求函数解析式的几种方法教案

求函数解析式的几种方法教案
求函数解析式的几种方法教案

北京梦飞翔教育个性化辅导教案

学生:教师:时间:年月日_____段课时:

学管师签字:___________

一、函数的概念 1.函数的定义

设A ,B 是 的数集,如果按照某种确定的 f ,使对于集合A 中的 一个数x ,在集合B 中都有 的数()f x 和它对应,那么就称f :A B →为从集合A 到集合个B 的一个函数,记作 ,x A ∈.其中, 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合C = 叫做函数的值域.显然,值域C B ?.

(1)函数概念的整体性: 、 、 是决定函数的三要素,这是一个整体,其中核心是对应关系.

(2)函数符号()y f x =的内涵:不表示“y 等于f 与x 的乘积”,而是 “y 是x 的函数”的数学表示,其中x 是自变量,是对应关系作用的对象;f 是对应关系,可以是解析式、图象或表格,也可以是文字描述;

y 是自变量的函数,当x 取允许的具体值时,相应的y 值是其对应的函数值.

(3)()f x 与()f a 的区别与联系:当a 为常数时,()f a 表示当自变量x a =时函数()f x 的值,是一个常量;而()f x 是自变量x 的函数.在一般情况下,()f x 是一个变量,()f a 是()f x 的一个特殊值.

(4)初高中函数定义的比较:初中函数定义是从运动变化的观点出发,是描述变量之间依赖关系的重要数学模型,其中的对应关系是将自变量x 的每一个取值与唯一确定的函数值y 对应起来;高中函数的定义是从集合、对应的观点出发,其中的对应关系是将原象集合中的任一元素与象集合中的唯一确定的元素对应起来.高中函数定义更具一般性,其外延更加丰富,是初中函数定义的延伸和拓展.

2.函数相等

一个函数的构成要素为:定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的 相同,并且对应关系 ,就称这两个函数相等.

3.分段函数

如果一个函数在定义域的全域上没有统一的对应关系,对于自变量的不同取值范围,有着不同的对应法则,这样的函数叫分段函数.分段函数用解析法表示的一般形式:

()()()()112

2,,,,

,.n n f x x A f x x A y f x f x x A ∈??

∈?==???∈?

L

(1)分段函数是一个函数,不是几个函数;其定义域为并集12n A A A A =U UL U ,值域是各段函数值集合的并集.

(2)分段函数的图象要“分段作图”,要注意每一段解析式中自变量的取值范围. 4.映射的概念

设A ,B 是两个非空的集合,如果按照某一个确定的 f ,使对于集合A 中的 一个元素x ,在集合B 中都有 的元素y 和它对应,那么就称对应f :A B →为从集合A 到集合个B 的一个映射.

(1)映射有三个要素:两个集合B A 、(可以是任意非空集合)、对应关系,三者缺一不可. (2)集合的先后顺序:A →B 与B →A 一般是不同的.

(3)映射是一类特殊的对应,包括多一对应与一一对应.有两个重要特征:A 中元素的任意性(缺一不可)、B 中元素(对应于A 中的元素)的唯一性,但B 中元素可以“剩余”.

(4)象与原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,.如果元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.象与原象相互依存,不能割裂二者;集合A 中的每一个元素都有象,且象是唯一的;但集合B 中的元素不一定都有原象,有也未必是唯一的.

(5)函数是特殊的映射,是非空数集到非空数集的映射. 【热身练习】

1.如果(),x y 在映射f 下的象是??

?

??+-2,2y x y x ,则()5,2-在f 下的原象是( ) A .()10,4- B .()3,7- C .()6,4-- D .3

7,2

2??-- ???

2.给出下列对应:

①(),0,A R B ==+∞,f :x x →; ②A B N ==,f :3x x →-;

③{}{}

2,0A x N x B y Z y =∈≥=∈≥,f :2

22x y x x →=-+; ④()0,,A B R =+∞=,f

:x y →=

其中是从集合A 到集合B 的函数有 .(写出所有正确答案的序号)

3.设映射f :2

2x x x →-+是集合A 到B 的映射,其中A B R ==.若实数k B ∈,且k 在A 中不存在原象,则k 的取值范围是 .

