15th燃煤锅炉烟气的脱硫工艺设计

15th燃煤锅炉烟气的脱硫工艺设计
15th燃煤锅炉烟气的脱硫工艺设计

大气污染控制工程课程设计

目录

1设计任务及基本资料 (2)

15t/h燃煤锅炉烟气的脱硫工艺设计 (2)

课程设计基本资料 (2)

2设计方案 (3)

物料衡算 (3)

工艺方案的比较和选择 (4)

除硫效率 (7)

除硫设备的论证 (7)

工艺方案 (7)

3工艺计算 (9)

冷却塔 (9)

吸收塔 (10)

换热器 (12)

泵和风机的选型计算 (13)

4附图 ............................................................................................................. 15- 5结论 ............................................................................................................. 15-

1设计任务及基本资料

1.115t/h燃煤锅炉烟气的脱硫工艺设计

1.2课程设计基本资料

1.2.1课程设计目的

大气污染控制工程课程设计是配合大气污染控制工程专业课程而单独设立的设计性实践课程。教学目的和任务是使学生在学习专业技术基础和主要专业课程的基础上,学习和掌握环境工程领域内主要设备设计的基本知识和方法,培养学生综合运用所学的环境工程领域的基础理论、基本技能和专业知识分析问题和解决工程设计问题的能力,培养学生调查研究,查阅技术文献、资料、手册,进行工程设计计算、图纸绘制及编写技术文件的基本能力。1.2.2设计要求

设计思想与方法正确;态度端正科学;能正确运用所学的理论知识;能解决实际问题,具备专业基本工程素质;具备正确获取信息和综合处理信息的能力;文字和语言表达正确、流畅;刻苦钻研、不断创新;按时按量独立完成;图文工整、规范,设计计算准确合理。整体设计方案要重点突出其先进性、科学性、合理性和实用性。

1.2.3课程设计参数和依据

1. 设计规模

锅炉蒸发量15t/h

2. 设计原始资料

(1)煤的工业分析如下表(质量比,含N量不计):

(3)锅炉热效率:75%

(4)空气过剩系数:

(5)水的蒸发热:Kg

(6)烟尘的排放因子:30%

(7)烟气温度:473K

(8)烟气密度:m3

(9)烟气粘度:×10-5 pa·s

(10)尘粒密度:2250kg/m3

(11)烟气其他性质按空气计算

(12)烟气中烟尘颗粒粒径分布

按锅炉大气污染物排放标准(GB13217-2001)中二类区标准执行:标准状态下烟尘浓度排放标准:≤200mg/m 3、二氧化硫排放浓度:≤900mg/m 3。

2 设计方案

2.1 物料衡算

锅炉烟气含硫量计算

用低位发热量、锅炉热效率、水的蒸发热求需煤量

蒸发量为15t/h 的锅炉所需热量为: 372570.81510 3.8610/KJ h ??=?

需煤量:

7

33.8610 2.4610(/) 2.46/2093975%

KJ H T H ?=?=? 设1kg 燃煤时

2.1.1

标准状态下理论空气量(四号,加粗)

理论空气量:62.5662.56 3.78299(/)mol Kg +?=

标准状态下的体积为:3329922.410 6.7(/)m kg -??=

2.1.2

标准状态下理论烟气量

理论烟气量:62.56 3.7854.75160.535312.76(/)mol kg ?++++= 标准状态下理论烟气体积:33312.7622.4107.01(/)m N kg -??=

2.1.3

标准状态下实际烟气量

实际烟气量:312.76(1.21)299.0372.56(/)mol kg +-?=

标准状态下的体积: 33

372.5622.4108.35(/)N m kg -??= 或: 3

7.01 6.7(1.21)8.35(/)N m kg +?-=

T=473K 时,实际烟气体积:3

/8.35473/27314.5/N S N V T T m kg ?=?=

烟气量:33

14.5 3.441049880/m h ??= 2.1.4

标准状态下烟气含尘浓度

SO 2的浓度:233640.53

4.062/4062/8.35

so C g m mg m ?===

SO 2的量:4062

标准状态烟气浓度:3=18.1%30%/8.356503/C mg m ?=标 实际烟气浓度: 3=18.1%30%/14.5=3745mg/m C ?实 2.2 工艺方案的比较和选择

石灰石/石膏法

石灰石/石膏法是目前应用最广泛、最多、最成熟的典型的湿法烟气脱硫技术。我国湿法烟气脱硫率可达98%以上,接近100%。国内采用此法脱硫的电厂主要有:重庆珞璜电厂一期、重庆珞璜电厂二期、太原第一热电厂、重庆电厂、杭州半山电厂、北京第一热电厂、陕西韩城第二电厂等。该工艺具有操作方便、原理简单、脱硫效率高(部分机组Ca /S 接近1,脱硫效率超过9O %)、可应用于大容量机组、高2SO 浓度条件、可利用率高(>90%)、吸收剂来源广泛、价格也低廉、副产品石灰具有综合利用价值、运行和维护成本以及脱硫成本较低,是目前公认应用最广泛、技术最为成熟的脱硫技术。

喷雾干燥脱硫法(SDA 法)

SDA 法是美国JOY 公司和丹麦NIRO 公司联合研制出的脱硫工艺。目前,国内采用此工艺的电厂主要有四川白马电厂和山东黄岛电厂等。此工艺脱硫效果不是太高(一般在7O %左右),适合于中、低硫煤的脱硫。四川白马电厂机组每台容量为200 MW ,采用200目的生石灰a C O 纯度在6O- 70%)处理含硫量在3.2%左右的燃煤烟气(80003

/m h ),脱硫效率可达到8O %左右。山东黄岛电厂机组每台为210MW ,采用粒径4rflm 纯度为7O %的生石灰处理含硫量为1.86%的燃煤(烟气为3000003

/m h ,炉后抽出部分烟气)脱硫效率为7O %左右。SDA 工艺的特点:(1)工艺简单,操作简便安全;(2)维护费用低;(3)腐蚀性小,可采用普通碳钢制造;(4)采用静电除尘器或布袋除尘器;(5)过程无废水产生;(6)压降低,能耗少,符合当前节能减排的要求;(7)可适用于低、中、高硫煤。

海水脱硫法

海水脱硫工艺是利用海水的碱度和水化学特性达到脱除烟气中2SO 的方法,可用于燃煤含量硫不高并以海水作为循环冷却水的沿海电厂。海水脱硫的原理是在脱硫吸收塔内用海水作为脱硫剂逆行喷淋洗涤,烟气中的2SO 被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放,吸收2SO 被海水吸收并在洗涤液中发生水解和氧化作用,

洗涤液引入曝气池,通过提升pH 抑制2SO 的溢出。经曝气处理使其中的23SO -

被氧化成为稳定的24SO -

一并使海水的pH 值与COD 调整达到排放标准后排放大海。此套工艺一般适用于海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂,海水脱硫工艺简单、无结垢、堵塞现象,吸收剂来源充足、可用率高,无脱硫灰渣产生,脱硫效率达9O %以上。高、中、低硫煤均可以采用,但对于内陆电厂,推广使用不太现实,深圳西部电厂采用该套工艺用天然海水处理含硫量在0.75%的燃煤,脱硫效率在9O %以上。

荷电干式喷射法

采有该工艺的国内电厂主要有山东德州热电厂、杭州钢铁集团第二热电厂、广州造纸有限公司自备电厂和兰化热电厂等。该套工艺具有占地少、投资成本低、运行费用较低、脱硫率中等等特点,主要适用于中、低硫煤,山东德州热电厂利

用该套装置处理含硫1.0%的燃煤脱硫率达到7O %左右。 电子束照射法(EBA 法)

EBA 法是一种较新的脱硫工艺,其原理为:在烟气进入反应器之前先加入氨气,然后在反应器中用电子加速器产生的电子束照射烟气,使水蒸气与氧等分子激发产生氧化能力强的自由基,这些自由基使烟气中的2SO 和N0x 很快氧化,产生硫酸与硝酸,再和氨气反应形成硫酸铵和硝酸铵化肥,由于烟气温度高于露点,不需再热。EBA 法是一种干法处理过程,无废水废渣产生,脱硫率与脱硝率可分别达到9O %和8O %以上。操作简单、过程易于控制、对不同含硫量的烟气和烟气量的变化有较好的适应性和负荷跟踪性,副产物可以作为化肥,脱硫成本较低。国内成都热电厂采用该套装置处理含硫量%的燃煤,脱硫率达8O %左右。

