铸造毕业设计-离心铸造工艺流程设计

铸造毕业设计-离心铸造工艺流程设计
铸造毕业设计-离心铸造工艺流程设计

三明职业技术学院

毕业设计

作业形式:毕业设计

作业形式:离心铸造工艺流程设计姓名:王华

学号:090201136

所在系:机械电子系专业:数控技术

年(班)级:数控09

学制:三年制

指导教师:林陈彪

完成日期:2012年4月30 日

目录

绪论 (4)

第一章离心铸造及4G18生产装备 (5)

1.1 离心铸造概念 (5)

1.2 卧式离心铸造机 (5)

1.3 卧式螺旋卸料过滤离心机 (6)

1.4 立式切割机 (7)

1.5 离心铸造特点 (7)

1.6 熔炼炉 (7)

1.7 浇注机的主要参数 (8)

1.8 生产过程图 (8)

第二章生产工艺过程 (9)

2.1 金属配料熔炼 (9)

2.2 孕育技术 (10)

2.3 合金化处理 (11)

2.4 对熔炼过程的温度控制 (12)

2.5 三角试片的控制 (13)

2.6 涂料配置 (13)

2.7 主轴预热 (13)

2.8 主轴内上涂料 (13)

2.9 离心浇注 (14)

2.10 冷却及取件 (14)

2.11 毛坯切断及检查 (15)

第三章离心铸造原理及工艺 (16)

3.1 离心力场 (16)

3.2 离心力场液体自由表面的形状 (16)

3.3 离心铸型转速的选择 (17)

3.4 离心铸造用铸型 (18)

第四章影响材料性能的因素 (19)

4.1 碳当量对材料性能的影响 (19)

4.2 合金元素对材料性能的影响 (19)

4.3 炉料配比对材料的影响 (19)

4.4 微量元素对材料性能的影响 (20)

第五章离心铸造汽车缸套常见缺陷分析 (22)

5.1硬度过高 (22)

5.2针孔 (22)

5.3应用效果 (22)

附录A 熔炼工艺规程卡 (24)

附录B 浇注工艺规程卡 (25)

附录C 铸件后处理工艺 (26)

绪论

多年来,我国汽车缸套铸造生产工艺始终是传统的砂型铸造生产工艺,该工艺具有产品质量差,废品率较高,制造成本高,劳动强度大且劳动条件差,环境污染重,产品寿命低等致命弱点。以充分的理论根据和丰富的实践经验较全面地分析了大胆采用国内外先进的离心铸造新工艺代替传统的砂型铸造工艺生产汽车缸套。

在二十世纪初期,国外开始研究并应用低压铸造工艺。在第二次世界大战爆发后,北美的汽车工业和电机工业又广泛采用金属型低压铸造生产汽缸、电机转子等重要铸件。而我国是从五十年代开始研究低压铸造,但发展一直比较缓慢。随着汽车工业的发展,和大量新技术的采用,在上世纪末和本世纪初,低压铸造在我国得到快速发展,国产低压铸造机的功能和性能,及使用的稳定性和可靠性已经接近或达到国际先进水平,被大量用于汽车轮毂、汽车缸盖等铸件的生产。

本设计主要设计高新技术4G18系列的发动机内部的其中缸套,在福建汇华东南汽车缸套有限公司中把其缸套命名为4G18.主要体现缸套4G18的铸造装备,铸造流程,铸造工艺等特点,卧式离心铸造机。

第一章离心铸造及4G18生产装备

1.1离心铸造概念

将液态金属浇入高速旋转(通常为250~1500R/min)的铸型中,使其在离心力作用下充分填铸型和凝固而形成铸件的液态成形工艺称为离心铸造。按照铸型的旋转轴方向不同,离心铸造机分为卧式立式和倾斜式3种。卧式离心铸造机主要用于浇注各种管状铸件, 立式离心铸造机则主要用以生产各种环形铸件和较小的非圆形铸件。

1.2卧式离心铸造机

合金液通过浇注槽落入镜型,随即从落点沿轴向流入。

图1.2.1内部机构图1.2.2外部机构

卧式离心铸造机由主机、浇注小车、取件机构、喷涂机构、电气控制系统、管模预热装置、水冷系统、安全防护罩等部分组成。

1、主机是离心铸造机的核心部分,完成管模的旋转动作。主机由大底座、电机底座、调速电机、轴承座、轴、皮带传动、涨闸等部分组成。

2、喷涂机构完成管模的喷涂料动作,主要由气动元件、涂料罐、喷涂移动小车等组成。

3、电气控制系统由调速电机控制器、控制柜、低压电气元件、按钮、指示灯等组成,控制系统具有完善的动作互锁、过流、过载等安全保护措施。

4、安全防护罩、水冷却系统及浇注槽、支架等。

1.3 卧式螺旋卸料过滤离心机

1.4 立式切割机

1.5 离心铸造特点

1)铸件在离心力作用下结晶,组织致密,无缩孔,缩松,气孔,夹渣等缺陷,力学性能好。

2)铸造圆形中空铸件时,可省去型芯和浇注系统。简化了工艺,节约了金属。

3)便于制造双金属铸件,如刚套镶铸铜忖,其结合面牢固,耐磨,可节约铜合金。

4)离心铸造内表面粗糙,尺寸不易控制,需要增加加工余量来保证铸件质量,且不适宜生产易偏析的合金。

1.6 熔炼炉

熔炼炉采用200~2500Hz中频电源进行感应加热,功率范围为20~2500KW。其特点如下:

1、炉子周围温度低、烟尘少、作业环境好;

3、操作工艺简单、熔炼运行可靠;

4、加热温度均匀、烧损少、金属成分均匀;

5、铸件质量好、熔化升温快、炉温易控制、生产效高;

6、炉子利用率高、更换品种方便等;

1.7 浇注机的主要参数

1.8生产过程图

A倒铁水 B浇注 C拔管

D清扫E喷涂F样品

G去涂料 H切割 I成品

第二章生产工艺过程

2.1 金属配料熔炼

1)材料的化学成分选择铸件的化学成分在很大程度上决定了铸件的金相组织,而铸件的金相组织又在很大程度上决定了铸件的力学性能,并且铸件的化学成分、铸件的金相组织和铸件的力学性能这三者均存在着十分紧密的内在联系,因此,铸件的化学成分在很大程度上决定了铸件的力学性能和其他性能。4G18的化学成分:

2)金属炉料一般由新生铁,废铁,回炉料,铁合金组成,增加废钢加入里,可有效地降低铁水含碳量。提高灰铸铁的力学性能,根据铁水成分要求,炉料情况,熔炼过程中元素的变化等确定炉料配比,且得让铸铁化学成分的首要环节。

4G18的原材料配料比表如图:

3)过热熔炼:为净化孕育处理等目的而将铁液加热到正常温度以上,都称为过热熔炼。

A.过热温度,铁液的过热温度通常为1500度,超过1550度则铸铁白口倾向大。

B.过热的作用;1,过热可以去除杂质,净化铁液,主要是降低铁液中的溶氧量。

2,抗拉强度随铁液温度升高而增加,铁液温度小于1460度。温度提高硬度HB增加,铁液温度大于1500度温度升高,硬度HB下降。

铁液过热温度与铸铁冶金质量指标的关系如下,过热温度升高,或热度RG提高,过热温度大于1460度。相对硬度RH明显下降,品质系数Qi随过热温度升高而增加。

3,过热为孕育处理创造了必要条件。

4,过热可以提高铁液流动性,保证铸件健全,减少废品。

5,过热温度过高或保温时间过久,铸铁白口倾向增大,A型石墨减少,D型石墨增加,共晶团减少,故必须孕育处理,且孕育后不宜再长期保温。

2.2孕育技术

孕育处理目的在于促进石墨化,降低白口倾向,降低端面敏感性。控制石墨形态,消除过冷石墨,适当增加共晶团数和促进细片状珠光体的形成,从而达到改善铸铁的强度和其它性能和其它性能的目的,在实际过程控制中,需要控制的参数如下:

液温度对孕育的影响及控制铁液温度对孕育的影响显著,在一定的范围内提高铁液的过热温度并保持一定时间,可以使铁液中残存着丰富的石墨质点,完全融入铁中,液中,以消除生铁的遗位影响,充分发挥孕育剂的孕育作用,提高铁水受孕育能力,过程控制中,对过热温度提高到1500—1520℃。对孕育处理温度控制在1420—1450℃。

孕育剂的粒度是孕育剂状况的重要指标,对孕育效果有很大影响。粒度过细易于分散或被氧化进入溶渣而失去作用。粒度太大,孕育剂熔化成溶解不尽,不仅不能充分发挥孕育作用,仅而会造成偏拆,硬点,过冷石墨等缺陷。因而对孕育剂的粒度应尽量控制在2—5MM。保证孕育效果。

过程控制中孕育工艺主要在孕育槽孕育。这样对一包浇注的铸件,基本可以在孕育衰退前浇注结束。但对于比较大的件和双浇包浇注的件,不能满足要求,因而采用了晚期孕育方法。即在浇注铸件之前,在浇包中进行浮硅孕育,这样减少了或不存在孕育衰退,提高了孕育效果。

2.3合金化处理

合金化处理向普通铸铁中加入少量的合金元素,提高灰铸铁的力学性能,在熔炼过程控制中,对合金的加入,主要是针对顾客要求

火的件和导轨比较厚的件,主要加入的合金元素及加入量。:

常用合金元素及含量:

这样在一定程度上保证了由于CE值的提高造成性能的下降,而且对火件来说提高了火的透性。保证了火深度。

2.4 对熔炼过程的温度控制

图中,电炉熔炼过程曲线中O-A段是投料熔化过程,这个阶段重点控制的加料顺序,按废钢,机铁,生铁的先后顺序进行加料,为了减少含金元素的烧损。铁合金应在最后加入,当冷料全部化清后升温至1450℃即A点,如果低于1450℃时,则有增加碳剂或铁合金不完全溶解的危险,在A-B段,应如下处理:

1)测温

2)扒渣

3)取样分析化学成分

4)利用热光谱仪对常规元素和微量元素进行分析

5)取三角试片测CW值

2.5 三角试片的控制

根据各种检测结果对铁水进行调整后,继续送电10分钟后重新取样分析,确定所有数据正常后继续升温至1500℃左右。即C 点。在C-D段让铁水静置5至10分钟后取三角试片测试CW值,测温后准备出铁。

2.6涂料配置

金属型内的涂料对铸件质量有较敏感的影响。主要选用水基石英粉涂料;其绝热性能较好,但涂料烘干后易出现翘壳,局部翘曲处铸件接触金属型,形成莱氏体,硬度高,使铸件局部切割困难,但其附着力强,效果较好。故以此为基础,加入适量硅藻上。

2.7 主轴预热

主轴加热对铸件质量影响较大,且对主轴的使用寿命的长短影响也很大。温度偏低,铸件外壁易出现气孔,温度偏高,铁水与主轴内部发生捏合,使得涂料失去了保护作用。让铸件无法拔出。使得主轴失去工作能力。因此,主轴加热温度应控制适易。控制主轴温度在230—290℃(主轴温度调整时间=冷却水时间调整+冷却水阀手柄位置)

2.8主轴内上涂料

为减少铸件的表面渣孔等废品及承口的安装尺寸,对管模的承口及内壁需要进行清理,以保证管子的安装和喷涂工序要求。涂料在管模内壁起到保护管模和稳定铸件金相组织的作用,把配制好的涂料

经过喷涂管喷到管模内壁,等到其靠管模本身温度烘干后再进行铁水浇注。

喷涂参数:

2.9离心浇注

将承口芯安装到离心机上,球化合格的铁水倒入定量包内,按照工艺规定要求,设定孕育剂加入量、管模粉加入量,离心机的旋转速度,铁水随着定量包的翻转浇注在旋转的管模内壁,并凝固成管子。

浇注参数:

2.10 冷却及取件

当管模内的铸件温度降到800℃左右时,按下取件按键,取件钳将铸件从管模内取出,并送至接料架上。

自然冷却扒管阶段

2.11 毛坯切断及检查

送入螺旋卸料过滤离心机中进行铸件脱模,时效处理。最后铸件清理,送入切割机中切割成长度为180mm的缸套。

切割成品

第三章离心铸造原理及工艺

3.1离心力场

重度: r=pg

有效重度: r’=pw~2r

重力系数: G=w~2r/g

3.2 离心力场液体自由表面的形状

卧式离心铸造时液态金属自内由表面的形状。

当不考虑重力场的影响时:mw~2xdx+mw~2ydy=0

对此式积分得:

X~2+y~2=r~2

由此可推卧式离心铸造时,如果不考虑重力场的影响,液态金属的自

由表面应为以旋转轴为轴线的圆柱面。

由于重力场的影响:

Va

根据水力学的液态流动的连续性原理:

VaFa=VbFb

Fa和Fb为A,B两处的断面面积

因为VaFb

从而出现圆柱形内表面向下偏移的现象。

3.3 离心铸型转速的选择

选择离心铸造的转速时,主要应考虑两个问题:

1)离心铸型的转速应保证液体金属在进入铸型后立刻能形成圆筒形,绕轴线旋转;

2)充分利用离心力的作用,保证得到良好的铸件内部质量,避免铸件内部产生缩孔、缩松、夹杂和气孔。

卧式离心铸造时,为保证液体金属在型壁上的成形,应使液体金属自由表面上最高点处的金属质点所产生的离心力大于或等于重力,即:

Mw~2r>=mg

若不能保证此条件,则在出注时会出现如下图所示雨淋现象。铸件中将出现夹渣等缺陷。

3.4 离心铸造用铸型

卧式悬臂离心铸造机上的金属铸型按其主体的结构特点可以分为单层金属型和双层金属型两种。

第四章影响材料性能的因素

4.1 碳当量对材料性能的影响

决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着C、Si 的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。

4.2 合金元素对材料性能的影响

在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。

4.3 炉料配比对材料的影响

过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规

化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti 的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:

25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制数。因此炉料的配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。