(D)

4.下列四组函数中,表示同一函数的是()

A.()x

x

f=,()()2x

x

g=B.()x

x

f=,()33x

x

g=

C.()1=

x

f,()

x

x

x

g=D.()1

1+

?

-

=x

x

x

f,()1

2-

=x

x

g

5.下列各图中,可以表示函数()x

f

y=的只可能是()

6.若函数()23

f x x

=-,其定义域{}

15

A x N x

=∈≤≤,则()

f x的值域是.

7.设函数()

2

2

1

x

f x

x

=

+

,则()()()()

111

1234

234

f f f f f f f

??????

++++++=

? ? ?

??????

二、复合函数

如果y是u的函数,记作()

y f u

=,其定义域为A;又u是x的函数,记作()

u g x

=,其值域为C,且C A≠Φ

I,则y通过中间变量

....

u而成为x的函数,记为()

y f g x

=??

??,称之为y关于x的复合函数;其中u

叫做中间变量

....,

()

y f u

=叫做外层函数

....,

()

u g x

=叫做内层函数

.....

(1)复合函数的本质:对x的任意一个取值通过对应关系g得到唯一确定的u值,而对此u的取值通过对应关系f得到唯一确定的y值:y

u

x f

g?→

?

?→

?;即:对x的任意一个取值通过对应关系g与f的相继

作用得到唯一确定的y值与之对应,故y也是自变量

.....x的函数

....

(2)此概念表明在研究复杂函数时可将其分解成简单或基本函数,化繁为简;关键是要正确分析复合层次即分清复合函数是由哪些简单函数、经过怎样的复合关系复合而成的.如:函数2

2

2-

+

=x

x

y可看作是由外层函数与内层函数复合而成.

(3)内层函数的值域C满足的条件“C A≠Φ

I”是为了保证两个函数可以复合

.............;否则复合函数不存在,如对于函数

()

y f u

==()21

u g x x

==--,其复合函数()

y f g x

=??

??不存在.1.复合函数的解析式

第一种类型,已知()

f x、)

(x

g,求()

f g x

??

??:函数()

f g x

??

??可以理解为以

()

g x为“自变量”、对应法则为f的函数,故视()

g x为一个整体代替()

f x中的x即可求出()

f g x

??

??.

第二种类型,已知()f g x ????、()g x ,求()f x :换元法、配凑法. .【试一试】

1.设函数()21f x x =-,()211g x x

=+.求()2

1f x +、()f g x ????、()f f x ????的解析式.

2.设函数()()2(0)

21,1(0)x x f x x g x x x ?>=-=?+≤?

,求函数()f g x ????和()g f x ????的解析式.

函 数 解 析 式 的 几 种常见 求 法

三、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则

b

ab x a b b ax a b x af x f f ++=++=+=2)()()]([

∴???=+=342b ab a ∴?

????

?=-===32

12b a b a 或 32)(12)(+-=+=∴x x f x x f 或

四、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的

运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知2

2

1

)1

(x x x

x f +

=+ )0(>x ,求 ()f x 的解析式

解:2)1()1(2-+=+

x x x x f Θ, 21

≥+x

x 2)(2-=∴x x f )2(≥x

三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注

意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=

x t ,则1≥t ,2)1(-=t x

Q x x x f 2)1(+=+

∴,1)1(2)1()(22-=-+-=t t t t f

1)(2-=∴x x f )1(≥x

x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2

x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点

则?????=+'-=+'32

22y y x

x ,解得:???-='--='y y x x 64

Θ点),(y x M '''在)(x g y =上

x x y '+'='∴2

把??

