高效率降压型开关电源芯片NCP1529

高效率降压型开关电源芯片NCP1529
高效率降压型开关电源芯片NCP1529

降压式开关电源

开关电源主电路 第1节开关电源概述 一、开关电源的构成 开关电源采用功率半导体器件(GTR MOSFETIGBT等)作为调整管,通过控制电路控制调整管的导通时间,使输出电压保持稳定。 开关电源的电路构成如图4-1所示。 AC输入DC输出 图4-1开关电源的电路构成 (一)一次整流/滤波电路 将交流输入电压(通常是市电电网的交流电压220V或380V)进行整流滤波,转化成为直流电压(300V或500V),然后将直流电压供给DC/AC变换器。相比与线性直流稳压电源,开关电源在这一环节可以省去工频变压器,消除了工频变压器带来的损耗。(二)D C/AC变换器 DC/AC变换器的主要作用是将一次整流/滤波电路提供的直流电压变换成高频交流电压(一般频率可达到几十KHZ到几百KHZ甚至更高)。 (三)二次整流/滤波电路 将DC/AC变换器变换输出的高频交流电压进行整流滤波,转化成平滑的直流输出电压。 (四)反馈网络

反馈网络包括基准电压、采样电路和比较电路。采样电路把输出电压的一部分或者全部采样回来,采样到的电压和基准电压送入比较电路进行比较,比较的 结果送给控制电路。 (五)控制电路 控制电路根据反馈网络的结果输出占空比可调的控制脉冲去控制调整管的通断时间,这是所谓的“时间控制法”。 (六)辅助电路 开关电源中常见的其它电路主要有软启动电路、输出过压保护电路、输出过流保护电路、驱动电路等等。 二、开关电源的分类 开关电源的分类方式有很多,可以按激励方式、调制方式、调整管类型、输入电压/输出电压大小、调整管的连接方式和储能电感的连接方式等分类方式进行分类。 (一)按激励方式划分 开关电源按激励方式划分可分为自激式开关电源和它激式开关电源。在自激式开关电源中功率开关管既作为调整管,又兼作控制脉冲信号产生的振荡管。在它激式开关电源中则专门设置有产生控制脉冲信号的控制电路。 (二)按调制方式划分 开关电源按调制方式划分可分为脉宽调制型开关电源、脉频调制型开关电源 和混合调制型开关电源。脉宽调制(PWM指的是控制脉冲周期不变,导通时间改变,进而改变占空比的调制方式。脉频调制(PFM指的是控制脉冲导通时间不变,周期(频率)改变,进而改变占空比的调制方式。混合调制指的是控制脉冲导通时间和周期都改变,进而改变占空比的调制方式。 (三)按调整管的类型划分 开关电源根据调整管的类型不同可分为晶体管(GTR开关电源、场效应管 (MOSFET开关电源和绝缘栅双极型晶体管(IGBT开关电源。 (四)按输入/输出电压大小划分

