例谈不等式证明的几种特殊方法

例谈不等式证明的几种特殊方法
例谈不等式证明的几种特殊方法

万方数据

例谈不等式证明的几种特殊方法

作者:邬炬

作者单位:河南省妇女干部学校

刊名:

商情

英文刊名:SHANGQING

年,卷(期):2009,""(21)

被引用次数:0次

相似文献(10条)

1.期刊论文张双.秦雨萍一类优美不等式在竞赛数学中的妙用-内江科技2006,27(9)

本文针对初等代数研究中的均值不等式的几个定理,做了些应用性研究对竞赛数学中,均值不等式的应用具有指导意义.

2.会议论文朱勇珍LU不等式及Fuzzy测度扩张1990

3.学位论文左红亮Furuta-型不等式的推广及应用2001

本篇论文概括起来分为三章,预备知识之后是主体部分。预备知识着重叙述本文的奠基性工作,Furuta已经证明如果A≥B>0,那么对任意

r≥0,F(p)=(Br/2ApBr/2)1+r/p+r关于p≥1的单调性.但他指出这个结果在0≤p≤1且r≥0时并不成立。本文则给出了

(Br/2Aα1Br/2)β/α1+r≥(Br/2Aα2Br/2)α2+r成立的充分必要条件,运用类似的方法本文第一节给出了在p∈[0,1]条件下的一类算子单调函数和某些算子不等式;第二节拓宽了第一节函数的单调区域,并且证明了指数范围的最优性;在第三节中我们继续这一讨论,利用算子平均理论,又证明了该函数关于r的单调性,并给出了某些应用。第四节我们发现关于Furuta不等式的某些推广是等价的,只是形式不同而异,而且又把这一结果加以推广。最后一章,我们指出在做这一课题时所遗留下来的问题,有待于读者和我们共同来解决。

4.期刊论文祁锋.QI Feng浅谈数学不等式理论及其应用-焦作大学学报2003,17(2)

文章扼要地介绍了数学不等式理论及其应用的意义、历史、现状、发展、地位和作用,包括不等式理论发展过程中的重要事件、不等式理论的哲学、不等式理论方面的最新著作、20世纪末的最后几年创刊的数学不等式理论及其应用领域的专业杂志、在澳大利亚创建的学术团体RGMIA的情况介绍等. 5.期刊论文翁耀明.WENG Yao-ming运用概率方法证明某些数学不等式-数学的实践与认识2005,35(11)

在数学上一些常见的不等式的证明,若运用代数方法较难得到解决.运用概率方法较方便地证明了某些数学不等式,同时,沟通了不同学科之问的联系.

6.期刊论文叶大文.邹守文.Ye DA-Wen.Zou Shou-Wen若干国际国内数学奥林匹克不等式问题的加强-保山师专学报2009,28(2)

加强若干国际国内数学奥林匹克不等式问题,对于数学竞赛的研究有一定的指导价值.

7.学位论文曲政关于竞赛数学中解析不等式的拉格朗日方法的研究2008

本文试图探讨数学竞赛中一种证明不等式及最值的方法——拉格朗日乘数法。

首先,介绍了拉格朗日乘数法以及拉格朗日乘数法求条件极值的充分条件,从理论上进一步完善拉格朗日乘数法;

其次,利用拉格朗日乘数法来证明一些经典不等式和常见不等式,说明它的实用性。

最后,利用拉格朗日乘数法来证明数学竞赛中的不等式问题以及最值问题,并依据拉格朗日乘数法来自编一些竞赛题。

8.期刊论文陈金灿.李书平.CHEN Jin-can.LI Shu-ping热力学定律与数学不等式-大学物理2009,28(8)

应用热力学第一定律和第二定律,简便地建立一个普遍的不等式,由此可直接推出许多常见的不等式,并可期望推出一些新的不等式.

9.期刊论文乔希民IMO中的代数不等式问题研究(Ⅰ)-商洛师范专科学校学报2004,18(4)

分析研究了国际数学奥林匹克竞赛中的代数不等式问题,认为:它已成为发展中的奥林匹克数学的重要组成部分.这类问题的解决,体现了人的数学探索能力、创造性思维能力、灵活分析问题与解决问题的能力,实质是融数学机智、数学精神、数学文化、数学气质、数学修养于一体的人的全面发展. 10.期刊论文刘小琼.刘新乐Jensen不等式在数学上的应用-科教文汇2008,""(7)

本文主要是利用延森不等式证明了数学上的一些重要不等式.

本文链接:https://www.360docs.net/doc/aa5698116.html,/Periodical_sq-zh200921074.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:7f17b2cf-8588-4c0d-a261-9da600ab13ec,下载时间:2010年7月

1日

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

浅谈中学几种常用证明不等式的方法

成绩: 江西科技师范大学 毕业论文 题目:浅谈中学几种常用证明不等式的方法 (外文):On the method commonly used in Middle School to prove inequality 院(系):数学与计算机科学学院 专业:数学与应用数学 学生姓名:吴丹 学号:20091741 指导教师:樊陈 2013年3月20日