氨水洗涤法脱硫工艺

该脱硫工艺采用氨水作为脱硫吸收剂与进入吸收塔的烟气接触混合,烟气中2SO 与氨水反应生成亚硫酸铵,经与鼓入的强制氧化空气进行氧化反应,生成硫酸铵溶液,经结晶、离心机脱水、干燥器干燥后即制得硫酸铵。该法脱硫效率高,能满足任何地方环保的要求,整个系统不产生废水或废渣、能耗低、符合节能目标、运行可靠性高和适用性广。华东理工大学已经完成 kW 机组烟气氨酸法脱硫中试。

烟气循环流化床脱硫工艺(CFB —FGD)

循环流化床脱硫技术是一种使高速气流与所携带的稠密悬浮颗粒充分接触的技术。其原理是:在循环流化床中加入脱硫剂石灰石以达到脱硫的目的。由于流化床具有传质和传热的特性,所以在有效吸收2SO 的同时还能除掉HC1和HF 等有害气体。用此法可处理高硫煤,当:a

C S n n 为1~1.5时,脱硫效率能达到9O % ~97%。CFB —FG

D 工艺由吸收剂制备、

吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。一般采用干态的消石灰粉作为吸收剂,也可采用其它对2SO 有吸收反应能力的干粉或浆液作为吸收剂。目前,科林公司与国际知名公司合作开发的循环流化床烟气脱硫技术已申报国家专利并在赤峰热电厂锅炉130t h 上应用,处于试运行阶段。

脉冲电晕放电等离子体烟气脱硫(PPCP 法)

PPCP 法是靠脉冲高压电源在普通反应器中形成等离子体产生高能电子(5-20 eV),由于只

提高电子温度,而不是提高离子温度,能量效率比EBA 高2倍。此工艺设备简单、操作简便、投资是EBA 法的60% 。因此,成为国际上千法脱硫脱硝的研究前沿,而且该工艺还具有脱硝能力,高能电子可以激活、裂解、电离烟气分子,产生OH 、O 、2HO 等多种活性粒子和自由基。在反应器里烟气中的SCh 、NO 被活性粒子和自由基氧化为高价氧化物3SO 、

2NO 并与烟气中的2H O 相遇后形成24H SO 和3HNO ,在有3NH 或其它中和物存在的情况

下生成(NH4)2SO4/42443()NH SO HN NO 的气溶胶,再由收尘器收集,具有有害污染物清除彻底、不产生二次污染等优点。

旋转喷雾干燥法

将生石灰制成石灰浆,将石灰喷入烟气中,使氢氧化钙与烟气中的SO2反应生成亚硫酸钙。工艺流程比石灰石-石膏法简单,投资也比较小。脱硫率较低(约为70-80%)、操作弹性小、钙硫比高、运行成本高、副产物无法利用且易发生二次污染(亚硫酸钙分解)。

湿法脱硫是一种化学吸收反应,吸收剂对吸收过程有很大的影响,不同的吸收剂与SO2反应的速度也不一样,常用的吸收剂有:氢氧化钠或碳酸钠、氧化镁、钠-钙双碱、氨、海水、石灰乳等。

氢氧化钠或碳酸钠作为吸收剂脱硫,存在如下诸多问题:

如果将脱硫后的产物亚硫酸钠回收利用,存在流程过长、回收费用过高、副产品无销路等问题;

脱硫剂消耗量大、脱硫成本高; 增加水处理费用。 氧化镁作为吸收剂脱硫: 氧化镁来源有限;

直接排放,对水体会造成严重污染;

如果循环利用脱硫剂,则流程很长、设备繁多、占地面积大。 海水作为吸收剂脱硫:

海水通常呈碱性,具有天然的酸碱缓冲能力及吸收SO2的能力,当SO2被海水吸收后,在经处理氧化为无害的硫酸盐而溶于海水。硫酸盐是海水的天然成分,不还造成水体污染,但有一硬性要求海水脱硫必须以工厂坐落于海边为前提。

氨作为吸收剂脱硫:

氨是一种良好的碱性吸收剂,其吸收反应是气-气反应,吸收反应速度快,反应全,但氨的价格相对于低廉的石灰石来说是太高了。过高的运行成本使氨法脱硫的推广受到极大的影响,在脱硫应用中极少。

钠-钙双碱法脱硫:

用NaOH 作吸收剂脱硫,用Ca(OH)2作为NaOH 的再生剂。其主要化学反应反应式如下:

吸收:22322NaOH SO Na SO H O

+→+

再生:

2424

()2Na SO Ca OH NaOH CaSO +→+

石灰乳作为吸收剂脱硫:

脱硫产物是硫酸钙(石膏),可容易地从脱硫系统中分离出来,不会对环境水体造成污染,不存在脱硫废水的处理问题;这种脱硫剂是价廉易得的石灰石,脱硫成本低,企业能承受,且这种方法技术成熟,可靠性高。

2.3除硫效率

按锅炉大气污染物排放标准(GB13217-2001),计算出SO2的脱硫效率

≥(4062900)

100%77.84% 4062

-

?=

2.4除硫设备的论证

吸收塔是烟气脱硫系统的核心装置,要求有持液量大、气液相见的速度高、气液接触面积大、内部构件少、压力小等特点。目前较常用的吸收塔主要有喷淋塔、填料塔、喷射鼓泡塔和道尔顿型塔四类。其中喷淋塔是湿法脱硫的主流塔型。各种塔型的优缺点列于下表。

烟气脱硫用洗涤塔性能比较

2.5工艺方案

本设计拟用石灰石/石灰-石膏湿法,以碳酸钠为吸收剂,石灰石为再生剂,并采用填料塔。由于锅炉烟气温度高达280C,不适合二氧化硫的吸收去除,故需先将其进行冷却预处理,经过冷却塔后烟气的温度可降至60C左右,送入钠碱吸收塔,原始吸收溶液浓度

150

3

/

kg m,吸收后生成的23

a

N SO

进入储罐投加23

a

N CO

固体浓缩缓冲。根据储罐中溶液的

停留时间,选两个储罐,一个生产储罐,另一个作为备用储罐。应吸收塔较高,吸收塔出口溶液进入储罐采用自流,省去了泵的使用。因尾气温度较高,且碳酸钠溶考虑到尾气的温度较高,湿度较大,不适宜用干法吸收,该工艺流程设计以碳酸钠溶液吸收塔吸收尾气中的二氧化硫。高温不利于吸收反应的进行,并且对吸收塔的腐蚀较大,应此先将尾气降温处理。由于尾气中的二氧化硫具有强腐蚀性,操作过程中反应都受到PH值的影响,随时需要进行酸度调节;因此需在地下池设备中安装PH值自动控制仪表,调节水的酸度,防止对环境的二次污染。冷却塔出水由于吸收大量的热能,出水温度升高,要循环利用地下池的水需经循环水冷却塔降温,循环水冷却塔采用自然通风冷却,安装两台进水泵,一个生产用泵,一个备用泵,水来自集水池;两台出水泵,一个生产用泵,一个备用泵,水送往冷却塔。水经过

循环利用从而节省了大量的水资源。液吸收二氧化硫的反应放热,高温不利于吸收反应的进行,因此浓缩后的碱液需经换热器的降温后 进入吸收塔循环吸收二氧化硫。

吸收塔出口气体温度为60C 左右,用引风机引气排放,由于气液分离不完全,气体中携带水蒸气会引起引风机的震荡,因此在引风机前应设置气液分离器。且气体温度降低,在高烟囱中会冷凝酸化,腐蚀烟囱,且气体温度降低不利于气体的扩散排放,在排放前要升高气体温度,使气体在烟囱口的排放温度达到160C 以上。

反应机理 (1)吸收反应 洗涤过程的主要反应式:

23a N SO +

2SO +

2H O

→2

3

a N HSO

洗涤液内含有再生后返回的a N OH

及系统补充的

23

a N CO ,在洗涤过程中生成亚硫酸

钠。

2

a N OH +23

a N SO →23a N SO +

2H O

23a N CO +

2SO →

2SO +

2

CO

在洗涤液中还含有24

a N SO ,系烟气中的

2

O 与亚硫酸钠反应而生成。

2

23a N SO +

2O →2

24

a N SO

(2)再生反应

用石灰浆料进行再生时:

23

a N SO +

2()a C OH +

212H O

→2

a N OH

+

3212a C SO H O ?↓

亚硫酸钙的一般形式为半水亚硫酸钙。用石灰石粉再生时: 2

3

a N HSO +

3

a C CO →

23a N SO +

3212a C SO H O

?+ 2

CO +1/22H O

(3) 硫酸钠的去除

硫酸钠用硫酸酸化使其转变为石膏来去除。

24

a N SO +2

3212a C SO H O ?+

24

H SO +3

2H O

→2

422a C SO H O

?+2

3

a N HSO

加酸后,PH 下降到2―3,使亚硫酸钙转化为亚硫酸氢钙而溶于溶液中,于是溶液中的

2a C +

超过了石膏的溶度积,使石膏沉淀出来。 (4) 氧化反应

在回收法中,最终产品是石膏,需将由再生反应应得到的亚硫酸钙氧化为石膏。

3212a C SO H O ?+322H O →422a C SO H O

?