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

高频开关电源中隔离降压式DC

高频开关电源中隔离降压式DC/DC变换器的制作方法 电力电子技术中,高频开关电源的设计主要分为两部分,一是电路部分的设计,二是磁路部分的设计。相对电路部分的设计而言,磁路部分的设计要复杂得多。磁路部分的设计,不但要求设计者拥有全面的理论知识,而且要有丰富的实践经验。在磁路部分设计完毕后,还必须放到实际电路中验证其性能。由此可见,在高频开关电源的设计中,真正难以把握的是磁路部分的设计。高频开关电源的磁性元件主要包括变压器、电感器。为此,本文将对高频开关电源变压器的设计,特别是正激变换器中变压器的设计,给出详细的分析,并设计出一个用于输入48V(36~72V),输出2.2V、20A的正激变换器的高频开关电源变压器。 2正激变换器中变压器的制作方法 正激变换器是最简单的隔离降压式DC/DC变换器,其输出端的LC滤波器非常适合输出大电流,可以有效抑制输出电压纹波。所以,在所有的隔离DC/DC变换器中,正激变换器成为低电压大电流功率变换器的首选拓扑结构。但是,正激变换器必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。正激变换器的复位方式很多,包括第三绕组复位、RCD复位[1,2]、有源箝位复位[3]、LCD无损复位[4,5]以及谐振复位[6]等,其中最常见的磁复位方式是第三绕组复位。本文设计的高频开关电源变压器采用第三绕组复位,拓扑结构如图1所示。 开关电源变压器是高频开关电源的核心元件,其作用有三:磁能转换、电压变换和绝缘隔离。在开关管的作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,输出所需要的电压,将输入功率传递到负载。开关变压器的性能好坏,不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。所以在设计和制作时,对磁芯材料的选择,磁芯与线圈的结构,绕 图1 第三绕组复位正激变换器 正激变换器中变压器的制作 制工艺等都要有周密考虑。开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导线中流动的趋肤效应。一般根据高频开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应影响则作为选择导线规格的条件之一。 2.1变压器设计的基本原则 在给定的设计条件下磁感应强度B和电流密度J是进行变压器设计时必须计算的参数。当电路主拓扑结构、工作频率、磁芯尺寸给出后,变压器的功率P与B和J的乘积成正比,即P∝B·J。 当变压器尺寸一定时,B和J选得高一些,则某一给定的磁芯可以输出更大的功率;反之,为了得到某一给定的输出功率,B和J选得高一些,变压器的尺寸就可以小一些,因而可减小体积,减轻重量。但是,B和J的提高受到电性能各项技术要求的制约。例如,若B过大,激磁电流过大,造成波形畸变严重,会影响电路安全工作并导致输出纹波增加。若J很大,铜损增大,温升将会超过规定值。因此,在确定磁感应强度和电流密度时,应把对电性能要求和经济设计结合起来考虑。 2.2各绕组匝数的计算方法 正激变换器中的变压器的磁芯是单向激磁,要求磁芯有大的脉冲磁感应增量。变压器初级工作时,次级也同时工作。 1)计算次级绕组峰值电流IP2 变压器次级绕组的峰值电流IP2等于高频开关电源的直流输出电流Io,即

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

开关电源设计流程

率较大的开关电源一般使用半桥或者全桥变换器拓扑。 2.2.设计原理图,制作PCB印制板 原理图设计时应考虑整体的元件布局,使阅读者一目了然。在PCB印制板设计的过程中要严格按照国家的安全标准进行设计,同时需要重点考虑的噪声干扰包括:EM I 干扰、功率开关管产生的高频噪声。 PCB板的设计过程中应考虑到地线、高压线的电流密度,功率开关管的高频线与其它走线之间的距离,一般不小于3mm,元件的PCB封装与实际生产元件封装一致,以便于生产。元件的放置符合美观、实用的标准;元件与元件之间应紧凑,以提高开关电源的功率密度,降低生产成本(特殊元件除外)。 2.3.变压器的设计 变压器是整个开关电源的核心器件,所以变压器的设计及验证是非常重要的环节。 2.3.1.磁芯和骨架的选择 当我们的电路拓扑选定后,就要确定电路的工作频率和变压器磁芯的尺寸大小,确保在变压器体积最小的情况先获得最大的输出功率。 首先我们确定需要的引脚数,变压器的输出、输入,辅助绕组的引脚来确定骨架的引脚数,输出有单路和多路,变压器一般采用夹绕的方法以增加线圈的耦合度。 其次选择磁芯材料是主要参考材料铁损(单位一般为毫瓦/立方厘米)随频率和峰值磁通密度变化的曲线。大多数变压器的磁芯的材料为铁氧体,因为它有很高的电阻率,所以铁氧体的涡流损耗很低。 2.3.2.根据变压器计算公式计算变压器的初级线圈匝数 变压器初级匝数计算公式: N P =V in(min) ×T on(max) /(ΔB×A e ) N P :变压器初级线圈的匝数。 V in(min) :输入直流电压的最小值(V)。 T on(max) :功率开关管导通时间的最大值(S)。 A e :磁芯面积(m22)。 ΔB:由磁芯本身材料决定。一般取1600G,因为当震荡频率大于50KHz的时候, 高损耗材料会产生过量的磁芯损耗,这就使可选择的B max 值变小,因此经过对比选择增量ΔB的值为1600G(1G=10-4-4T)。