?-='--='y

y x x 64

代入得:

)4()4(62--+--=-x x y

整理得672

---=x x y

∴67)(2---=x x x g

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方

程组求得函数解析式。

例5 设,)1(2)()(x x

f x f x f =-满足求)(x f 解 Θx x

f x f =-)1(2)( ① 显然,0≠x 将x 换成

x

1

,得: x

x f x f 1

)(2)1(=- ② 解① ②联立的方程组,得:

x

x x f 32

3)(--= 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1

1

)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 Θ)(x f 为偶函数,)(x g 为奇函数,

)()(),()(x g x g x f x f -=-=-∴

又1

1

)()(-=

+x x g x f ① , 用x -替换x 得:1

1)()(+-=-+-x x g x f 即1

1

)()(+-

=-x x g x f ② 解① ②联立的方程组,得

11)(2-=

x x f , x

x x g -=21

)( 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,

使问题具体化、简单化,从而求得解析式。

例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f

解Q 对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,

不妨令0x =,则有1)1(1)1()0()(2

+-=-+=+--=-y y y y y y f y f 再令 x y =- 得函数解析式为:1)(2

++=x x x f

七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭

代等运算求得函数解析式。

例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有

ab b a f b f a f -+=+)()()(,求)(x f

解Θ +∈-+=+N b a ab b a f b f a f ,)()()(,,

∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,

又1)()1(,1)1(+=-+=x x f x f f 故 ① 分别令①式中的1,21x n =-L 得:

(2)(1)2,

(3)(2)3,()(1),

f f f f f n f n n -=-=--=L L

将上述各式相加得:n f n f Λ++=-32)1()(,

2

)

1(321)(+=+++=∴n n n n f Λ +∈+=

∴N x x x x f ,2

1

21)(2

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

函数解析式的求法教案

函数解析式的求法 【教学目标】1.了解函数的表示方法 2.掌握函数解析式的求法 【教学重点】函数解析式的求法 【教学难点】实际问题的函数建模 【例题设置】例1(待定系数法),例2(换元法),例3(解方程组法),例4(抽象 函数),例5(实际问题建模) 【教学过程】 一、要点复习 1.函数的表示法 ⑴ 解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; ⑵ 列表法:就是列出表格来表出两个变量的函数关系; ⑶ 图象法:就是利用函数图象表示两个变量之间的函数关系. 注:一定注意写法,例21x +为代数式,而2 1y x =+才为解析式. 2.函数解析式的求法(求解析式一定不要漏掉定义域) ⑴ 待定系数法:有时题中给出函数的某些特征(如:已知一次函数……),可先设其解析式,再由已知条件确定系数. ⑵ 换元法(一定要注意元的取值范围),对于一些简单的亦可使用“拼凑法”. ⑶ 解方程组法,涉及抽象函数的常用此法. ⑷ 根据实际问题建立一种函数关系式,这种情况须引入合适的变量,根据数学的有关知识找出函数关系式.其重点是找出等量关系. 〖例1〗 二次函数1()y f x =的图象以原点为顶点且过点(1,1),反比例函数2()y f x =的图象与直线y x =的两个交点间距离为8,若12()()()f x f x f x =+,求()f x 的解析式. 解:由二次函数1()y f x =的图象以原点为顶点可设21()(0)f x ax a =≠,再将(1,1)代 入上式解得1a =,故21()f x x = 设2()k f x x =,联立k y x y x ?=???=?解得交点 坐标为,,(,,其距离