4.4 微量元素对材料性能的影响

以往我们在熔炼过程中只注意常规五大元素对铸铁材质的影响,而对其它一些微量元素的作用仅仅只是一个定性的认识,却很少对他们进行定量的分析讨论,近年来,由于铸造技术的进步,熔炼设备也在不断的更新,冲天炉已逐渐被电炉所代替。电炉熔炼固然有其冲天炉不可比拟的优点,但电炉熔炼也丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映出来。由于冲天炉内的冶金反应非常强烈,炉料是处于氧化性很强的气氛中,绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,因此一些对铸件有不利影响的微量元素通过冲天炉的冶金过程,一般不会对铸铁形成不利影响。在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气(N2)在高温下,一部分分解会以原子的形式溶铁水中,使得铁水中的氮含

低压铸造工艺设计毕业论文

摘要 本文运用反重力铸造技术—低压铸造来对铝合金铸件带轮的铸造工艺进行方案设计,包括分型面、浇注位置的选择、各项铸造工艺参数的确定以及浇注系统的设计。根据铸件形状较复杂的特点,在进行实验浇注时设计了两个浇注方案即两个内浇道或者一个内浇道,并同时进行调压和重力铸造浇注,以方便比较。根据实际零件建立了铸件的三维模型,并用View-cast铸造模拟软件对铝合金铸件带轮的充型过程进行了模拟计算。模拟结果显示,充型过程平稳,没有明显的液相起伏、飞溅。根据数值模拟结果并结合理论分析,铸件中没有缩孔、缩松等缺陷,铸造工艺方案和浇注工艺参数的设计合理。 关键词:低压铸造;铸造工艺;实验浇注;充型过程;数值模拟

Abstract In this paper, anti-gravity casting technology, low pressure casting technology was used to complete the design of the casting of an aluminum alloy casting wheel, which include choice of Sub-surface and casting position, determining all of the parameters of the casting process, and the design of the casting system. For the complex shape of the casting, when conducting experiments was designed to use two runners and one ingate for casting in one time, and at the same time, surge and gravity casting was used to make it easier to compare. For sand shell moulding, the mode of same time freezing was generally used. Build the Three-dimensional model of the casting, then simulate and calculate the filling process of casting. Form the results, it was saw that the process was steady without apparent phase fluctuations or splash. From the result we can see that there was no defect such as shrinkage, so the design was perfect. Keywords:Low pressure die casting; casting process; experimental cast; filling process; numerical simulation.

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

铸造工艺学课程设计案例

前言 铸造工艺学课程就是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法与步骤以及掌握铸造工艺与工装设计的基本技能的一门主要专业课。课程设计则就是铸造工艺学课程的实践性教学环节,同时也就是我们铸造专业迎来的第一次全面的自主进行工艺与工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程与其她先修课程的的理论与实际知识去分析与解决实际问题的能力。 通过制定与合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺与工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析与解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量与尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料与手册等。 目录 第一章零件铸造工艺分析 (4) 1、1零件基本信息 (4) 1、2材料成分要求 (4) 1、3铸造工艺参数的确定 (4) 1、3、1铸造尺寸公差与重量公差 (5) 1、3、2机械加工余量 (5) 1、3、3铸造收缩率 (5) 1、3、4拔模斜度 (5) 1、4其她工艺参数的确定 (5) 1、4、1工艺补正量 (5) 1、4、2分型负数 (5) 1、4、3非加工壁厚的负余量 (5)

铸造工艺设计方案确定

第一章铸造工艺方案确定 1.夹具的生产条件,结构,技术要求 ●产品生产性质——大批量生产 ●零件材质——35Cr ●夹具的零件图如图2.2所示,夹具的外形轮廓尺寸为285mm*120mm*140mm,主要壁厚40mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。零件图如下图所示: 2.夹具结构的铸造工艺性 零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。审查、分析应考虑如下几个方面: 1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。 2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应

力集中导致裂纹缺陷。 3.铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。 4.壁厚力求均匀,减少肥厚部分,防止形成热节。 5.利于补缩和实现顺序凝固。 6.防止铸件翘曲变形。 7.避免浇注位置上有水平的大平面结构。 3.造型,造芯方法的选择 支座的轮廓尺寸为285mm*140mm*120mm,铸件尺寸较小,属于中小型零件且要大批量生产。采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。 在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。选择使用射芯工艺生产砂芯。 4.浇注位置的确定 铸件的浇注位置是指浇注时铸件在型内所处的状态和位置。确定浇注位置是铸造工艺设计中重要的环节,关系到铸件的内在质量,铸件的尺寸精度及造型工艺过程的难易程度。 确定浇注位置应注意以下原则: 1.铸件的重要部分应尽量置于下部 2.重要加工面应朝下或直立状态 3.使铸件的答平面朝下,避免夹砂结疤内缺陷 4.应保证铸件能充满 5.应有利于铸件的补缩 6.避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验 初步对支座对浇注位置的确定有:方案一如图4.1,方案二图4.2,方案三图4.3,方案四图4.4