常用开关电源拓扑结构

开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源https://www.360docs.net/doc/aa17965762.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输

降压性开关稳压电源

Hefei University 课程设计报告 课题名称:降压型开关稳压电源 作者姓名: 刘尚阳 1405012027 张颖 1405012028 闫悦悦 1405012029 许特松 1405012043 荚丹丹 1405012030 班级: 电子二班 指导教师:倪敏生 完成时间: 2017年5月24日

摘要 本设计是开关稳压电源,系统由稳压电源、DC-DC变换器、采用LM7812,LM7805稳压芯片,为芯片供电,DC-DC变换器采用TL494产生PWM波,控制开关周期为恒定值,通过调节脉冲宽度来改变占空比,在经过由IR2109构成的驱动电路驱动后级电路,此时引入电压反馈检测电压幅值并反馈给前级保证输出电压稳定,当输入电压超过20V时,控制IR2109片选端,切断电路。 关键字:稳压;DC-DC变换; 目录 1引言 (3) 2方案设计与选择 (3) 2.1总体设计 (3) 2.2各模块方案设计与论证 (3) 2.2.1驱动模块方案设计与选择 (3) 2.2.2稳压电源方案设计与选择 (4) 3硬件设计与实现 (4) 3.1设计思路 (4) 3.2各个模块硬件设计与实现 (5) 3.2.1辅助电源模块 (5) 3.2.2 DC-DC模块 (5) 4理论分析与参数计算 (5) 4.1 DC/DC变换方法 (5) 4.2 稳压控制方法 (6) 4.3 输入过压电路设计 (6) 4.4buck电路参数的计算 (7) 4.4.1电感值的计算 (7) 4.4.2电容的计算 (7) 4.4.3输出电压的计算 (8) 5测试仪器与方法 (8) 5.1输出电压测试 (8) 5.2效率测量 (8) 参考文献 (9)

开关电源的制作流程

开关电源的制作流程 开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。 第一节开关电源的电路组成 开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。 1、AC/DC开关电源的组成 AC/DC开关电源的典型结构如图1-1-1所示。电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。 图1-1-1 AC/DC开关电源的典型结构 其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。 2. DC/DC开关电源的组成 DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。当然,有些DC/DC开关电源也会包含其他辅助电路。 图1-1-2 DC/DC开关电源的典型结构