用待定系数法求函数的解析式教案

运用待定系数法求函数的解析式(教案) 教学目标: 1.了解用待定系数法求函数解析式的一般步骤; 2.掌握用待定系数法求函数的解析式的方法; 3.通过自主、合作学习,培养学生勇于探索、勤于思考的精神. 教学重点:用待定系数法求函数的解析式 教学难点:选设适当形式的函数解析式并用待定系数法求出解析式 教学设计: 一、基础扫描 1.已知一次函数y=kx+3的图像经过两点A(2,-1),则k=__________. 2.已知反比例函数 k y x =的图象经过(1,-2).则k=__. 3.在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).求经过A、B、C三点的抛物线的解析式. 4.抛物线的顶点为(-2,-3),且过点(0,-7),求该抛物线的解析式. 问题1:结合上述四题,说说何为待定系数法?(板书课题) 问题2:谈谈用待定系数法求一次函数、反比例函数、二次函数解析式的一般步骤. 二、课内探究 活动一:一次函数的解析式的确定 1.与直线y=x平行,并且经过点P(1,2)的一次函数解析式为_________. 2.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上. (1)求线段AB所在直线的函数解析式,并写出当02 y ≤≤时,自变量x的 取值范围; (2)将线段AB绕点B逆时针旋转90,得到线段BC,请在图中画出线段 BC.若直线BC的函数解析式为y kx b =+, 则y随x的增大而(填“增大”或“减小”). 活动二:反比例函数解析式的确定 1.如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为() A. 2 y x =B. 2 y x =-C. 1 2 y x =D. 1 2 y x =-

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

函数解析式的求解方法例题

函数解析式的求解方法 1.配凑法 例1.已知f (x + x 1)=2x +21x ,求()f x 的解析式 例2.已知3311()f x x x x +=+ ,求()f x 例3.已知f(x+1)=x-3, 求()f x 2.换元法(整体思想) 已知形如[()]y f x ?=的函数求解()f x 的解析式:令()x t ?=,反解()x t φ=,代入[()]y f x ?=,即可求解出。 例4.已知x x x f 2)1(+=+,求)1(+x f 例5.22)1(2++=+x x x f 求)3()(),3(+x f x f f 及 3.构造方程组法 若式子中,同时含有()f x 与()f x -,或者同时含有()f x 与1()f x ,那么将式子中的x 用x -替换,或是x 用1x 替换,得到另一个方程,通过求解方程组求解()f x

例6.设,)1(2)()(x x f x f x f =-满足求)(x f 例7.设)(x f 满足关系式x x f x f 3)1(2)(=+求函数的解析式 4.特殊值法 当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例8.已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立, 求)(x f 例9.已知函数)(x f 对于一切实数 x,y 都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 1.求)0(f 的值 2.求)(x f 的解析式 5.待定系数法(知道函数类型) 例10已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。 例11 已知f(x)是二次函数,且442)1()1(2 +-=-++x x x f x f ,求)(x f

《用待定系数法求一次函数解析式》教案

第3课时用待定系数法求一次函数解析式 1.用待定系数法求一次函数的解析 式;(重点) 2.从题目中获取待定系数法所需要 的两个点的条件.(难点) 一、情境导入 已知弹簧的长度y(厘米)在一定的限 度内是所挂重物质量x(千克)的一次函 数.现已测得不挂重物时弹簧的长度是6 厘米,挂4千克质量的重物时,弹簧的长 度是7.2厘米.求这个一次函数的关系式. 一次函数解析式怎样确定?需要几 个条件? 二、合作探究 探究点:用待定系数法求一次函数解 析式 【类型一】已知两点确定一次函数 解析式 已知一次函数图象经过点A(3, 5)和点B(-4,-9). (1)求此一次函数的解析式; (2)若点C(m,2)是该函数图象上一点, 求C点坐标. 解析:(1)将点A(3,5)和点B(-4,- 9)分别代入一次函数y=kx+b(k≠0),列 出关于k、b的二元一次方程组,通过解 方程组求得k、b的值;(2)将点C的坐标 代入(1)中的一次函数解析式,即可求得m 的值. 解:(1)设一次函数的解析式为y=kx +b(k、b是常数,且k≠0),则 ? ? ?5=3k+b, -9=-4k+b, ∴ ? ? ?k=2, b=-1, ∴一次函 数的解析式为y=2x-1; (2)∵点C(m,2)在y=2x-1上,∴2 =2m-1,∴m= 3 2,∴点C的坐标为( 3 2, 2). 方法总结:解答此题时,要注意一次 函数的一次项系数k≠0这一条件,所以 求出结果要注意检验一下. 【类型二】由函数图象确定一次函 数解析式 如图,一次函数的图象与x轴、 y轴分别相交于A,B两点,如果A点的 坐标为(2,0),且OA=OB,试求一次函 数的解析式. 解析:先求出点B的坐标,再根据待 定系数法即可求得函数解析式. 解:∵OA=OB,A点的坐标为(2,0), ∴点B的坐标为(0,-2).设直线AB的 解析式为y=kx+b(k≠0),则 ? ? ?2k+b=0, b=-2, 解得 ? ? ?k=1, b=-2, ∴一次函数的解析式为y =x-2. 方法总结:本题考查用待定系数法求 函数解析式,解题关键是利用所给条件得 到关键点的坐标,进而求得函数解析式. 【类型三】由三角形的面积确定一 次函数解析式