目录 1引言 (1) 2放缩法证明不等式 (1) 2.1放缩法 (1) 2.2(改变分子分母)放缩法 (1) 2.3拆补放缩法 (2) 2.4编组放缩法 (3) 2.5寻找“中介量”放缩法 (4) 3反正法证明不等式 (4) 3.1反证法定义 (4) 3.2反证法步骤 (5) 4.换元法证明不等式 (6) 4.1利用对称性换元,化繁为简 (6) 4.2三角换元法 (7) 4.3和差换元法 (8) 4.4分式换元法 (8) 5.综合法证明不等式 (9) 5.1综合法证明不等式的依据 (9) 5.2用综合法证明不等式的应用 (9) 5.3综合法与比较法的内在联系 (10) 6.分析法 (11) 6.1分析法的定义 (11) 6.2分析法证明不等式的方法与步骤 (11) 6.3分析法证明不等式的应用 (11) 7.构造法证明不等式 (13) 7.1构造函数模型 (13) 7.2构造数列模型 (14) 8.数学归纳法证明不等式 (15) 8.1分析综合法 (16) 8.2放缩法 (16) 8.3递推法 (17) 9.判别式法证明不等式 (17) 10.导数法证明不等式 (18) 10.1利用函数的单调性证明不等式 (18) 9.2利用极值(或最值) (20) 11比较法证明不等式 (20) 11.1差值比较法 (20) 11.2商值比较法 (21) 11.3比较法的应用范围 (22) 12结束语: (22) 参考文献 (22)

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

浅谈中学数学不等式的证明方法

本科生毕业论文 学院数学与计算机科学学院 专业数学与应用数学 届别 2015 届 题目浅谈中学数学不等式的证明方法 学生姓名徐亚娟 学号 201111401138 指导教师吴万勤 教务处制

云南民族大学毕业论文(设计)原创性声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。 毕业论文(设计)作者签名: 日期:年月日 …………………………………………………………………………… 关于毕业论文(设计)使用授权的说明 本人完全了解云南民族大学有关保留、使用毕业论文(设计)的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文(设计)的全部或部分内容,可以采用影印或其他复制手段保存论文(设计)。 (保密论文在解密后应遵守) 指导教师签名:论文(设计)作者签名: 日期:年月日

目录

摘要 (4) 引言 (6) 1、预备知识 (6) 1.1不等式的概念 (6) 1.2不等式的性质 (6) 1.3基本不等式 (7) 1.4几个重要不等式 (7) 1.4.1柯西不等式 (7) 1.4.2伯努利不等式 (7) 2、证明不等式的常用方法 (7) 2.1比较法 (8) 2.1.1求差法 (8) 2.1.2求商法 (8) 2.1.3过度比较法 (8) 2.2分析法 (9) 2.3综合法 (9) 2.4缩放法 (10) 2.4.1放缩法的常见技巧 (10) 2.5反推法 (10) 2.6数学归纳法 (11) 2.7反证法 (11) 2.7.1反证法的基本思路 (11) 2.7.2反证法的步骤 (11) 2.8判别式法 (12) 2.9等式法 (12) 2.10中值定理法 (12) 2.11排序法 (12) 2.12分解法 (13) 2.13函数极值法 (13) 3 .利用构造法证明不等式 (13) 3.1构造函数模型 (13) 3.1.1构造一次函数模型 (14) 3.1.2构造二次函数模型 (14) 3.1.3构造单调函数证明不等式 (14) 3.2构造复数模型 (14) 3.3构造方程法 (15) 4.换元法证明不等式 (15) 4.1.三角换元法 (15) 4.2均值换元 (16)

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

浅谈高中数学不等式的证明方法

浅谈高中数学不等式的证明方法 姜堰市罗塘高级中学 李鑫 摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。 关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法 不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。本文从不等式的各个方面进行讲解和研究。 一.比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2 . 例2 设0>>b a ,求证:a b b a b a b a >. 分析:对于含有幂指数类的用作商法 证明 因为 0>>b a , 所以 1>b a ,0>- b a . 而 1>??? ??=-b a a b b a b a b a b a , 故 a b b a b a b a > 二.分析法 从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

不等式的证明方法论文

不等式的证明方法 摘要 不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考. 关键词:不等式;证明;方法

Methods for Proving Inequality Abstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers. Key words: inequality; proof; method

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

浅谈用放缩法证明不等式的方法与技巧

浅谈用放缩法证明不等式的方法与技巧 黄荟宇 放缩法:为放宽或缩小不等式的范围的方法。常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。 所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。 常用的放缩技巧还有:(1)若,A t A ,A t A ,0t <->+>(2) ,n 1n <-n n 2>,1n 11n ,1n ->-+-+), 0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1 ).1n n (2n 1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b m a b a ,m b a b a +<+>(4) +++<++++221211!n 1!31!211 .211n -+ (5).n 12)n 11n 1()3121()211(1n 131211222-=--++-+-+<++++ (6)11n n 1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ 或≥+++++n 212n 11n 1 .21n 2n n 21n 21n 21==++ (7)n n n n 1n 1n 1n 131211==+++>++++ 等等。 用放缩法证明下列各题。 例1 求证:.133lg 3lg ∈求证:.1)1n (log )1n (log n n ≤+?- 证明:因为,11n ,2n >->所以,0)1n (log ,0)1n (log n n >+>-因为 4)]1n ([log ]2)1n (log )1n (log [)1n (log )1n (log 2 2n 2n n n n -=++-≤+?-[因为22n 1n <-(放 大),所以,n log )1n (log 2n 2n <-又,2n >所以x log n 是增函数],所以 14)n (log 4)]1n ([log 2 2n 22n =<-,所以.1)1n (log )1n (log n n <+?-

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

相关文档
最新文档