工艺流程

锅炉烟气经电除尘器除尘后,通过增压风机、喷淋增湿降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO 2、SO 3、HCL 和HF ,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO 4?2H 2O ),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接

触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。

在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。

经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。

在吸收塔出口,烟气一般被冷却到46~60℃左右,且为水蒸气所饱和。通过GGH 将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。

3 工艺计算

3.1 冷却塔

冷却塔中水的相变过程:

200C (汽)→100C (汽)→100C (水)→60C (水) 总放热量

Q=Q 汽=1m t P C 气 =15000××(200-60) =2312100/kJ h

其中:p C 气—锅炉烟气的平均比热容kJ /(kg C ?);(p C 气=kJ (kg C ?)) 1t --焚锅炉烟气的温度差C ;(1t =200-60=140C ) 冷却水消耗量

m=2/(t P Q C *水)=2312100/*35)=/kg h L=m/ρ水=1000=3

/m h

其中:C p2--水的比热容,kcal/(kg.℃);(Cp 水=(kg.℃)) 2t --冷却水的温度差,C ;( t 2=45-10=35C )

ρ水--水的密度,kg/m 3;(ρ水=10003

kg/m )

塔径

0D

其中:v--气体体积流量,3/m h ;(v=49880/3600=3

/m h μ--空塔气速,m/s;(空塔气速一般为取μ=s) 塔截面积 S 0=1/4πD 02=1/4××=3m 2 将塔截面积放大倍,即: S= =×3=

塔径为:2D m ===

塔高

冷却塔是空塔,其高度是液气接触段、上部的液气分离段与下部的液气分离段之和。 设液气接触段气体的停留时间设计10秒,则液气接触段的高度

0H =t υμt =×10=12 m

根据经验值,上下段分离高度至少大于塔径,一般为~2D (塔径)。 取倍,则上下段分离高度为: 1H ==×2=3m 群座高为 2H =1m, 则吸收塔高为

H=0H +1H +2H =12+3+1=16m

3.2 吸收塔

23a N SO 溶液用量

锅炉烟气中二氧化硫的含量为: 6

498804062/10202.6/kg h ?= 尾气急冷过程中被吸收掉%2SO .则进塔气体中2SO 含量为: 1m =×%)=/kg h

设吸收塔中2SO 的去除率为96%,即去除2SO 量为: 2m =×96%=/kg h 排除气体中含2SO 量为: 3m =/g h 由反应方程式:

2SO + 23a N CO → 23a N SO +2CO ↑ 1mol 1mol 1mol 1mol

可知吸收64kg 2SO 需23a N CO 106kg ,则23a N CO 用量为:

m =64×106=320/kg h ,设用23a N CO 溶液的浓C 为2003

/kg m ,质量分数为30%,则23a N CO 用量为:

1L =m/C=320÷30%÷200 =3

/m h =1060kg/h

取安全系数,则Na 2CO 3溶液实际用量为 L =×1060=1272kg/h 塔径

1)气体体积流量

Vs =s M /v ρ =15000/=146563

/m h

其中 :s M —锅炉烟气出口每小时排除烟气质量,kg/h;(s M =15t/h)

v ρ—60℃时烟气密度,3/kg m ;(v ρ=3

/kg m

2)填料的选择 Ф=25mm , 比表面积a=209m 2/m 3, 空隙率x=m 3, 堆积面积:p=m 3

每m 3填料个数: n= ×103 填料因子:Ф=170m -1 填料塔尺寸: 塔径D= 塔高H=

塔壁厚度 4 mm 群座高: 3) 塔径

60C 时烟气密度v ρ=3

/kg m , 常温时碳酸钠溶液:

密度L ρ=12003

kg m , 黏度μ=mpa S ? 溶液密度与水的密度比为: ψ= 进塔气体质量流量V W =20t/h 进塔碳酸钠溶液质量流量W L = h 查图得 p=, 液泛气速f U =s U=f U =×=s

1/2

[4/()]D Vs u π==[(4×4)/(×]

1/2

=

其中:Vs —— 气体体积流量,14656/3600=4m 3/s;

U —— 空塔气速,m/s;

塔截面积为:2

01/4A D π= = 1/4××=10m 2,

比例因子取, A= =×10=122

m 计算得 D= 塔高 1)气相流率

标准状态下气体体积流量为:

00/V VsT T ==4×273/(60+273)=3

/m h

气相流速为:

G=V 0/=×12)=1

2

s m --? 2)传质单元高度

/OG ya H G K ==(×)=

其中 ya K ——总传质系数,Kmol/; ya K =×210-Kmol 12

s m --?

3)传质单元数

进塔气体的摩尔流量为:

1G ={××103)/273}×{(60+273)/ ×3

10-)}

=×106mol/h

进塔气体中的二氧化硫的摩尔流量为:

G =×103/64)×%)=h 塔气体的摩尔流量为: 2G =.8×96%

=h

出塔气体中二氧化硫的摩尔流量为:

G '=202600×%)×(1-96%)/64

=h

121()/OG N Y Y Y =-

=其中:1Y =1600000= 2Y ==

OG N _传质系数; 4)填料层高度

0OG OG H H N =? =×= H =0H =×= 分一层,层高度 5)总塔高

012H H H H h =+++=+++= 其中:h ——填料层高度,m :h=; 1H ——分离与分布区高,m; 1H =; 2H ——裙座高度,m; 2H =;

3.3 换热器

计算换热器的热负荷

1112()m p Q q c T T =-=1272××(60-45)=46746KJ/h 其中:1m q --溶液质量流率,kg/h;

1p c --溶液比热容,KJ/(kg K ?);(c p1=(kg K ?)) 1T --溶液进口温度,K;(T1=60+273=333K) 2T --溶液出口温度,K;(2T =45+273=318K) 计算换热面积 1)冷却水出口温度

2122/()m p t t Q q C =+?=20+46746/(200×=76C 其中:1t --冷却水入口温度,C ;(1t =20C ) 2m q --冷却水质量流率,kg/h;( 2m q =200kg/h) 2p C --冷却水比热容,KJ/(kg K ?);(cp2=(kg K ?) 采用冷却水与溶液并流,冷却水走管程,溶液走壳程。

对热平均温差:

11221122[()()]/ln[()()]m t T t T t T t T t =------=C

2)总传热系数 管程:

Re /du ρμ==××1000/×310-)=

Re>4000(湍流)

Pr /Cpu λ==××310-/=

其中:d —换热管直径,m;(d= K 1传热系数,W/(m.℃))

0.80.3

10.023/Re Pr K d λ=?

=××0.8

5434.7

×0.3

0.010

=(m 2.℃)

壳程:查资料得冷却水的传热系数 K=100W/(m 2.℃) 总传热系数

121/(1/1/)a K a a =+= W/(m 2.℃)

3)计算换热面积

/A Q Kt ==46746/(59×=

冷却水量

由 11122212()()m p m p Q c T T Q c t t -=- 得

222/()m Q Q cp t ==46746/×76)

=h

3.4 泵和风机的选型计算

水泵

其作用是将地下水的水送往循环水冷却塔,于地面安装,提升高度5m ,流量90m 3/h,查《工业水处理设备手册》,选用型号为IS80-65—160的水泵2台,一用一备,性能参数如下:

表四 水泵性能参数

其作用是将冷却水从集水池提升到冷却塔,于地面安装,提升高度,流量90m 3/h ,查《工业水处理设备手册》,选用型号为IS100-80-125的水泵2台,一用一备,性能参数如下:

表五 循环水泵性能参数表

安装在换热器之前,用于将碱液从储罐送往换热器及循环送往吸收塔,选用型号为IS65-50-125的泵2台,一用一备,性能参数如下:

表六碱液泵性能参数

根据Gs=h,供气压力为,选用2台离心式通风机,一用一备,性能参数如下:表七风机性能参数

4附图

5结论

1. 最终排放烟气中污染物浓度预计为: SO2≤500mg/m3,烟尘≤100mg/m3。不仅低于排放标准,而且在以后10年内排放标准再严格也有适用。石灰石/石灰-石膏湿法,以碳酸钠为吸收剂,石灰石为再生剂的脱硫工艺,预计可以达到99﹪,使用本方案烟尘排放不会超标。