公开课《求一次函数的解析式》教案

《求一次函数的解析式》教案 谢伟良 教学目标:理解一次函数的概念,理解正比例与一次函数的关系,会求一次函 数的解析式。 教学重点:熟练求解一次函数的解析式 教学难点:利用待定系数法准确求出一次函数的解析式,并会用一次函数关系 式解决生活的实际问题。 教学过程: 一、探究新知 1、在正比例函数 y=kx 中,当x= -2时,y=6,则k 的值是 -3 。 2、若一次函数b x y +=3 2 经过点(9,10) ,则b 的值是 4 ,该一次函数为 43 2+=x y 。 思考: 已知一个一次函数, 当x= -2 时,y= -3;当x= 1 时,y = 3。试问,通过这两个条件你有办法求出这个一次函数的解析式吗? 分析:设一次函数的解析式为 y=kx+b(k ≠0),由“当x=-2时,y=-3”可得关于k 、b 的一个方程 - 2k+b=- 3 ,由“当x=1时,y=3”可得关于k 、b 的又一个方程 k+b=3 ,联立这两个方程可得方程组 {323-=+-=+b k b k ,解得k= 2 ,b= 1 ,把k 、b 返代回一次函数解析式中,从而可得这个一次函数的解析式为y=2x+1 。 今后我们把像这样求函数解析式的方法叫做待定系数法。 二、新知梳理 待定系数法:先设待求的函数表达式(其中含有待定的系数),再根据条件列出方程或方程组,解出待定系数,从而得到所求结果的方法,叫做待定系数法。 待定系数法的步骤:一设、二列、三解、四还原 1. 设一次函数的一般形式y=kx+b(k ≠0); 2. 根据已知条件列出关于k 、b 的二元一次方程组;

3. 解这个方程组,求出k、b; 4. 将已经求出的k、b的值代入解析式. 探究问题一:确定一次函数的表达式 例1、已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5)。 (1)求该一次函数的解析式 (2)当x=5时,函数y的值。 例2、已知一次函数的图象如下图,写出它的函数关系式. 探究问题二:用一次函数解决实际问题: 例3:温度计是利用水银(或酒精)热胀冷缩的原理制作的,温度计中水银(或酒精)柱的高度y(厘米)是温度x(℃)的一次函数。某种型号的实验用水银温度计能测量-20 ℃至100 ℃的温度,已知10 ℃时水银柱高10厘米,50 ℃时水银柱高18厘米。求这个函数的表达式。 例4、(2007甘肃陇南)如下图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题: (1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

二次函数的几种解析式及求法教学设计

二次函数的几种解析式及求法教学设计 福泉一中:齐庆方 一、指导思想与理论依据 (一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界. (二)理论依据:本次课的教学设计以新课程标准关于数学教育的理论为基本依据,主要把握了两个方面的理论: 1、新课程标准关于数学整体性的理论.教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力. 2、新课程标准关于教师教学的理论.教师应该更加关注:1)科学的基本态度之一是疑问,科学的基本精神之一是批判.要注意培养学生科学的质疑态度和批判性的思维习惯;2)提出问题是数学学习的重要组成部分,更是数学创新的出发点.要注意培养学生提出问题的能力;3)在教学中更加关注学生知识的储备、能力水平、思维水平等;4)关注学生的学习态度、学习方法、学习习惯,在思维的最近发展区设计教学容.

