容性和耐蚀性等优点,在临床应用上得到了广泛使用,如:硬组织替换、血管支架、心脏瓣膜以及各种矫形器械等。 医用钛合金虽然具有优良的耐蚀性和比强度,但其耐磨性相对较差。植入物在磨损条件下容易产生大量的含Ti,Al和V的黑色磨屑,从而导致无菌松动直至关节置换失败。此外,Al,V元素具有潜在的细胞毒性,可能导致表面磷灰石无法生成,特别是Al易引起老年痴呆症。通过钛合金的表面改性或优化材料的成分,减少人工关节在使用过程中的磨粒产生,改善磨损粒子的尺度分布,减轻磨粒的生物学反应是延长人工关节使用寿命的关键[4,5]。表面改性技术可在保留医用钛合金原有的优良性能基础上改善其临床使用性能。本文评述了目前常用的钛合金表面改性方法及其生物摩擦学的研究现状,并对其未来发展趋势进行了展望。 2常用的钛合金表面改性技术及其生物摩擦学性能 2.1化学改性方法 2.1.1微弧氧化法微弧氧化(MAO)技术,或称为等离子氧化技术,是一种在材料表面获得陶瓷涂层的技术。该技术可以在Al,Mg,Ti等金属及其合金表面原位生长一层陶瓷薄膜[6]。MAO陶瓷膜不仅耐磨、耐蚀性好,而且Ca,P元素可直接进入到氧化膜层中,从而提高了生物相容性,在临床植入体手术中已有少量的探索性应用[7]。 Zhou等[8]在TC4合金上通过微弧氧化方法合成了TiO2涂层,并在SBF模拟体液中考察了MAO涂层的摩擦学性能,结果表明,与未经处理的TC4比较,涂层在模拟体液中的摩擦系数降低,磨损体积减少。王凤彪等[9]利用微弧氧化工艺在钛合金表面制备了羟基磷灰石(HA)膜,研究了薄膜在模拟体液中浸泡后的耐磨性。结果表明,膜层随浸泡时间延长而逐渐变厚;浸泡后膜层的摩擦系数随摩擦时间延长先升高后降低,耐磨性呈升高趋势。 2.1.2溶胶凝胶法溶胶-凝胶法(sol-gel)一般以钛醇盐及其相应的溶剂为原料,加入少量水及不同的酸和络合剂等,经搅拌和陈化制成稳定的溶胶,然后用浸渍提拉、旋转涂层或喷涂等方法将溶胶施于经过清洁处理的基体表面,最后经干燥焙烧,在基体表面形成一层薄膜[10]。 刘颖等[11]通过溶胶凝胶工艺和浸渍提拉技术,以钛酸丁酯为前躯体,加入聚乙二醇作为模板剂,在TC4合金基片上制备了TiO2微纳图案化薄膜,并对薄膜的摩擦学性能进行了研究。结果表明,制备的薄膜明显改善了钛合金的摩擦磨损性能。张文光等[12]利用静动摩擦系数测定仪评价了TC4合金经碱液热处理、溶胶-凝胶和热氧化3种不同方法处理后的摩擦学性能,结果表明,TiO2溶胶-凝胶薄膜在较高载荷下的耐磨性能较差,而在较低载荷下的耐磨性能较好。 定稿日期:2013-03-29 基金项目:国家自然科学基金项目(51175212)资助 作者简介:陈昌佐,1989年生,硕士生,研究方向为材料的生物摩擦学 通讯作者:丁红燕,E-mail: nanhang1227@https://www.360docs.net/doc/a92924687.html,.