第二节开关电源的制作流程 开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。下面介绍开关电源设计与制作一般流程。 1.解定电路结构(DC/DC变换器的结构) 无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。因此,开关电源的电路结构就是指DC/DC变换器的结构。开关电源中常用的DC/DC变换器拓扑结构如下: (1)降压式变换器,亦称降压式稳压器。 (2)升压式变换器,亦称升压式稳压器。 (3)反激式变换器。 (4)正激式变换器。 (5)半桥式变换器。 (6)全桥式变换器。 (7)推挽式变换器。 降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC变换器中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC变换器中;正激式变换器主要用于输入/输出需要隔离的较大功率AC/DC或DC/DC变换器中;半桥式变换器和全桥式变换器主要用于输入/输出需要隔离的大功率AC/DC或DC/DC变换器中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC变换器中。 顾名思义,降压式变换器的输出电压低于输入电压,升压式变换器的输出电压高于输入电压。在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。此类变换器既可以是升压型,也可以是降压型号,还可以是极性变换型。在设计开关电源时,首先要根据输入电压、输出电压、输出功率的大小及是否需要电气隔离,选择合适的电路结构。 2.选择控制电路(PWM) 开关电源是通过控制功率晶体管或功率场效应管的导通与关断时间来实现电压变换的,其控制方式主要有脉冲宽度调制、脉冲频率调制和混合调制三种。脉冲宽度调制方式,简称脉宽度调制,缩写为PWM;脉冲频率调制方式,简称脉频调制,缩写PFM;混合调制方式,是指脉冲宽度与开关频率均不固定,彼此都能改变的方式。 PWM方式,具有固定的开关频率,通过改变脉冲宽度来调节占空比,因此开关周期也是固定的,这就为设计滤波电路提供了方便,所以应用最为普通。目前,集成开关电源大多采用此方式。为便于开关电源的设计,众多厂家将PWM控制器设计成集成电路,以便用户选择。开关电源中常用的PWM控制器电路如下: (1)自激振荡型PWM控制电路。 (2)TL494电压型PWM控制电路。 (3)SG3525电压型PWM控制电路。 (4)UC3842电流型PWM控制电路。 (5)TOPSwitch-II系列的PWM控制电路。 (6)TinySwitch系列的PWM控制电路。 3.确定辅助电路

降压型开关稳压电源设计

1 开关电源概述 开关电源是开关稳压电源的简称,一般指输入为交流电压、输出为直流电压的AC/DC变换器。开关电源内部的功率开关管工作在高频开关状态,本身消耗的能量很低,电源效率可达75%-90%,比普通线性稳压电源提高近一倍。 表1.1电源分类 2 降压式开关稳压器原理

2.1 给低通滤波器输入方波 图2.1.1表示给低通滤波器输入方波时的情况。如果一个低通滤波器的截止频率比输入信号频率低很多,当给它输入方波信号时,由于方波被低通滤波器平滑,所以输出信号变成了直流(只有微小的脉流)。(为什么?方波信号相当于一个直流分量加一个交流分量的和,经过低通滤波器后,直流分量通过,交流分量被滤掉,所以只剩下直流分量了,即输出平滑了。如果低通滤波器的截止频率比输入信号频率高,那么交流分量就全部通过了,起不到滤波的作用,所以低通滤波器的截止频率要比输入信号的频率低很多才行。) 降压型开关电源是把输入的直流信号转换成方波,再把这个方波经低通滤波器平滑,又得到直流信号的电路。之所以通过这样复杂的过程来降低电压是为了减少电压变换时的损失。线性稳压电源只所以效率低就因为直接进行电压变换的时候功耗大。 图2.1.1 给低通滤波器输入方波 2.2 开关电路+滤波器=降压型开关电源 降压式开关稳压器的原理如图2.2.1所示,图2.2.2和2.2.3分别是当开关闭合、断开时的电流路径。在实际的电路中,还需要实施反馈使输出电压稳定。一般反馈都集成到电源芯片中。 图2.2.1 简化电路

图2.2.2 开关闭合时的电流路径 图2.2.3 开关断开时的电流路径 (1)当开关闭合时续流二极管VD截至,由于输入电压UI与储能电感L接通,因此输入-输出压差(UI-Uo)就加在L上,使通过L的电流IL线性地增加。(为什么?由公式L*di/dt=U可以看出,U、L不变,则di/dt为常数,即I线性增加。)在此期间除向负载供电外,还有一部分电能储存在L和C中,流过负载RL的电流为Io,参见图2.2.2。 (2)当开关断开时,L与UI断开,但由于电感电流不能在瞬间发生突变,因此在L上就产生反向电动势以维持通过电感的电流不变。此时续流二极管VD 导通,储存在L中的电能就经过由VD构成的回路向负载供电,维持输出电压不变。开关断开时,C对负载放电,这有利于维持Uo和Io不变,参加图2.2.3。(为什么?请看以下图例比较)