二、教学背景分析 (一)学习容分析 “待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用. (二)学生情况分析 对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养. (三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

1 / 4 张喜林制 [选取日期] 高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法; 2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解 例1 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x ) 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;01,x >0;0

一次函数解析式教案

课题:一次函数解析式的确定 教学内容分析: 本节课是学完第十四章《一次函数》之后安排的一节复习课,在函数的三种表示方法中,解析式法可以从数量关系的角度明确自变量与函数的对应关系,能全面的体现函数的特征。一次函数解析式的确定一般有三种方法:1.定义;2.待定系数法;3实际问题意义和公式。确定一次函数解析式,运用定义时,需要学生掌握一次函数的定义,即一次函数解析式的一次项系数不能为零,且一次项的次数必须为1;运用待定系数法时,正比例函数y=kx 只有一个待定系数k,需要一组x与y的对应值或正比例函数图像上一个点的坐标列出以k 为未知数的一元一次方程,解方程求出k值,就得到正比例函数解析式;由于一次函数y=kx+b 中有k和b两个待定系数,需要根据两组x与y的对应值或一次函数图像上两个点的坐标列出以k,b为未知数的二元一次方程组,解方程组求出k,b的值,就得到了一次函数的解析式;利用实际问题或公式确定一次函数解析式时,需要审清题意,用对公式。现实生活中的实际问题在本章中占有相当的比重,也是河北省历年中考命题的重点考察内容,把实际问题抽象为数学问题,综合运用相关数学知识,用数学问题的解答来解释现实问题。 通过本节课的学习,使学生系统了解确定一次函数解析式的三种方法,巩固一次函数的基础知识,发挥从数和形两个方面共同分析解决问题的优势,提高运算能力,观察力和分析综合能力,创造能力,领会分析解题过程中的数形结合思想,方程思想,分类思想,体会数学的应用价值,培养数学的应用意识,进一步理解函数来源于现实生活,而又服务于现实生活,为以后继续学习函数知识奠定基础。 教学目标: 知识与技能: 1.了解一次函数解析式的三种确定方法; 2.复习一次函数的相关知识; 3.能从问题背景中析取出确定一次函数解析式的条件. 4.利用确定一次函数解析式来解决相关问题. 过程与方法:让学生经历观察,思考,分析,交流,计算,比较,归纳,获得体验. 情感态度与价值观:培养学生独立思考能力和合作交流意识,能科学归纳,大胆猜想,质疑,,乐于探究,发现问题. 教学重点:一次函数解析式的确定 教学难点:能从复杂的问题背景中抽象出数学问题,并灵活解决. 教学方法:自主探究,启发指导 教具:自制课件 教学过程:

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个严重内容,也是高中数学的一个严重基础。熟练地求出二次函数的解析式是解决二次函数问题的严重保证。 二次函数的解析式有三种基本形式: 1、大凡式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式大凡用待定系数法,但要根据例外条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设大凡式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据例外的条件选择适合的解析式形式

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

求一次函数解析式教案

马溪中学钟传德 教学目标: 1.了解待定系数法的思维方式与特点.明确两个条件确定一个一次函数、一个条件确定一个正比例函数的基本事实. 2.会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力. 3.进一步体验并初步形成“数形结合”的思想方法. 教学重点:根据所给信息确定一次函数的表达式. 教学难点:培养数形结合解决问题的能力. 教学过程: 一、复习引入(知识链接) 1.复习:你能画出函数y=2x与y=-x+3的图象吗? 2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗? 3.引入:在上节课中我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.(板书:求一次函数的解析式) 二、探究新知(知识接力) 1.求下图中直线的函数表达式: 图1 图2 (1)分析与思考: 从图象知,图1中直线的函数是正比例函数,故其解析式必为y=kx形式,关键是如何求出k的值;同样由图可知图象经过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值. 图2中直线的函数是一次函数,故其解析式为y=kx+b形式,同样代入直线上两点(2,0)与(0,3)即可求出k、b,确定解析式为 . (2)小结:确定正比例函数的解析式需1个条件, 确定一次函数的解析式需要2个条件. 2.P117例4:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式. (1)教师板演示范. (2)回顾小结: ①像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. ②你能归纳出待定系数法求函数解析式的基本步骤吗?(结合例题) 设列解写