铸造工艺课程设计课程教学改革研究

铸造工艺课程设计课程教学改革研究 结合《铸造工艺课程设计》实践教学的实际教学中存在的问题,采取及时更新工艺设计题目、增设工艺设计方案验证环节、引入任务驱动型自主学习模式、强化教师实践教学能力以及改善考核方法等一系列措施,从而有效提高学生的工程实践能力和自主学习能力,以适应铸造行业对人才的需求。《铸造工艺课程设计》作为材料成型及控制工程专业的重要实践教学环节,其教学目标是能够运用所学铸造理论及工艺设计知识比较系统地学习掌握铸造工艺及工装设计方法,使学生能够制定出比较合理的铸造工艺,并设计出结构合理的工装模具;同时通过课程设计,也使学生进一步提高设计绘图能力、查阅工艺设计资料的基本技能以及分析解决铸造工程实际问题的能力,以满足铸造行业用人需求。然而在《铸造工艺课程设计》实践教学过程中还存在一些不足之处。(1)课程设计题目陈旧且数量较少现有题目陈旧,缺乏时效性,与铸造生产实际脱节,致使学生的专业素质很难达到铸造行业的需求。图纸数量较少,难以满足1人1题,甚至需要多人共用1题或每年重复使用,这就导致存在学生之间相互抄袭或抄袭往届学生作品的现象,不利于培养学生具备独立自主从事铸造工艺设计工作的能力。(2)缺乏工艺验证环节课程设计通常只包括工艺设计、工装设计以及设计说明书的撰写等内容,而不进行实际生产验证,这就导致学生无法判断工艺设计方案的合理性及可行性。(3)教师指导不足通常1名老师指导1个班级的课程设计工作,人数在40人左右,这就导致指导教师无法详细指导每位学生。(4)考核评价机制不够全

面课程考核更侧重于图纸质量以及设计说明书的规范性,而忽略了对设计过程中学生的自主性、创新性及工程实践应用能力的考核与评价。鉴于此,以《铸造工艺课程设计》核心课程建设为契机,本文归纳总结了铸造工艺课程设计实践教学中所采取的的改革与实践方法。 1.及时更新工艺设计题目 铸造工艺课程设计题目要做到推陈出新,以激发学生的设计热情。为此建立了以企业实际在生产零件为主的课程设计零件图纸库,且图纸数量要多于专业人数,且要保证每年有10%以上的题目更新,以保证课程设计与企业生产实际接轨。图纸库的建立与更新由教研室每年定期审核通过,以保证图纸的规范性及零件结构复杂程度适中。课程设计分配设计任务时,保证1人1题,且指导教师要综合考虑所带学生的设计基础差异问题,题目的选择与分配要有难度区分,并在课程设计任务分配时给出明确说明及评分标准。 2.增设工艺设计方案验证环节 本课程增设了工艺设计方案验证环节,有两种不同方式可供学生自主选择。第一种验证方法是引入Procast及AnyCasting等铸造模拟软件对铸件充型、铸造温度场以及铸造缺陷出现的位置和数量等进行模拟分析,进而优化工艺设计方案。模拟仿真环节的引入有利于学生发现和解决工艺设计中存在的问题,使铸造工艺设计更符合铸造生产实际,同时也提高了学生学习与应用软件的能力。第二种验证方法则是按照其工艺设计方案进行实际铸造生产,铸造生产可直接在校内铸造生产实训中心进行,该中心不仅有砂型铸造所需设备及原材料,且