开关电源控制环设计过程大揭秘

开关电源控制环设计过程大揭秘 1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。

2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2 描述一个由高通滤波器电路引起的零点。 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和 BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

降压型DCDC开关电源的研究与设计

物电学院开关电源技术课程实践报告《降压型DC/DC开关电源的研究与设计》 姓名:刘鹏飞 学号: 131103034 学院:物理与电气工程学院 日期: 2015年12月26日 指导老师:许树玲

降压型DC/DC开关电源的研究与设计 摘要:随着开关电源技术的迅速发展,DC/DC开关电源已在通信、计算机以及消费类电子产品等领域得到了广泛应用。近年来,电池供电便携式设备的需求越来越大,对DC/DC开关电源的需求也日益增大,同时对其性能要求也是越来越高。 本文设计了一款降压型DC/DC开关电源电路。首先详细的分析和阐述了降压型转换器的电路拓扑和工作原理,根据系统性能设计了电路的整体框图。然后对电路的各个模块进行了分析和设计,包括输入电路,降压电路和显示电路。 关键词:开关电源;降压型;DC/DC转换

1 开关电源现状及前景 1.1 国内外开关电源的发展状况 电源管理芯片市场的品牌构成仍是国外厂商处于领先地位,市场排名前十的企业无一例外全部为外资企业,其中美国厂商优势明显。国外开发电源管理芯片的厂商很多,主要有NCP、IR、MAXIM、ST、TI、PI等,他们的产品都已经非常成熟能够提供高质量、全系列的电源管理芯片。在非隔离的DC/DC转换技术中,TI公司的预检测栅驱动技术采用数字技术控制同步BUCK,转换效率高达97%,其中TPS40071等是其代表产品。在电源数字化方面走在前面的公司有TI和Microchip,TI公司已经用TMS320C28F10制成了通讯用的48V输出大功率电源模块,其中PFM和PWM部分完全为数字式控制。 2 DC/DC降压型开关电源设计 本电路主要包括变压器降压,桥式整流电路,滤波电路,降压电路,AD转换电路,和数字显示构成。其中降压电路是一种高效的三增益开关电源DC/DC 降压变换器。从1V起调的稳压电源,电路使用时,只须调节电源电压调节器(可调电阻),即可得到 1V-20V之间所需的电压。系统结构框图如图12所示 图1 DC/DC降压型开关电源的结构框图

开关电源如何设计和什么步骤

开关电源如何设计和什么步骤 2009年07月08日星期三下午 11:45 开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值umin ② 交流输入电压最大值umax ③ 电网频率Fl 开关频率f ④ 输出电压VO(V):已知 ⑤ 输出功率PO(W):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级.一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB 步骤3 根据u,PO值确定输入滤波电容CIN、直流输入电压最小值VImin ① 令整流桥的响应时间tc=3ms ② 根据u,查处CIN值 ③ 得到Vimin 确定CIN,VImin值 u(V) PO(W) 比例系数(μF/W) CIN(μF) VImin(V) 固定输入:100/115 已知2~3 (2~3)×PO ≥90 通用输入:85~265 已知2~3 (2~3)×PO ≥90 固定输入:230±35 已知 1 PO ≥240 步骤4 根据u,确定VOR、VB ① 根据u由表查出VOR、VB值 ② 由VB值来选择TVS u(V) 初级感应电压VOR(V) 钳位二极管反向击穿电压VB(V) 固定输入:100/115 60 90 通用输入:85~265 135 200 固定输入:230±35 135 200 步骤5 根据Vimin和VOR来确定最大占空比Dmax ① 设定MOSFET的导通电压VDS(ON) ② 应在u=umin时确定Dmax值,Dmax随u升高而减小 步骤6 确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IP u(V) KRP 最小值(连续模式) 最大值(不连续模式) 固定输入:100/115 0.4 1 通用输入:85~265 0.4 1 固定输入:230±35 0.6 1 步骤7 确定初级波形的参数