2、求一次函数解析式(教案)

求一次函数解析式 一、两直线间的位置关系 (1)两直线平行且 (2)两直线相交 (3)两直线重合且 (4)两直线垂直 二、用待定系数法确定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式; (2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值; (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。 例题 类型一、待定系数法求解析式 1.一次函数图象经过(3,1),(2,0)两点. (1)求这个一次函数的解析式; (2)求当x=6时,y的值.

2.已知y与x﹣1成正比例,且当x=3时,y=4. (1)求y与x之间的函数表达式; (2)求x=﹣5时y的值. 3.若点P(﹣1,3)在过原点的一条直线上,则这条直线所对应的函数表达式为()A.y=﹣3x B.y=x C.y=3x﹣1D.y=1﹣3x 4.如图,直线AB对应的函数表达式是() A.y=﹣x+2B.y=x+3C.y=﹣x+2D.y=x+2 5.已知y+2与x﹣3成正比例,且当x=0时,y=1,则当y=4时,x的值为. 6.写出同时具备下列两个条件的一次函数表达式.(写出一个即可) (1)y随x的增大而减小;(2)图象经过点(1,0). 7.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式 类型二、一次函数与一次不等式 1.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是() A.x≤﹣2B.x≥﹣2C.x<﹣2D.x>﹣2

函数的表示方法教案

2.1.2 函数的表示方法(一) 【学习要求】 1.会用列表法、图象法、解析法表示一些具体的函数; 2.会根据具体条件求函数的解析式; 3.会在不同情境中用不同形式表示函数. 【学法指导】 学习函数的表示方法,不仅是研究函数的性质和应用的需要,而且是为加深函数概念的理解.通过根据不同的需要选择恰当的方法表示函数,感受函数与生活实际联系的密切性,通过求函数解析式加深对数学思想方法的理解,提高分析问题、解决问题的能力. 填一填:知识要点、记下疑难点 1.列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 2.图象法:如果图形F是函数y=f(x)的图象,则图象上的任一点的坐标(x,y)都满足函数关系y=f(x),反之,满足函数关系y=f(x)的点(x,y)都在图象F上.这种用“图形”表示函数的方法叫做图象法. 3.解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式) 来表达的,这种方法叫做解析法. 研一研:问题探究、课堂更高效 [问题情境] 语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!…,那么对于函数,又有什么不同的表示方法呢? 探究点一函数的表示方法 问题1 在初中学习的函数有哪几种常用的表示法? 答:解析法、图象法、列表法. 问题2列表法是如何定义的? 答:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 问题4 图象法是如何定义的? 答:如果图形F是函数y=f(x)的图象,则图象上的任一点的坐标(x,y)都满足函数关系y=f(x),反之,满足函数关系y=f(x)的点(x,y)都在图象F上.这种用“图形”表示函数的方法叫做图象法. 问题5我们在作函数y=2x+1的图象时,先列表,后描点作图.这实际上就是函数的列表法表示和图象法表示,而y=2x+1这种表示方法叫做解析法.你能给解析法下个定义吗? 答:如果在函数y=f(x) (x∈A)中,f(x)是用代数式(或解析式)来表达的,这种方法叫做解析法.(也称为公式法.) 问题6 三种表示函数的方法各有哪些优缺点? 答:(1)用解析法表示函数的关系.优点:简捷明了.能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算;缺点:在求对应值时,有时要做较复杂的计算. (2)用列表法表示函数关系.优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便;缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律. (3)用图象法表示函数关系.优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化;缺点:从自变量的值常常难以找到对应的函数的准确值. 例1某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x). 解:这个函数的定义域是数集{1,2,3,4,5}.用解析法可将函数y=f(x)表示为y=5x,