管状三通铸件铸造工艺的CAE毕业设计

管状三通铸件铸造工艺的CAE毕业设计 第1章绪论 1.1铸造工艺和CAE的发展概况 随着我国经济的快速发展,管道连接件的需要日益增多,而且管件的种类也越来越多。由于采用锻造-切削加工的制造工艺不仅材料利用率低、模具寿命短而且后续加工切断了金属流线,影响其性能。改为铸造方法,并利用CAE进行数值模拟,不仅可以减少工序,而且材料的利用率也可以大大提高,其经济效益和社会效益更为可观。 铸造技术正向着精确化、轻量化、节能化和绿色化的方向发展。在传统的铸件工艺设计过程中,一直采用试错法来得到生产工艺,其工艺的定型是通过多次的浇注和修改, 反复摸索,直到得到能够满足设计要求的工艺方案,这就不可避免地带来了铸件工艺定型周期长、生产质量不稳定、作业成本高等许多不利因素,尤其是对于一些大型铸件和中小型企业的小批次铸件的工艺设计,更加增加了设计难度。因此,就铸件的生产准备而言,迫切需要一种新的方法来解决这些问题。计算机数值模拟技术在铸造中的应用,为解决这一问题提供了有效的手段。利用计算机虚拟制造技术,可以在制造铸造工艺装备及浇注铸件之前,综合评价各种工艺方案与铸件质量的关系,并在计算机上模拟整个成型过程,预测铸造缺陷。这样,铸造工艺人员就能够根据模拟结果及时修改工艺设计,省去了大量用于生产试验和摸索可行性铸造工艺而消耗的宝贵时间和费用。将CAE 技术应用到铸造工艺的设计中是现代铸造工艺设计发展的方向。 1.1.1发展现状 模具作为工业生产中的基础工艺装备, 是一种高附加值的高技术密集型产品, 也是高新技术产业化的重要领域, 尤其在汽车、电子、仪表、家电和通讯行业中应用广泛。研究和发展模具技术, 对于促进国民经济的发展具有特别重要的意义, 模具技术的水平及科技含量高低, 直接影响到模具工业产品的发展, 在很大程度上决定了产品的质量, 新产品的开发能力、企业的经济效益, 是衡量一个国家制造业水平的重要标志。由于制造业产品信息相当复杂, 要实现企业生产自动化,在分离的CAD、CAE、CAM 之间还需要大量的人工工作, 这给企业自动化生产带来了极大地障碍, 且模具设计与制造周期可进一步缩短的空间较大, 模具CAD/CAE/ CAM 技术的使用, 极大地提高了产品质量, 加速了产品的开发, 缩短了从设计到生产的周期, 缩短了产品的上市周期, 实现了产品设计的自动化, 使设计人员从繁琐的绘图中解放出来, 集中精力进行创造性的劳动, 模具CAD/ CAE/ CAM 技术是模具工业发展的必然趋势。 尽管近年来我国铸造行业取得迅速的发展,但仍然存在许多问题。第一,专业化程度不高,生产规模小。我国每年每厂的平均生产量是815t,远远低于美国的4606t和日本的4878t。第二,技术含量及附加值低。我国高精度、高性能铸件比例比日本低约20个百分点。第三,产学研结合不够紧密、铸造技术基础薄弱。第四,管理水平不高,有些企业尽管引进了国外的先进的设备和技术,但却无法生产出高质量铸件,究其原因就是管理水平较低。第五,材料损耗及能耗高污染严重。中国铸铁件能耗比美国、日本高70%~120%。第六,研发投入低、企业技术自主创新体系尚未形成。 发达国家总体上铸造技术先进、产品质量好、生产效率高、环境污染少、原辅材料已形成商品化系列化供应,如在欧洲已建立跨国服务系统。生产普遍实现机械化、自动化、智能化(计算机控制、机器人操作)。

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

支座铸造工艺课程设计3

2.1 确定零件材料及牌号 零件的支座的零件图如图所示,其轮廓尺寸为Φ80×200×110,平均壁厚30,支座底部需螺栓固定,留有2个螺栓孔,尺寸Φ15,可在铸件完成后切削加工,且有一定的表面精度要求。 支架在铸造过程中,应该选用灰铸铁作为材料。灰铸铁流动性好,易浇注,且收缩率最小,并且随着含碳量的增加而减少,使铸件易于切削加工。采用砂型铸造,简单而且工艺性好。 此铸铁为200×110mm的灰铸铁件,其型号应为HT150。

2.2 铸造方案的拟定 2.2.1 铸型种类的选择 支座零件具有内腔,小孔,圆角,凸台以及锥角,形状较为复杂,表面质量无特殊要求,最大轮廓尺寸为200mm,应选用砂型铸造成形。又采用小批量生产,所以铸件类型应使用湿砂型铸造。这样灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等。模样采用金属模是合理的。 2.2.2 画出零件图 图2 零件图

2.3 分型面的确定 2.3.1分型选择原则 分型面是指两半铸型相互接触的表面。分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。应满足以下要求 1.应使铸件全部或大部分置于同一半型内 2.应尽量减少分型面的数目 3.分型面应尽量选用平面 4.便于下芯、合箱和检测 5.不使砂箱过高 6.受力件的分型面的选择不应削弱铸件结构强度 7.注意减轻铸件清理和机械加工量 2.3.2 几种分型方案 初步对支座进行分析,有以下四种方案Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图3所示

图3 分型方案图 2.3.3 分析各个方案的优缺点 Ⅰ方案以支架的底面为分型面在分型面少而平的原则中,其分型面数量不仅少而且还平直,铸件全部放在下型,既便于型芯安放和检查,又可以使上型高度减低而便于合箱和检验壁厚,还有利于起摸及翻箱操作。 Ⅱ方案铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。也有可能因为合箱不严在垂直面上增加铸件尺寸。

永冠杯 铸造工艺设计大赛 参赛作品

“永冠杯”第二届中国大学生铸造工艺设计大赛 参赛作品 铸件名称:B-十字头 自编代码:AB1990ZP 方案编号:[单击此处键入方案编号]