2石灰石/石灰-石膏湿法,以碳酸钠为吸收剂,石灰石为再生剂的脱硫工艺通过工程实例证明, 其系统运行可靠性高, 除尘脱硫效率高,完全达到了国家环保标准, 在技术上是完全可靠的。投资少,占地面积小, 运行费用低, 非常适合我国的国情。不但在技术和经济上是可行的, 而且经济效益和社会效益都非常显着。

3.脱硫产物的利用和回收,在传统上大多是采用抛弃法,现在这方面的市场有待开发,根据本地区盛产甘蔗、香蕉,可以在作肥料这方面开发。

燃煤锅炉废气处理的特点

生物质能源作为一种清洁的可再生能源,已经成为继石油、天然气、煤炭三大能源之后的第四大能源,越来越多的生物质锅炉取代了原有的燃煤锅炉。然而生物质锅炉燃烧产生时大量的灰和尘严重影响了生态环境和人民的身心健康。 生物质锅炉燃烧产生烟尘主要包含:颗粒粉尘、二氧化硫(SO2)、酸性气体、氮氧化物(NOx)、氯化氢(HCL )、重金属。 生物质燃料燃烧时产生烟气和粉尘在污染了干净的空气同时,其燃烧不充分生产的炭烟(PM),其内含有大量的黑色炭颗粒。炭烟和扬尘能影响道路上的能见度,而且严重影响人的呼吸系统。炭烟还含有少量的带有特殊臭味的乙醛,往往引起人们恶心和头晕,干扰人体。 我国的生物质锅炉集中在供热、冶金、造纸、建材、化工等行业,主要分布在工业和人口集中的城镇及周边等人口密集地区,以满足居民采暖和工业用热水和蒸汽的需求为主,所以生物质锅炉项目必须配置除尘设备。 湿式静电设备除尘处理流程图: 结构见简图: 特点功能:

(1)96%高净化效率 设备采用湿式静电除尘技术,卧式结构,均风效果好,净化率高。 (2)阻力小,能耗低 阻力小,无需加装高压风机,因此整体能耗较低。 (3)自动清洗 设备带自动清洗功能,无需人工清洗。 (4)304不锈钢材质 设备采用304不锈钢材质,耐腐蚀,使用寿命长。 (5)产品一体化 无需现场焊接组装,降低现场安装费用的同时,更能保证设备的精度,使设备更加优质高效。 (6)维护方便 2人半小时内可以完成设备内部的极板(阴极针阳极板)拆装。 (7)智能数字电源 自主研发的智能数字高频高压电源功率强劲,能量利用率高,拥有软启动、恒流输出控制、灭弧保护、高压开路保护、高压短路保护、电源过载保护和变压器过温保护等功能。电源中的电脑芯片,可自动检测电场的清洁度及设备的工作状况,设定最佳的电压电流,在确保设备在安全运行的前提下尽量提高设备的净化效率,并能大大延长用户的清洗周期。高频高压变压器采用环氧树脂灌注的固体电源,体积小,重量轻,免维护。处于行业领先地位。 如需了解更多的废气处理相关知识,可以咨询广州和风环境技术有限公司,一家以环保工程、产品制造与技术服务三大价值链为核心,以技术进步和科技创新为支撑的产业构架体系,业务范围已涉及给排水、废气、噪音治理、环境影响评价、能源报告书、节能工程等工程承包及运营管理、设备制造、安装调试、验收一条龙服务等多个领域,形成环境规划与咨询、项目咨询、设计、建设、设备制造及设施运营完整的环保产业链。鼻尖下的健康,环境保护刻不容缓,国能创新科技一家致力于节能减排的企业,专注于有机废气处理,VOC废气处理,UV 光解设备的研发与销售,公司有一批有梦想,敢拼敢做的同事们,大家想法一致就是在从事一项造福社会的行业,做一家有社会责任感的企业,与梦想同行,感

燃煤锅炉烟气除尘脱硫系统设计方案

燃煤锅炉烟气除尘脱硫系统设计方案 一、设计题目 燃煤锅炉烟气除尘系统设计。 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4-13型,1台 排烟温度: 160℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数: =1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa

冬季室外温度:-5℃ 空气中含水(排标准状态下):10g/kg 烟气其它性质按近似空气计算 燃料的工业分析值: Y C =85% Y H = 4% Y S = 1% Y O =5% Y N = 1% Y W = 6% Y A = 15% Y V =13% 烟尘和SO 2排放标准按《锅炉大气污染物排放标准(GB13271—2001)》执行: 烟尘浓度排放(标准标准状态下):200mg/m 3; 二氧化硫排放标准(标准标准状态下):900 mg/m 3。 四、计划安排 1、资料查询和方案选定1天 2、设计计算2天 3、说明书编制及绘图2天 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较

确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计 根据净化系统所处理烟气量、烟气温度、系统阻力等计算选择风机种类、型号及电动机的种类和功率。 六、成果 1、设计说明书 设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图(工艺管网简图和设备外形图)等内容。课程设计说明书应有封面、目录、前言、正文、小结及参考文献等内容,书写工整或打印输出,装订成册。 2、图纸 A、除尘器图一张(2号图)。系统图应按比例绘制、标出设备部件编号,并附明细表。 B、除尘系统平面布置图、剖面布置图各一张(1号或2号),可以有局部放大图(3号)。布置图应按比例绘制。锅炉房及锅炉的绘制可以简化,但能表明建筑的外形和主要结构形式。在图上中应有指北针方位标志。

锅炉烟气除尘脱硫工程工艺设计(精)

锅炉烟气除尘脱硫工程工艺设计 目前, 世界上烟气脱硫工艺有上百种, 但具有实用价值的工艺仅十几种。根据脱硫反应物和脱硫产物的存在状态可将其分为湿法、干法和半干法3 种。湿法脱硫工艺应用广泛, 占世界总量的85.0%, 其中氧化镁法技术成熟, 尤其对中、小锅炉烟气脱硫来说, 具有投资少, 占地面积小, 运行费用低等优点, 非常适合我国的国情。 采用湿法脱硫工艺, 要考虑吸收器的性能, 其性能的优劣直接影响烟气的脱硫效率、系统的运行费用等。旋流板塔吸收器具有负荷高、压降低、不易堵、弹性好等优点, 可以快速吸收烟尘, 具有很高的脱硫效率。 1 主要设计指标 1) 二氧化硫( SO2) 排放浓度<500mg/m3, 脱硫效率≥80.0%; 2) 烟尘排放浓度<150mg/m3, 除尘效率≥99.3%; 3) 烟气排放黑度低于林格曼黑度Ⅰ级; 4) 处理烟气量≥15000m3/h; 5) 处理设备阻力在800~1100 Pa之间, 并保证出口烟气不带水; 6) 出口烟气含湿量≤8.0%。 2 脱硫除尘工艺及脱硫吸收器比较选择 2.1 脱硫除尘工艺比较选择 脱硫除尘工艺比较选择如表1 所示 脱硫工艺 湿法半干法干法 石灰石石 膏法 钠法 双碱 法 氧化镁 法 氨法 海水 法 喷雾干 燥 炉内喷 钙 循环流化 床 等离子 体 脱硫效率/% 90~98 90~ 98 90~ 98 90~98 90~ 98 70~ 90 70~85 60~75 60~90 ≥90 可靠性高高高高一般高一般一般高高 结垢易结垢不结 垢 不结 垢 不结垢 不结 垢 不结 垢 易结垢易易不结垢 堵塞堵塞堵塞不堵 塞 不堵塞 不堵 塞 不堵 塞 堵塞堵塞堵塞不堵塞 占地面 积 大小中小大中中中中中 运行费 用 高很高一般低高低一般一般一般一般投资大小较小小大较小较小小较小大通过对脱硫除尘工艺———湿法、半干法、干法的对比分析: 石灰石- 石膏法虽然工艺非常成熟,但投资大, 占地面积大, 不适合中、小锅炉。相比之下, 氧化镁法具有投资少、占地面积小、运行费用低等优点, 因此, 本方案选用氧化镁法脱硫工艺。 2.2 脱硫吸收器比较选择

燃煤锅炉烟气的脱硫工艺设计详解

大气污染控制工程课程设计 设计题目:15t/h燃煤锅炉烟气的脱硫工艺设计姓名: 学号: 年级: 系部:食品工程学院 专业:环境工程 指导教师: 完成时间:

目录 1设计任务及基本资料 (2) 1.115t/h燃煤锅炉烟气的脱硫工艺设计 (2) 1.2课程设计基本资料 (2) 2设计方案 (3) 2.1物料衡算 (3) 2.2工艺方案的比较和选择 (4) 2.3除硫效率 (7) 2.4除硫设备的论证 (7) 2.5工艺方案 (7) 3工艺计算 (9) 3.1冷却塔 (9) 3.2吸收塔 (10) 3.3换热器 (12) 3.4泵和风机的选型计算 (13) 4附图...................................................................................................................... - 1 -5结论...................................................................................................................... - 2 -

1设计任务及基本资料 1.115t/h燃煤锅炉烟气的脱硫工艺设计 1.2课程设计基本资料 1.2.1课程设计目的 大气污染控制工程课程设计是配合大气污染控制工程专业课程而单独设立的设计性实践课程。教学目的和任务是使学生在学习专业技术基础和主要专业课程的基础上,学习和掌握环境工程领域内主要设备设计的基本知识和方法,培养学生综合运用所学的环境工程领域的基础理论、基本技能和专业知识分析问题和解决工程设计问题的能力,培养学生调查研究,查阅技术文献、资料、手册,进行工程设计计算、图纸绘制及编写技术文件的基本能力。1.2.2设计要求 设计思想与方法正确;态度端正科学;能正确运用所学的理论知识;能解决实际问题,具备专业基本工程素质;具备正确获取信息和综合处理信息的能力;文字和语言表达正确、流畅;刻苦钻研、不断创新;按时按量独立完成;图文工整、规范,设计计算准确合理。整体设计方案要重点突出其先进性、科学性、合理性和实用性。 1.2.3课程设计参数和依据 1. 设计规模 锅炉蒸发量15t/h 2. 设计原始资料 (1)煤的工业分析如下表(质量比,含N量不计): (3)锅炉热效率:75% (4)空气过剩系数:1.3 (5)水的蒸发热:2570.8KJ/Kg (6)烟尘的排放因子:30% (7)烟气温度:473K (8)烟气密度:1.18kg/m3 (9)烟气粘度:2.4×10-5 pa·s (10)尘粒密度:2250kg/m3 (11)烟气其他性质按空气计算 (12)烟气中烟尘颗粒粒径分布

某燃煤锅炉房烟气净化系统设计

前言 在目前,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。而大气污染可以说主要是人类活动造成的,大气污染对人体的舒适、健康的危害包括对人体的正常生活和生理的影响。目前,大气污染已经直接影响到人们的身体健康。 随着我国经济的高速发展,我国的二氧化硫污染越来越严重,必须通过有效的措施来进行处理,以免污染空气,影响人们的健康生活。 一、题目 某燃煤锅炉房烟气净化系统设计 二、目的 通过课程设计进一步消化和巩固本课程所学的内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、查阅有关设计手册、编写设计说明书的能力。 三、原始资料 锅炉型号:SZL6-1.25-AII型,共2台(每台蒸发量为6t/h) 所在地区:二类区。2006年新建。 锅炉热效率:75%,所用的煤低位热值:20939kJ/kg,水的蒸发热:2570.8kJ/kg 锅炉出口烟气温度:160℃ 烟气密度:(标准状态下)1.34kg/m3 空气过剩系数:α=1.3 排烟中飞灰占煤中不可燃成分的比例:15% 烟气在锅炉出口前阻力:800Pa 当地大气压力:98kPa 平均室外空气温度:15℃ 空气含水率(标准状态下)按0.01293kg/m3 烟气的其它性质按空气计算

煤的工业分析: C :65% H :4% S :1% O :4% N :1% W :7% A :18% 净化系统布置场地如图1所示的锅炉房北侧20m 以内。图2为锅炉立面图。 图1 锅炉房平面布置图 图2 锅炉房立面图 四、 设计计算 (一)、用煤量计算 每台锅炉的所需热量为:Q =蒸发量×水的蒸发热 =6×103×2570.8=1.54×107kJ/h 所需的煤量为:热 η?n H Q =%75209391054.17??=982.2kg/h H n ——煤的低位热值 η 热 ——锅炉的热效率 (二)、烟气量、烟尘和二氧化硫浓度的计算 以1kg 煤燃烧为基础,则 重量(g ) 摩尔数(mol ) 产物摩尔数(mol ) 需氧数(mol) C 650 54.167 CO 2:54.167 54.167 H 40 40 H 2O: 20 10

年处理700万立方米烟气脱硫工艺设计

普通本科毕业设计(论文)说明书课题名称年处理700万立方米烟气脱硫工艺设计

摘要 此次设计通过对目前烟气除尘脱硫工艺的比较,因其具备脱硫效率高、系统运行稳定可靠、阻力低的特点,所以选取在工业上应用最广泛的湿式石灰石石膏法。 该工艺的脱硫吸收塔为喷淋空塔,此塔型为目前脱硫工艺的主流。烟气进口上方依次布置有冷却水管,喷淋层和两级除雾器。下方为浆液池,其内布置氧化空气管。 设计的主要内容为烟气除尘系统和烟气脱硫吸收系统的设计,重点是对这两个系统的设备进行设计计算及选型、设备的布置,并对该工艺进行简单的技术经济分析。 关键词:烟气脱硫、石灰石-石膏法、喷淋塔、设备计算

Abstract According to compare with different kinds of dust removal desulfurization methods, because of its high desulfurization efficiency, system runs stable and reliable, low resistance, so choose the wet limestone-gypsum process which is the most widely used in industry for this design. In the process, the desulfurization absorption tower is spray air tower, which is the main tower for the flue gas desulfurization. Above the flue gas desulfurization imports, decorate cooling water pipe, spray layer and two-level demister. Below is the slurry pond, there is oxidation air tube in it. The main content of this design: designing flue gas dust removal system and desulfurization absorption system, the focus is calculating and selecting the equipments for the two systems, and the arrangement of the equipments. In the last, makes some easily economic and technical analysis for the process. Keywords: Flue gas desulfurization limestone-gypsum method spray tower equipment calculation