医用金属材料的研究进展

医用金属材料的研究进展 姓名:因 学号: 专业:材料

摘要:介绍了医用金属材料目前的研究现状、性能和应用,指出了医用金属材料 应用中目前存在的主要问题,阐述了近年来生物医用金属材料的新进展1。Medical metal materials with high strength toughness, fatigue resistance, easy processing and forming excellent properties become clinical dosage biggest and wide application of biomedical materials. 关键词:医用金属种类应用研究进展 一生物医用金属材料的简介 生物医用材料是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗,以及替换生物机体中的组织、器官或增进其功能。生物医用金属材料是用作生物医用材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料2。这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面。除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有纯金属钛、钽、铌、锆等、不锈钢、钴基合金和钛基合金等3。 二生物医用金属材料的特性 2.1材料毒性 生物医用金属材料的毒性主要来自金属表面离子或原子因腐蚀或磨损进入周围生物组织,由此作用于细胞,抑制酶的活性,组织酶的扩散和破坏溶酶体。具体可表现为与体内物质生成有毒化合物。并且金属离子进入组织液,会引起水肿、栓塞、感染和肿瘤等。一般才用的降毒方法包括合金化、提高耐蚀性、提高光洁度、表面涂层等4。 2.2生理腐蚀性 生物医用金属材料的生理腐蚀性是决定材料植入后成败的关键,其产物对生物机体的影响决定植入器件的使用寿命。 2.3力学性能 生物医用金属材料需要有足够的强度与塑性。一般说来,对人工髋关节金属材料的要求是:屈服强度>450Mpa;抗拉强度>800Mpa;疲劳强度>400Mpa;延伸率>8%。通常材料的弹性模量大于骨的弹性模量,由此会使得材料与骨应变不同,界面处发生的相对位移造成界面松动;除此产生应力屏蔽,引起骨组织的功能退化或吸收8。 2.4耐磨性 耐磨性影响植入摩擦器件的寿命;以及可能产生有害的金属微粒或微屑,导致周围组织的炎性、毒性反应。可通过提高硬度,表面处理等方法进行改善。 三医用金属材料的种类

2019年生物医用材料市场分析报告

2019年生物医用材料市场分析 报告

正文目录 1.生物医用材料行业快速发展 (4) 1.1.生物医用材料行业规模加速扩大 (4) 1.2.透明质酸应用领域愈发广泛 (5) 1.2.1.透明质酸宝藏逐渐被挖掘 (6) 1.2.2.透明质酸主流提取方式 (7) 1.2.3.透明质酸应用领域广泛 (8) 2.医疗美容服务行业蓬勃发展 (9) 2.1.非手术类医美项目占比逐渐提升 (9) 2.2.我国是全球增速最快的医美市场之一 (10) 2.3.透明质酸生产商处于医美产业链上游 (12) 3.医美透明质酸市场空间大 (12) 3.1.交联技术释放透明质酸魅力 (13) 3.2.玻尿酸成为拉动医药级HA增长的主要动力 (15) 3.2.1.透明质酸原料市场规模稳步提升 (15) 3.2.2.玻尿酸拉动医药级HA市场增长 (16) 3.3.医药级HA竞争格局良好 (17) 3.3.1.医美玻尿酸原料国内企业占优 (17) 3.3.2.骨科玻璃酸钠注射液国产主导 (18) 3.3.3.眼科透明质酸国产化明显 (18) 3.3.4.防粘连医用透明质酸钠昊海独大 (19) 4.主要相关企业登陆科创板 (19) 5.配置建议 (22) 6.风险提示 (23)

1.生物医用材料行业快速发展 1.1.生物医用材料行业规模加速扩大 生物医用材料是医疗器械的重要组成部分,是一类用于诊断、治疗、修复和替代人体组织、器官或增进其功能的新型高技术材料。在众多生物医用材料中,生物医用高分子材料发展最早、应用最广泛、用量最多,其按照来源可以分为天然高分子材料和合成高分子材料,按照性质又可分为非降解型材料和可生物降解材料。医用透明质酸钠、医用几丁糖等属于生物医用高分子材料中天然、可降解的生物医用材料。天然可生物降解的高分子生物医用材料功能多样、机体相容性好,以及易于改性、杂化等,加上其能在水存在的环境下被酸、碱、酶或微生物促进而降解,因而被广泛地用于药物载体、修复材料和体内植入器件材料等。 图表1:生物医用材料组成体系 目前,我国生物医用材料产业仍处于起步阶段,其发展模式以资源消耗、廉价劳动力等物质要素驱动型为主,产品技术结构以低端产品为主,高端生物医用材料市场国产产品占有率不足30%。国内常用生物医用材料产品主要为低值一次性产品(如一次性注射器、输液器、采血器、血袋等)、敷料、缝合线(针)等;而技术含量较高的植入性生物医用材料则较为薄弱,主要依赖进口。 近年来,全球高新技术生物材料及制品产业形成并蓬勃发展,2016年全球生物医用材料市场规模已达1709亿美元,预计2020年市场规模将突破3000亿美元。我国生物医用材料产业起步于20世纪80年代初期,2016年国内生物医用材料市场规模达1730亿元,2010-2016年CAGR达到17.13%,预计2020年其市场规模将达到4000亿元,2016-2020年CAGR将达到23.31%。

相关文档
最新文档