目录 1零件概述 (1) 1.1零件信息................................................................................... (1) 1.2技术要求 (1) 2铸造工艺方案拟定 (1) 2.1 铸造方法选择............................................................... . (1) 2.2 分型面选择 (1) 2.3浇注位置选择 (2) 3铸造主要参数 (3) 4 浇注系统设计计算 (3) 5 冒口设计 (4) 5.1模数与补缩分析 (4) 5.2冒口尺寸设计 (5) 6模拟与优化 (6) 6.1Procast主要参数设定 (6) 6.2整体思路 (7) 6.3模拟结果及分析 (8)

6.3.1表面状况 (8) 6.3.2内部缩孔情况 (9) 6.4加冒口模拟 (10) 6.5加冷铁模拟 (11) 7砂芯设计 (13) 8模板 (14) 总结 (14) 参考文献............................................................................................ (14) 附图 (14)

1零件概述 1.1零件信息 名称:十字头 材料: QT450-12 外形尺寸:1140×605×256mm 体积: 41.878×103 cm 3 质量: 302kg 生产批量:中小批量生产(自定) 零件三维图如图1.1所示,具体尺寸件附件1。 1.2技术要求 (1)铸件加工后,加工面不得有任何的铸造缺陷,非加工表面不得有明显的夹渣、凹陷, 上下型错模不得大于1mm 。 (2)保证该件受力较大的工作部分的力学性能。 2铸造工艺方案拟定 2.1 铸造方法选择 基于铸件的生产批量、铸件材料、尺寸、精度及技术要求等综合考虑,采用木模,自硬树脂砂,手工造型。 图1.1 零件三维图

壳体铸造工艺设计

壳体铸造工艺设计 DesignofCastingTechnologyforTransmissionHousing

目录 一简介----------------------------------------------------------------------3 1.1设计(或研究)的依据与意义 1.2中国古代铸造技术发展 1.3中国铸造技术发展现状 1.4发达国家铸造技术发展现状 1.5我国铸造未来发展趋势 二生产条件-----------------------------------------------------------------4 三工艺分析-----------------------------------------------------------------5 四浇注系统设计、工艺参数计算及措施-----------9 4.1工艺参数的计算 4.2工艺参数的校核 4.3工艺措施 五模具设计要点--------------------------------------------------------10 六冷铁设计-----------------------------------------------------------------13七结束语----------------------------------------------------------------------13 八参考文献------------------------------------------------------------------16

毕业设计锻造工艺分析与模具设计

锻造模具设计 摘要 模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。随着我国汽车工业的迅猛发展,汽车性能不断提高,汽车零部件中对高精度、形状复杂锻件的需求量越来越大,锻造新工艺、省材、节能工艺等技术的开发对于新型汽车零件的生产尤为重要。我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,差距仍很大,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。 本文主要是以轴类锻件的生产,加工工艺等,设计制造了,一些模具,包括,堕轮锻件的镦粗,终锻等后期加工模具。 首先介绍了,模具的一些简单情况,模具的分类,发展现状和趋势等,其次介绍了,零件的工艺性,毛坯的制定,镦粗,终锻模膛的设计,包括飞边槽的设计。 关键词:模具,终锻模膛,飞边槽,钳口,镦粗

An inert wheel forging the design specification Abstract Mold is mechanical manufacturing technology advanced, profoundly important technical equipment,High production efficiency, material with high efficiency and good quality, technology parts good adaptability etc. Characteristics.Widely used in motor vehicles, machinery, aerospace, aviation, light industry, electronics, electric appliances, instruments and other industries.With the rapid development of China's automobile industry,The car's performance to improve, Auto parts of high precision, complicated shape of forging an increasing demand for,Forging new craft, material, energy saving technology province technology development for new type of car parts production is especially important.Our country stamping die in the number no matter, or in quality, technology and ability are already has great development,But with the national economy needs and the advanced world level, compared to a gap still, Some large, sophisticated, complex, the long life of high-grade die every year in the importation of large still, Especially in high-grade car covering mould, at present still mainly rely on imports. The paper is an inert round of forging production, Processing techniques, Design and manufacturing, some mould, including, fall round of forgings upsetting, eventually forging, and trimming punching production processing mould. Firstly introduces, die some simple case, the classification of mould, development situation and trends,Secondly introduces, the technology of parts, blank the formulation, the upsetting, and the design of the chamber forging die,Including flash slots of design, Introduced again, trimming punching the design of the composite film. Key words:Mould,Finally bore, Flash tank,Clamp mouth,Upsetting,Trimming, punching

铸造工艺学课程设计案例

前言 铸造工艺学课程是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法和步骤以及掌握铸造工艺和工装设计的基本技能的一门主要专业课。课程设计则是铸造工艺学课程的实践性教学环节,同时也是我们铸造专业迎来的第一次全面的自主进行工艺和工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点:通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程和其他先修课程的的理论与实际知识去分析和解决实际问题的能力。 通过制定和合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺和工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析和解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量和尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册等。