开关电源的设计方案步骤

【开篇】 针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。希望大家喜欢大家一起努力!! 【第一步】 开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮忙分析。 我只带大家设计一款宽范围输入的,12V2A 的常规隔离开关电源 1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback) 基本上可以满足要求 备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】 2.当我们确定用flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和MOS 来进行初步的电路原理图设计(sch) 无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解 分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说) 集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境 集成式,多是指PWM controller 和power switch 集成在一起的芯片 不限定于是PSR 还是SSR 【第三步】 3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)? 设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数 无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet 一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据 【第四步】 4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout 当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算 一般有芯片厂家提供相关资料 【第五步】 5. 确定开关频率,选择磁芯确定变压器 芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。 一般AC2DC 的变换器,工作频率不宜设超过100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于EMC 的通过性 频率太高,相应的di/dt dv/dt 都会增加,除PI 132kHz 的工作频率之外,大家可以多参

TL494降压开关电源的设计

TL494降压开关电源的设计 一、设计任务及要求: 1、掌握TL494主要性能参数、端子功能、工作原理及典型应用 2、掌握DC—DC降压型开关电源原理,掌握电路布线及焊接。 主要技术指标: 设计要求: 1直流输入:0—30v,电压变化范围为+15%~-20%; 2输出电压:5v—30v连续可调,最大输出电流1.5A 二、DC—DC变换器 buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。 图1 S为开关管,D为续流二极管,当给S一个高电平使得开关管导通,输入电源对电感,电容充电, 同时向负载供电。当给S一个低电平时使得开关管关断,负载电流经二极管续流。改变开关管的占空比即能改变输出的平均电压。 三、TL494中文资料及应用电路 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。 TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494引脚图

TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

四、电路设计 输出为5V的电源电路: 电路分析: 50u/50v是滤波电容对输入电源滤波,47欧的电阻主要是当8和11引脚输出高电平时不足以驱动大功率三极管,通过47欧电阻来上拉高电平,将高电平拉高驱动三极管,当三极管导通以后就铅位到三极管基极

开关电源设计技巧(精心整理)

技巧一:为电源选择正确的工作频率 为电源选择最佳的工作频率是一个复杂的权衡过程,其中包括尺寸、效率以及成本。通常来说,低频率设计往往是最为高效的,但是其尺寸最大且成本也最高。虽然调高频率可以缩小尺寸并降低成本,但会增加电路损耗。接下来,我们使用一款简单的降压电源来描述这些权衡过程。 我们以滤波器组件作为开始。这些组件占据了电源体积的大部分,同时滤波器的尺寸同工作频率成反比关系。另一方面,每一次开关转换都会伴有能量损耗;工作频率越高,开关损耗就越高,同时效率也就越低。其次,较高的频率运行通常意味着可以使用较小的组件值。因此,更高频率运行能够带来极大的成本节约。 图1.1显示的是降压电源频率与体积的关系。频率为100 kHz时,电感占据了电源体积的大部分(深蓝色区域)。如果我们假设电感体积与其能量相关,那么其体积缩小将与频率成正比例关系。由于某种频率下电感的磁芯损耗会极大增高并限制尺寸的进一步缩小,因此在此情况下上述假设就不容乐观了。如果该设计使用陶瓷电容,那么输出电容体积(褐色区域)便会随频率缩小,即所需电容降低。另一方面,之所以通常会选用输入电容,是因为其具有纹波电流额定值。该额定值不会随频率而明显变化,因此其体积(黄色区域)往往可以保持恒定。另外,电源的半导体部分不会随频率而变化。这样,由于低频开关,无源器件会占据电源体积的大部分。当我们转到高工作频率时,半导体(即半导体体积,淡蓝 1