燃煤锅炉烟气脱硝技术改造

燃煤锅炉烟气脱硝技术改造 发表时间:2018-08-10T15:33:11.200Z 来源:《科技中国》2018年4期作者:崔月 [导读] 摘要:文章针对烟气中主要的氮氧化物和二氧化硫的污染情况进行了分析,结合国家的减排政策,阐述锅炉烟气增加脱硝装置势在必行;对国内几种常用并且有效的烟气脱硝技术进行介绍,例如SCR法、SNCR法以及联合脱硝法等,同时对影响烟气脱硝效果的因素进行简单的分析,最后对燃煤锅炉烟气脱硝技术方案选择提出建议。 摘要:文章针对烟气中主要的氮氧化物和二氧化硫的污染情况进行了分析,结合国家的减排政策,阐述锅炉烟气增加脱硝装置势在必行;对国内几种常用并且有效的烟气脱硝技术进行介绍,例如SCR法、SNCR法以及联合脱硝法等,同时对影响烟气脱硝效果的因素进行简单的分析,最后对燃煤锅炉烟气脱硝技术方案选择提出建议。 关键词:燃煤锅炉;烟气脱硝;技术;改造 1导言 在我国社会与经济不断发展的同时,环境污染问题也变得越来越严重,环保形势变得更加严峻。燃煤锅炉所排放的烟气之中,含有较多的NOx物质,这些污染物质排入大气之后,会造成较为严重的大气污染问题,并且还会导致以氮氧化合物为主的酸雨出现,所以,对于燃煤锅炉脱硝改造工作是一项极为重要的工作。而在我国环保标准不断提升的过程中,所使用的脱硝技术也在不断改进,因此,对燃煤锅炉烟气脱硝技改是极为重要也是十分必要的一项工作。 2燃煤锅炉烟气增加脱硝装置的必要性 随着我国工业经济的快速发展,而随之所带来的环境污染尤其是大气污染问题,将对我们人类的生存和居住环境带来越来越严重的影响。其中危害量最大、影响范围最广的无疑是二氧化硫和氮氧化物。 我国在二氧化硫的减排中已初见成效,而相较于二氧化硫,氮氧化物排放污染日趋严重。因此2011年3月14日,全国人大审议通过的“十二五”规划纲要,提出化学需氧量、二氧化硫分别减少8%,同时将氨氮和氮氧化物首次列入约束性指标体系,要求分别减少10%,氮氧化物已经成为我国减排的重点。 3工艺流程 合成来的稀氨水与冷脱盐水在稀氨水储槽内混合至一定的浓度,由氨水供应泵加压后,送到锅炉氨水喷枪。氨水经压缩空气雾化后进入锅炉与烟气中的氮氧化物进行反应,生成N2和水,从而达到脱硝的目的。 系统一般选用气力式压缩空气作为雾化介质。气力式雾化是通过具有一定动能的高速气体冲击液体,从而达到一定雾化效果的方式。由稀氨水水泵、流量调节、测量模块,喷枪和氨水储槽构成。喷枪采用304不锈钢材料制造,每支喷枪配有气动推进器,实现自动推进和推出喷枪的动作。 4脱硝方案的选择 选取烟气脱硝工艺遵循以下原则:①NOx排放浓度和排放量满足有关环保标准;②技术成熟,运行可靠,有较多业绩,可用率达85%以上;③对煤种类适应性强,并能够适应燃煤含氮量在一定范围内的变化;④尽可能节省建设投资;⑤分布合理,占地面积较小;⑥脱硝剂、水和能源消耗少,运行费用较低;⑦脱硝剂来源可靠,质优价廉;⑧副产物、废水均能得到合理的利用或处置。 SNCR(选择性非催化还原法)和SCR(选择性催化还原法)在大型燃煤电厂获得了较好的商业应用。SCR法和SNCR法的相同点是均采用NH3或尿素作为还原剂,不同点是SCR法反应温度较低,为320~430℃,需使用催化剂(主要成分TiO2,V2O5,WO3),脱硝效率较高,为70%~90%,氨的逃逸浓度低;SNCR法反应温度较高,为850~1250℃,无需使用催化剂,脱硝效率较低25%~60%,氨的逃逸浓度高。 5燃煤锅炉烟气脱硝技术改造 5.1燃烧前脱硝技术 其是在燃煤发生燃烧反应之前通过一定的脱氮工艺之后,将燃煤中氮元素有效的去除,从而确保烟气中含氮量减少,实现烟气脱硝的目标。根据目前的技术工艺而言,此种脱硝方式在实际应用过程中存在的难度相对大,同时所需成本也非常高,因此,该种脱硝技术目前仅仅是脱硝研究的一个方向,其在实际过程中的应用还非常少,有待进一步的研究与实践。 5.2电子束烟气脱硫脱硝法 用电子束对烟气进行照射而同时脱硫脱硝的技术,是近年来发展起来的一种干法烟气脱硫脱硝工艺。我国成都热电厂引进日本先进技术,建成了电子束烟气脱硫脱硝示范装置。 该法的工艺流程为:从电除尘器出来的烟气,在冷却塔中通过喷雾干燥工艺冷却到65~70℃,然后送入反应器。烟气在进入反应器之前要先加入氨气,在反应器中用电子束对烟气进行照射。电子束发生装置是由电压为800kV的直流高压电发生装置和电子加速器组成。电子加速器产生的电子束通过照射孔对反应器内的烟气进行照射时,电子束的高能电子将烟气中的氧和水蒸气的分子激发,使之转化成为氧化能力很强的OH、O和HO2等游离基。这些游离基使烟气中的硫氧化物和氮氧化物很快氧化,产生了中间产物硫酸和硝酸,他们再和预先加入反应器中的氨反应产生微粒状的硫酸铵和硝酸铵。最后,烟气通过另一电除尘器副产品硫酸铵和硝酸铵从烟气中分离出来,由于烟气的温度高于露点,因此在烟气通过烟囱排放到大气之前不需要再加热。该法的特点是,系统简单,可以高效地从烟气中同时脱硫和脱硝,脱硫效率可达95%以上,脱硝效率可达85%以上,脱硫脱硝反应副产品为硫酸铵和硝酸铵化肥,可用于农业生产上。 5.3燃烧中脱硝技术 燃煤燃烧将形成大量的氮氧化合物,因此,要是能够在此阶段之中采用相应的脱硝技术,便能够取得很好的脱硝效果。此时期应用脱硝技术主要为低氮脱硝技术,其关键在于有效降低燃烧过程中产生的NOx物质,通常都能够减少大约30%的NOx物质,从而达到脱硝目的。此阶段所采用的脱硝技术相对来说较为简单,所需成本也非常少,并且相关设备占地面积非常小,因此,在燃煤锅炉脱硝技改过程中应用较为普遍。 5.4选择性非催化还原法(SNCR) 选择性非催化还原SNCR(Selective Non-Catalytic Reduction)脱硝处理工艺,为一种成熟的NOx控制处理技术。SNCR不使用催化剂,又称热力脱硝,此方法是在炉膛高温区850~1050℃下,将氮还原剂(一般是氨或尿素)喷入锅炉炉膛的烟气中,将NOx还原生成氮气和

某燃煤采暖锅炉烟气除尘系统设计1

目录 第一章总论 (2) 1.1 前言 2 1.2 设计任务书 (2) 1.2.1 设计题目 (2) 1.2.2 设计目的 (3) 1.2.3 设计原始资料 (3) 1.2.4 设计容和要求 (4) 1.3 设计依据和原则 (4) 第二章除尘器系统 (5) 2.1 方案确定与认证 (5) 2.2 工艺流程描述 (5) 第三章主要及辅助设备设计与选型 (5) 3.1 烟气量、烟尘和二氧化硫浓度的计算 (5) 3.1.1 标准状态下理论空气量 (5) 3.1.2 标准状态下理论烟气量 (6) 3.1.3 标准状态下实际烟气量 (6) 3.1.4 标准状态下烟气含尘浓度 (7) 3.1.5 标准状态下烟气中二氧化硫浓度的计算 (7) 3.2 除尘器的选择 (7) 3.3 除尘器、风机、烟囱的位置及管道布置 (9) 3.3.1 各装置及管道布置的原则 (9) 3.3.2 管径的确定.................................... 错误!未定义书签。 3.4 烟囱的设计 (10)

3.4.1 烟囱高度的确定 (10) 3.4.2 烟囱的抽力.................................... 错误!未定义书签。 3.5 系统中烟气温度的变化 (12) 3.5.1 烟气在管道中的温度降 (12) 3.5.2 烟气在烟囱中的温度降 (12) 3.6 系统阻力的计算 (13) 3.6.1 混合气体产物的量,混合气体的密度 (13) 3.6.2 摩擦压力损失 (13) 3.6.3 局部压力损失 (14) 3.7 风机和电动机的计算.................................. 错误!未定义书签。 3.7.1 风机风量的计算................................ 错误!未定义书签。 3.7.1 风机风压的计算................................ 错误!未定义书签。 3.7.2 电动机功率的计算.............................. 错误!未定义书签。第四章附图............................................... 错误!未定义书签。 4.1 脱硫除尘工艺流程图.................................. 错误!未定义书签。 4.2 XL旋流式水膜除尘器工艺设备图 (19) 参考文献.................................................... 错误!未定义书签。致 ......................................................... 错误!未定义书签。 第一章总论 1.1前言 在目前,随着工业的发展,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。随着国民经济的发展,能源的消耗量逐步上升,大气污染物的排放量相应增加。越来越多的环境问题出现在了人们的生活中,其

某燃煤供热锅炉烟气除尘系统设计说明

一、燃煤锅炉房烟气除尘系统设计 设计任务书

一、课程设计的题目 燃煤锅炉烟气除尘系统设计 二、课程设计的目的 燃煤供热锅炉烟气除尘系统设计,包括集气罩、管路系统、净化设备、风机电机和烟囱几部分,主要强化学生对燃烧参数计算、燃煤烟气参数计算、净化系统计算和设备选型、管路系统和烟囱参数计算等方面的训练。通过课程设计进一步消化和巩固本课程有关颗粒污染物净化技术所学容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过该部分的课程设计,了解颗粒污染物净化系统设计的容、方法及步骤,自主确定大气污染控制系统的设计方案、各部分设计计算、工程图纸绘制、参考文献阅读、编写设计说明书。从而培养学生利用所学知识独立分析问题和解决问题的能力。 三、设计原始资料 锅炉型号:SZL10.5—13型,共4台 设计耗煤量:600kg/h(台) 排烟温度:190℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数:a=1.55 排烟中飞灰占不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:100k Pa 冬季室外温度:-1℃ 空气含水(标准状态下)按0.01293kg/m3 烟气其他性质按空气计算 煤的工业分析值: C Y=68% H Y=4% S Y=1% O Y=5% N Y=1% W Y=6% A Y=15% V Y=13% 按锅炉大气污染物排放标准(GB 13271—2001)中二类区标准执行。 二氧化硫排放标准(标准状态下):900mg/m3 烟尘浓度排放标准(标准状态下):200 mg/m3 净化系统布置场地如图1-1所示的锅炉房北侧20m以。 四、设计容和要求 1.燃煤理论和实际空气量和烟气量计算、烟尘和二氧化硫浓度的计算。 2.净化效率的计算,净化系统设计方案的对比分析和优选。