第课时用待定系数法求二次函数的解析式教案

第2课时用待定系数法求二次函数的解析式 教学目标 【知识与技能】 利用已知点的坐标用待定系数法求二次函数的解析式. 【过程与方法】 通过介绍二次函数的三点式,顶点式,交点式,结合已知的点,灵活地选择恰当的解析式求法. 【情感态度】 经历用待定系数法求解二次函数解析式的过程,发现二次函数三点式、顶点式与交点式之间的区别及各自的优点,培养学生思维的灵活性. 教学重点 待定系数法求二次函数的解析式. 教学难点 选择恰当的解析式求法. 教学目标 一、情境导入,初步认识 问题我们知道,已知一次函数图象上两个点的坐标,可以用待定系数法求出它的解析式,试问:要求出一个二次函数的表达式,需要几个独立的条件呢? 【教学说明】对于问题,教师应与学生一起交流,明确确定一个一次函数表达式为什么需要两个独立的条件的原因,进而获得确定一个二次函数表达式需要三个独立的条件. 二、思考探究,获取新知 在前面的情境导入中,同学们已经知道确立一个二次函数需要三个条件.事实上,求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a、b、c的值.由已知条件(如二次函数图象上的三个点的坐标)列出关于a、b、c的方程组,并求出a、b、c,就可以写出二次函数表达式. 回顾前面学过的知识,已知学过y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k等几种形式的二次函数,所以在利用待定系数法求二次函数解析式时,一般也可分以下几种情况:

(1)顶点在原点,可设为y=ax2; (2)对称轴是y轴(或顶点在y轴上),可设为y=ax2+k; (3)顶点在x轴上,可设为y=a(x-h)2; (4)抛物线过原点,可设为y=ax2+bx; (5)已知顶点(h,k)时,可设顶点式为y=a(x-h)2+k; (6)已知抛物线上三点时,可设三点式为y=ax2+bx+c; (7)已知抛物线与x轴两交点坐标为(x1,0),(x2,0)时,可设交点式为y=a(x-x1)(x-x2). 【教学说明】教师在教学时,可由浅入深进行讲解.对每一种情形,可先让学生自主思考探索交流想法后,再共同总结出各情况的设法,学生在思考中加深对知识的理解、记忆与掌握. 三、典例精析,掌握新知 例根据下列条件,分别求出对应的二次函数解析式. (1)已知二次函数y=ax2+bx+c的图象过点(1,0),(-5,0),顶点的纵坐标为92,求这个二次函数的解析式. (2)已知二次函数的图象经过(-1,10),(1,4),(2,7); (3)已知二次函数的图象的顶点为(-1,3),且经过点(2,5). 分析: (1)由已知的两点(1,0),(-5,0)的纵坐标知,这两点是关于对称轴对称的两个点,即对称轴为直线x=-2,由此可知顶点坐标为(-2,9/2),可用交点式和顶点式两种方法求解. (2)已知三点坐标,即直接给出了三组对应关系,可通过设三点式用待定系数法求解. (3)由条件初看起来似显不足,因为只给出经过图象上的两点的坐标,但 若注意到顶点坐标实际上存在着两个独立等式,即有 2b a - =-1, 2 4 4 ac b a - =3,因此仍 可求出相应二次函数解析式.这时可利用一般式,代入求值得到结果,也可设这个二次函数解析式为y=a(x-h)2+k,其中h,k可直接由顶点坐标得到,即h=-1,k=3,再把(2,5)代入求出a值,可快速获得该二次函数表达式. 解:(1)方法一:设这个二次函数的解析式为y=a(x-1)(x+5),则

相关文档
最新文档