色区域)开始占据较大的空间比例。 图1.1 电源组件体积主要由半导体占据 该曲线图显示半导体体积本质上并未随频率而变化,而这一关系可能过于简单化。与半导体相关的损耗主要有两类:传导损耗和开关损耗。同步降压转换器中的传导损耗与MOSFET 的裸片面积成反比关系。MOSFET 面积越大,其电阻和传导损耗就越低。 开关损耗与MOSFET 开关的速度以及MOSFET 具有多少输入和输出电容有关。这些都与器件尺寸的大小相关。大体积器件具有较慢的开关速度以及更多的电容。图1.2 显示了两种不同工作频率(F) 的关系。传导损耗(Pcon) 与工作频率无关,而开关损耗(Psw F1 和Psw F2) 与工作频率成正比例关系。因此更高的工作频率(Psw F2) 会产生更高的开关损耗。当开关损耗和传导损耗相等时,每种工作频率的总损耗最低。另外,随着工作频率提高,总损耗将更高。 1

降压型PWM_AC-DC开关电源设计

电力电子技术课程设计院系:机电学部 专业8自动化01 名字:彭奕钦 学号:0841040123

摘要 电源半导体产品近期呈现快速增长趋势,甚至超过了数字处理器和存储器等半导体的增长速度。大部分增长来源于高容量电池供电的电子产品,如手机和数字音乐播放器。由于所有电子产品都需要有电源供电,所以电源管理技术变得至关重要。在这样的前提下,设计开发高效率、高频、小体积的DC-DC开关电源芯片,无论是从经济角度,还是从科学研究上来讲都是很有价值的。 本文对开关电源的发展历史、当下发展状况以及将来的发展趋势作了简要的介绍,随后阐述了降压型AC-DC开关电源的核心部分——DC-DC转换器(降压斩波电路)的拓扑结构及其工作原理,描述了DC-DC转换器的控制方法——脉宽调制控制(PWM)。在此基础上设计了一款基于电压控制模式的PWM降压型AC-DC 开关电源,设计的内容包括主电路的设计、控制及驱动电路的设计、保护电路的设计以及各个部分的电路设计图,并给出设计参数。 Power semiconductor product recent presents the fast growth trend, even more than the digital processor and memory, etc Semiconductor growth. Most of the growth comes from the high capacity battery power supply of electronic products, such as cell phones and number Word music player. Because all electronic products need to have power supply, so the power management technology to become Closes importantly. In this premise, the design and development of high efficiency and high frequency, small volume of DC-switch power supply, whether DC chip from economic Angle, or from scientific research, are of great value. In this paper, the development history of switch power supply, the present development situation and future development trend are introduced, then expounds the buck type AC-DC switch power supply, the core of DC-DC converter (step-down chopper) the topological structure of and work principle, describes the DC-DC converter control method, the pulse width modulation (PWM) control. On the basis of the design of voltage control mode based on the PWM step-down type AC-DC switch power supply, the content of the design including the main circuit design, control and power circuit design, protection circuit design and each part of the circuit design, and gives the design parameters.

开关电源设计详解

开关电源设计详解 开关电源设计详解 开关电源设计详解,从公式到实际应用,附加设计图纸,绝对好资料。 目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤: 绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证. 设计流程介绍(以DA-14B33为例): 线路图、PCB Layout请参考资识库中说明. 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就 DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式 B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np

= 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸 越大,Ae越高,所以可以做较大瓦数的Power。 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦 数的Power,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言, 只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易 导致振荡的发生。 NS = 二次侧圈数 NP = 一次侧圈数 Vo = 输出电压 VD= 二极管顺向电压 Vin(min) = 滤波电容上的谷点电压 下载地址: 或是百度一下“开关电源设计详解(申请加精)”。 更精彩内容请点击下载: 附件 EEWORLD提示:为减少服务器的压力,请尽量不要使用迅雷等下载软件。 开关电源设计流程.pdf (367.69 KB) 2011-8-19 18:12, 下载次数: 355

相关文档
最新文档