大气课程设计任务书DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计

中北大学 课程设计说明书 学生姓名:徐宁学号:08040141X61 学院:信息商务学院 专业:环境工程 题目:DLP4-13型锅炉中硫烟煤烟气袋式 除尘湿式脱硫系统设计 指导教师:赵光明职称: 讲师 2011年 6月10日

中北大学 课程设计任务书 2009/2010 学年第二学期 学院:化工与环境学院 专业:环境工程 学生姓名:徐宁学号:08040141X61 课程设计题目:DLP4-13型锅炉中硫烟煤烟气 袋式除尘湿式脱硫系统设计 起迄日期: 5 月30 日~ 6 月10 日课程设计地点:环境工程专业实验室 指导教师:赵光明 系主任:王海芳 下达任务书日期: 2011年 5月 4日

课程设计任务书 1.设计目的: 通过本课程设计,掌握《大气污染控制工程》课程要求的基本设计方法,掌握大气污染控制工程设计要点及其相关工程设计要点,具备初步的大气污染控制工程方案及设备的独立设计能力;培养环境工程专业学生综合运用所学的理论知识独立分析和解决大气污染控制工程实际问题的实践能力。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 1.设计题目DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计 2.设计原始资料 锅炉型号:DLP4-13 即,单锅筒横置式抛煤机炉,蒸发量4t/h,出口蒸汽压力13MPa 设计耗煤量:610kg/h 设计煤成分:C Y=61.5% H Y=4% O Y=3% N Y=1% S Y=1.5% A Y=21% W Y=8%; V Y=15%;属于中硫烟煤 排烟温度:160℃ 空气过剩系数=1.4 飞灰率=22% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。 3.设计内容及要求 (1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。 (2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。 (3)除尘设备结构设计计算 (4)脱硫设备结构设计计算 (5)烟囱设计计算 (6)管道系统设计,阻力计算,风机电机的选择 (7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A4图,并包括系统流程图一张。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 课程设计计算说明书一份,并按照规定格式打印装订; 课程设计所需若干图纸,要求作图规范,A4纸打印。

锅炉sncr烟气脱硝方案

×××公司 3×10t/h+1×20 t/h水煤浆锅炉及3×5 t/h 链条导热油炉+1×10t/h蒸汽链条炉烟气脱 硝工程 (SNCR法) xxx有限公司 年月

目录 1 概述.............................................. 错误!未指定书签。 1.1 项目概况........................................ 错误!未指定书签。 1.2 主要设计原则.................................... 错误!未指定书签。 1.3 推荐设计方案.................................... 错误!未指定书签。 2 锅炉基本特性...................................... 错误!未指定书签。 3 本项目脱硝方案的选择.............................. 错误!未指定书签。 4 工程设想.......................................... 错误!未指定书签。 4.1 系统概述........................................ 错误!未指定书签。 4.2 工艺装备........................................ 错误!未指定书签。 4.3 电气部分........................................ 错误!未指定书签。 4.4 系统控制........................................ 错误!未指定书签。 4.5 供货范围清单.................................... 错误!未指定书签。 4.6 脱硝系统水、气、电等消耗........................ 错误!未指定书签。 4.7 脱硝系统占地情况................................ 错误!未指定书签。 5 工程实施条件和轮廓进度............................ 错误!未指定书签。

(完整版)研发工艺设计规范

研发工艺设计规范 1.范围和简介 1.1 范围 本规范规定了研发设计中的相关工艺参数。 本规范适用于研发工艺设计 1.2简介 本规范从PCB外形,材料叠层,基准点,器件布局,走线,孔,阻焊,表面处理方式,丝印设计等多方面,从DFM角度定义了PCB的相关工艺设计参数。 2.引用规范性文件 下面是引用到的企业标准,以行业发布的最新标准为有效版本。 3 术语和定义 细间距器件:pitch≤0.65mm异型引脚器件以及pitch≤0.8mm的面阵列器件。 Stand off:器件安装在PCB板上后,本体底部与PCB表面的距离。 PCB表面处理方式缩写: 热风整平(HASL喷锡板):Hot Air Solder Leveling 化学镍金(ENIG):Electroless Nickel and Immersion Gold 有机可焊性保护涂层(OSP):Organic Solderability Preservatives 说明:本规范没有定义的术语和定义请参考《印刷板设计,制造与组装术语与定义》(IEC60194)4. 拼板和辅助边连接设计 4.1 V-CUT连接 [1]当板与板之间为直线连接,边缘平整且不影响器件安装的PCB可用此种连接。V-CUT为直通型,不能在中间转弯。 [2]V-CUT设计要求的PCB推荐的板厚≤3.0mm。 [3]对于需要机器自动分板的PCB,V-CUT线两面(TOP和BOTTOM面)要求各保留不小于 1mm的器件禁布区,以避免在自动分板时损坏器件。

图1 :V-CUT自动分板PCB禁布要求 同时还需要考虑自动分板机刀片的结构,如图2所示。在离板边禁布区5mm的范围内,不允许布局器件高度高于25mm的器件。 采用V-CUT设计时以上两条需要综合考虑,以条件苛刻者为准。保证在V-CUT的过程中不会损伤到元器件,且分板自如。 此时需考虑到V-CUT的边缘到线路(或PAD)边缘的安全距离“S”,以防止线路损伤或铜,一般要求S≥0.3mm。如图4所示。

燃煤锅炉烟气的除尘脱硫工艺设计

燃煤锅炉烟气的除尘脱硫课程设计 专业:环境工程 班级:B080703 学号:B08070304 姓名:曹书杰 指导老师:高辉

目录 前言 (3) 1 设计任务书 (4) 1.1课程设计题目 (4) 1.2设计原始材料 (4) 2 设计方案的选择确定 (4) 2.1除尘系统选择的相关计算 (4) 2.2旋风除尘器的工作原理、应用及特点 (6) 2.3 旋风除尘器的结构设计及选用| (6) 2.4 旋风除尘器分割粒径、分级效率和总效率的计算 (7) 2.5脉冲袋式除尘器的工作原理、应用及特点 (7) 2.6 袋式除尘器的结构设计及选型 (8) 3 除尘系统效果分析 (8) 4锅炉烟气脱硫工艺的论证选择 (9) 5 风机和泵的选用及节能设备 (13) 7 设计结果综合评价 (14)

前言 近20年来,随着国民经济的迅速发展,我国的SO 2排放量连年增长, SO 2 的排 放已导致许多地区出现了严重的酸雨现象,由此引起我国酸雨区不断扩大,造成全国每年经济损失1000亿元以上,接近当年国民生产总值的2%。烟气脱硫是当前环境保护的一项重要工作。在大气污染防治技术的研究开发方面,近年来我国取得众多成果,与此同时,大气污染的治理也取得了很大进展。 本次课程设计的题目是蒸发量为20t/h燃煤锅炉烟气脱硫除尘装置的设计。主要涉及内容包括根据锅炉生产能力,燃煤量,煤质等数据计算烟气量,烟尘浓度和SO2浓度;根据排放标准论证除尘系统和确定旋风除尘器型号,并计算旋风除尘器各部分的尺寸;根据粉尘粒径分布数据计算所设计旋风除尘器的分割粒径,分级效率和总效率;确定二级除尘设备型号,计算设备主要尺寸;计算除尘系统的总除尘效率及粉尘排放浓度,并对烟气脱硫工艺进行论证选择,其中初步设计要求绘制除尘器结构图和烟气净化系统图各一张,设计深度为一般设计深度。 通过本次课程设计应掌握旋风除尘器和二级除尘设备袋式除尘器的工作原理,其中旋风除尘器的工作原理为含尘气流由进气管以较高的速度沿切向方向进入除尘器内在圆筒体与排气管之间的圆环内做旋转运动,尘粒在离心力的作用下,穿过气流流线向外筒壁移动,达到器壁后,失去其惯性,在重力和二次涡流的作用下,尘粒沿器壁向下滑动,直至排灰口排出。 设计标准主要参考《大气污染物排放限值》,工艺运行设计达到国家GB13271--91锅炉大气污染物排放标准。 除尘脱硫设计原则(1)脱硫率>80%。除尘效率>97%;(2)技术较为成熟,运行费用低;(3)投资省;(4)能利用现有设施;(5)建造工期短,方便;(6)系统简便,易于操作管理;(7)主体设备的使用寿命>8a;(8)烟气脱硫以氧化镁为主要吸收剂,并充分利用锅炉排渣水的脱硫容量,达到以废治废,降低运行成本的目的。 能用于烟气脱硫和除尘的设备很多,但要满足运转稳定可靠、不影响生产同时去除且压力降较小等要求,以袋式除尘器和旋流板为宜。