目录 零件铸造工艺分析 (4) 零件基本信息 (4) 材料成分要求 (4) 铸造工艺参数的确定 (4) 铸造尺寸公差和重量公差 (5) 机械加工余量 (5) 铸造收缩率 (5) 拔模斜度 (5) 其他工艺参数的确定 (5) 工艺补正量 (5) 分型负数 (5) 非加工壁厚的负余量 (5) 反变形量 (5) 分芯负数 (6) 铸造三维实体造型 (6) 上冠件图纸技术要求 (6) 上冠件结构工艺分析 (6) 基于UG零件的三维造型 (6) 软件简介 (6) 零件的三维造型图 (6) 第三章铸造工艺方案设计 (7) 工艺方案的确定 (7) 铸造方法 (7) 型(芯)砂配比 (8) 混砂工艺 (8) 铸造用涂料、分型剂及修补材料 (8) 铸造熔炼 (8) 熔炼设备 (9) 熔炼工艺 (9) 分型面的选择 (9) 砂箱大小及砂箱中铸件数目的确定 (10) 砂芯设计及排气 (11) 芯头的基本尺寸 (11) 芯撑、芯骨的设计 (12) 砂芯的排气 (12) 第四章浇冒系统的设计及计算 (12) 浇注系统的类型及选择 (12) 浇注位置的选择 (12)

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

支座铸造工艺课程设计-2

热加工工艺课程设计支座铸造工艺设计 院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 指导老师: 时间:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业 2011级 1班 学号姓名指导教师 设计题目: 支座铸造工艺设计 课程名称:热加工工艺课程设计 课程设计时间:5 月 22 日至 6 月 6 日共 2 周 课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1、已知技术参数 图1 支座零件图 2、设计任务与要求 1)设计任务 1 选择零件的铸型种类,并选择零件的材料牌号。 2 分析零件的结构,找出几种分型方案,并分别用符号标出。 3 从保证质量和简化工艺两方面进行分析比较,选出最佳分型方案,标出浇注位 置和造型方法。 4 画出零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余 量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量) 5 绘制出铸件图。

2)设计要求 1设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。 2 按所设计内容及相应顺序要求,认真编写说明书(不少于3000字)。 3、工作计划 熟悉设计题目,查阅资料,做准备工作 1天 确定铸造工艺方案 1天 工艺设计和工艺计算 2天 绘制铸件铸造工艺图 1天 确定铸件铸造工艺步骤 2天 编写设计说明书 3天 答辩 1天 4.主要参考资料 《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》 系主任审批意见: 审批人签名: 时间:2013年月日

支座铸造工艺设计 摘要 铸造是指将液态金属或合金浇注到与零件尺寸、形状相适应的铸型型腔里,待其冷却凝固后获得毛坯或零件的方法。铸造成形是机械类零件和毛坯成形的重要工艺方法之一,尤以适合于制造内腔和外形复杂的毛坯或零件。 本文主要分析了支座的结构,并根据其结构特点确定了它的砂型铸造工艺。支座是支撑其他零部件的重要承力零件,主要承受着径向压缩及轴向摩擦的作用,它具有结构稳定、形状简单、廉价实用等特点,故在机械零件的设计、加工制造中支座都起着不可替代的作用。 本文设计了支座的砂型铸造工艺,包括铸型(型芯)及造型方法的选择、分型面选择和浇注位置的确定、浇注系统及冒口的设置、落砂清理及检验等。绘制了铸件的零件图及铸造工艺图。本文还对支座的铸造质量指标(包括加工余量、拔模斜度、收缩率及变形等)进行了分析与评估,以便于工艺更好的完善。 关键词:砂型铸造,浇注,加工余量,拔模斜度,收缩率

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法: 手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等(图2)。

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细查图样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造艺的要求。 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,考常 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的类、 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定 1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择

根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。 根据零件基本尺寸、加工余量等级进行查询。查得铸件尺寸公差数值为10。 根据零件尺寸公差、公差等级进行查询。查得机械加工余量为5.5。 2、起模斜度的确定 根据所属的表面类型查得测量面高140,起模角度为0度25分(0.42°)。 3、铸造圆角的确定 根据铸造方法和材料,查得最小铸造圆角半径为3。 4、铸造收缩率的确定 根据铸件种类查得:阻碍收缩率为0.8~1.0,自由收缩率为0.9~1.1。 5、最小铸造孔的选择 根据孔的深度、铸件孔的壁厚查得最小铸孔的直径是80mm. 四、浇注系统设计 (一)、浇注位置的确定 根据内浇道的位置选择底注式, (二)、浇注系统类型选择 根据各浇注系统的特点及铸件的大小选用封闭式浇注系统。 (三)、浇注系统尺寸的确定 1、计算铸件质量:

相关文档
最新文档