燃煤锅炉脱硫系统设计

环境工程综合实验 课程设计 专业: 环境工程 姓名: 学号:

目录 1 课程设计题目 (2) 2 设计依据 (2) 2、1 技术标准及依据 (2) 2、2 设计参数及参数范围 (3) 2、3 设计原则及设计目标 (3) 3 污染源强分析 (3) 3、1 污染物浓度的计算 (3) 3、2烟气中SO2的浓度计算 (5) 3、3烟气SO2排放量的计算 (6) 4 工艺设计 (7) 4、1 工艺选择 (7) 4、2吸收设备的选择 (7) 4、3 工艺原理 (7) 4、4 脱硫系统工艺流程 (8) 4、5 工艺组成 (8) 5 相关的设计计算 (9) 5、1 脱硫剂液箱容量与设计 (9) 5、2 增压风机 (9) 5、3 SO2吸收系统 (10) 5、3、1 塔径及底面积计算 (10) 5、3、2 脱硫塔高度计算 (10) 6 附图 (11) 附图1 双碱法烟气脱硫工艺流程图 (11) 附图2 吸收塔系统 (11) 附图3 吸收塔平面图 (12) 1 课程设计题目 四川省某火电厂30t/h燃煤锅炉烟气的脱硫系统设计 2 设计依据 2、1 技术标准及依据 (1)《大气污染物综合排放标准》(GB16297-1996) (2)《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ462-2009) (3)《大气污染防治手册》 (4)《锅炉大气污染物排放标准》(GB13271-2001) (5)《环境空气质量标准》(GB3095-1996)

(6)《四川省大气污染物排放标准》 2、2 设计参数及参数范围 (1)根据技术标准与排放标准,确定设计参数及设计范围。 锅炉型号:30 t/h 锅炉一台 烟气排放量:19000m3/h 燃料种类:无烟煤 燃煤量:2、237152t/h 炉内温度:700℃ 锅炉排烟温度:155℃ 烟气含氧量:60、2605mol/kg(燃煤) m 目前SO2排放浓度:1353mg/3 N 含硫率:1、1% 锅炉热效率:75% 空气过剩系数:1、2 (2)拟用双碱法,据《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ 462-2009),故有: 液气比(G/L)为2 钙硫比(Ca/S)为1、1 净化效率η不小于95% 可用率为95% 2、3 设计原则及设计目标 设计原则: (1)设计中为将来更加严格的排放标准及规模扩大留有余地。 (2)因地制宜,节省场地。 (3)严禁转移污染物,全面防治二次污染。 设计目标: (1)根据《四川省大气污染物排放标准》标准,该火电厂标准状态下SO2排放浓度应小于300 mg/m3 (2)为保证电厂周围居民区空气质量,同时执行《环境空气质量标准》(GB3095—1996)的二级标准,即小于居民区大气中SO2最高允许的日平均浓度0、15mg/m3 (3)总量控制指标达标 3 污染源强分析 3、1 污染物浓度的计算 含硫率为1、1%,选择煤种为无烟煤

最新烟气脱硫 设计工艺实例

烟气脱硫工艺设计说明书

目录 1 概述 1.1 工程概况 1.2 脱硫岛的设计范围 2 设计基础数据及主要设计原则 2.1 设计基础数据 2.2 吸收剂分析资料 2.3 脱硫用水资料 2.4 主要工艺设计原则 2.5 脱硫工艺部分设计接口 3 吸收剂供应和脱硫副产物处置 3.1 吸收剂来源 3.2 脱硫副产物 4 工艺系统及主要设备 4.1 工艺系统拟定 4.2 吸收剂系统 4.3 烟气系统 4.4 SO2吸收系统 4.5 排放系统 4.6 石膏脱水系统 4.7 工艺水系统

4.8 压缩空气系统 4.9 物料平衡计算(二台锅炉BMCR工况时烟气量) 4.10 主要设备和设施选择 5 起吊与检修 6 保温油漆及防腐 6.1 需要保温、油漆的设备、管道及设计原则 6.2 防腐 7 脱硫装置的布置 8 劳动安全及职业卫生 8.1 脱硫工艺过程主要危险因素分析 8.2 防尘、防毒、防化学伤害 8.3 防机械伤害及高处坠落 8.4 防噪声、防震动 8.5 检修安全措施 8.6 场地安全措施 9 烟气脱硫工艺系统运行方式 9.1 FGD启动 9.2 FGD系统整组正常停运 9.3 FGD紧急停运 9.4 FGD装置负荷调整 9.5 FGD停运措施

1 概述 1.1 工程概况 锅炉:华西能源工业股份有限公司生产的超高压自然循环汽包炉,单炉膛,一次中间再热,固态排渣,受热面采用全悬吊方式,炉架采用全钢结构、双排布置。 汽轮机:东方电气集团东方汽轮机有限公司公司生产的超高压参数、一次中间再热、单轴、双缸双排汽、6级回热、直接空冷抽汽凝汽式汽轮机。 发电机:山东济南发电设备厂生产的空冷却、静止可控硅励磁发电机。 本期工程需同步建设烟气脱硫装置,因有大量石灰石资源,且生产电石亦需要大量石灰石,故暂定采用石灰石—石膏湿法烟气脱硫装置(以下简称FGD),不设GGH,脱硫装置效率不低于95%,设备可用率不低于95%,按照《GB13223-2003 火电厂大气污染物排放标准》执行。 本章所述采用的环境保护标准、脱硫方式、脱硫效率等环保措施均以批复的环境影响报告书为准。 1.2 脱硫岛的设计范围 本工程脱硫岛设计范围包括:烟气脱硫工程需要的工艺、电气、控制、供水、消防、建筑、结构、暖通等,本卷册说明中包括的内容为工艺、起吊检修、保温防腐方面内容,其它见相关专业说明书中内容。脱

PCB工艺设计规范

PCB板设计规范 文件编号:QI-22-2006A 版本号:A/0 编写部门:工程部 编写:职位:日期: 审核:职位:日期: 批准:职位:日期: 目录

一、PCB版本号升级准则 (1) 二、PCB板材要求 (2) 三、PCB安规文字标注要求 (3) 四、PCB零件脚距、孔径及焊盘设计要求 (15) 五、热设计要 求 (16) 六、PCB基本布局要求 (18) 七、拼板规 则 (19) 八、测试点要 求 (20) 九、安规设计规 范 (22) 十、A/I工艺要 求 (24)

一、PCB版本号升级准则: 板设计需要有产品名称,版本号,设计日期及商标。 2.产品名称,需要通过标准化室拟定,如果是工厂的品牌,那么可以采用红光厂注册商标( )商标需要统一字符大小,或者同比例缩放字符。不能标注商标的,则可以简单字符冠名,即用红光汉语拼音几个首字母,例如,HG 或HGP冠于产品名称前。 3.版本的序列号,可以用以下标识REV0,0~9, 以及,,等,微小改动用.A、.B、.C 等区分。具体要求如下: ①如果PCB板中线条、元件器结构进行更换,一定要变更主序号,即从向 等跃迁。 ②如果仅仅极小改动,例如,部分焊盘大小;线条粗细、走向移动;插件孔 径,插件位置不变则主级次数可以不改,升级版只需在后一位数加上A、B、C和D,五次以上改动,直接升级进主位。 ③考虑国人的需要,常规用法,不使用序号。 ④如果改变控制IC,原来的IC引脚不通用,请改变型号或名称。 ⑤PCB版本定型,技术确认BOM单下发之后,工艺再改文件,请在原技术责 任工程师确认的版本号后加入字符(-G)。工艺部门多次改动也可参照技术部门数字序号命名,例如,G1,G2向上升级…等。 板日期,可以用以下方案标明。XX-YY-ZZ,或者,XX/YY/ZZ。 XX表示年,YY表示月,ZZ表示日。例如:11-08-08,也可以11-8-8,或者,11/8/8。PCB板设计一定要放日期标记。 二、PCB 板材要求 确定PCB 所选用的板材,板材类型见表1,若选用高TG 值的板材,应在文件中注明厚度公差。 注1:1、CEM-1: 纸芯环氧玻璃布复合覆铜箔板,保持了优异的介电性能、机械性能、和耐热性;且允许冲孔加工,其冲孔特性较玻璃环氧基材FR-4更优越,模具寿命更长;高温时翘曲变形很小。

相关文档
最新文档