熔模精密铸造课程设计

熔模精密铸造课程设计
熔模精密铸造课程设计

SHANGHAIJIAOTONG UNIVERSITY 卓越工程师模块课程设计

论文题目:熔模精密铸造课程设计

小组成员:柳真晶,周世杰,冀浩

专业: 材料科学与工程

指导教师: 董安平

学院(系):材料科学与工程学院

目录

1.绪论 (4)

1.1熔模铸造基本原理和工艺过程 (4)

1.2熔模铸造的特点及应用领域 (5)

1.3 熔模铸造(高端铸件)国内外发展现状 (6)

1.4选题简介 (9)

2. 铸件工艺流程设计 (9)

2.1模具的设计与制造 (9)

2.2浇注系统的设计与模拟 (11)

2.2.1浇注系统的设计 (11)

2.2.2 浇注系统的模拟分析 (11)

2.3 3D打印与制备蜡模 (14)

2.4 制壳 (15)

2.4.1 制壳原材料 (15)

2.4.2 制壳工艺 (15)

2.4.3 制壳步骤 (17)

2.5 浇注 (17)

2.5.1 脱蜡 (17)

2.5.2 焙烧 (19)

2.5.3 浇注 (19)

2.5.4 熔炼铸件的清理 (20)

2.6 后处理 (20)

2.6.1 喷砂 (21)

2.6.2 酸洗 (21)

2.6.3 修正(机加工) (21)

2.6.4 热处理 (21)

2.7 检验 (22)

3.总结 (22)

4.体会与建议 (22)

参考文献 (23)

致谢 (23)

1. 绪论

1.1 熔模铸造基本原理和工艺过程

当今世界航空、航天和汽车工业得到迅速发展,新一代高推重比航空发动机、飞机、汽车零部件以及机载设备等对其结构和重量的要求已变得十分苛刻,因此21世纪铸件的发展趋势是“精密化、轻量化、近无余量铸件和零缺陷铸件”,而铸件的轻量化和精密化要求铸件朝着“无余量、薄壁、高精度、高性能、大型复杂、整体化”的方向发展。

熔模铸造是特种铸造典型工艺之一,采用该方法制得的铸件精度和光洁度都比较高,可有效地实现毛坯精化,甚至无余量,故又称为熔模精密铸造,是一种近净形的金属液态成形工艺。熔模铸造工艺是用易熔材料制成可熔性模型(简称熔模),在其上涂挂若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳,从型壳中熔掉模型,放入焙烧炉中高温焙烧,然后在型壳中浇注熔融金属而得到铸件。图1为熔模铸造工艺流程。[1][2]

图1 熔模铸造工艺流程

1.2 熔模铸造的特点及应用领域

与其他铸造方法相比,熔模铸造具有以下显著的优点。

(1)尺寸精度高、表面粗糙度低

熔模铸件的尺寸精度可达到4~6级,表面粗糙度可达到 Ra0.4~3.2μm,可大大减少铸件的切削加工余量,并可实现无余量铸造。

(2)铸件结构复杂

由于蜡模直接赋予铸件形状,特别是陶瓷型芯的使用,使得复杂内腔得以实现;不用开型取模,避免了取模对复杂铸型的制约;采用热壳浇注,金属充型能力强,可以完成复杂铸型的浇注。

(3)适用合金广

各种合金材料,如碳素结构钢、不锈钢、合金钢、铸铁、铝合金、铜合金、铸造高温合金、镁合金、钛合金和贵金属等材料都可用于熔模铸造生产。难以进行锻造、焊接和切削加工的合金材料特别适宜用熔模铸造方法生产。

(4)批量灵活

熔模铸造的工装模具可采用多种材料和工艺方法制造,因此同时适用于大批量生产和小批量生产,大批量生产采用金属压型,小批量生产可采用易熔合金压型等,样品研制可直接采用快速原型代替蜡模。

当然,熔模铸造也存在一定的缺点,如工艺流程繁琐,生产周期长,铸件尺寸不能太大以及铸件冷却速度较慢等[3]。

由于熔模铸造能实现高精度的复杂成形,在高端铸件的制造方面占据着优势地位,特别是能够浇注高温合金和钛合金,使得该工艺在航空及工业燃气轮机领域发挥了重要作用,典型铸件如航空发动机和工业燃气轮机涡轮叶片、航空发动机的整体机匣等。除此之外,高温合金、钛合金和铝合金熔模铸造技术还在其他领域中得到应用,如汽车涡轮增压器涡轮和电子仪表框架,这些铸件相对一般商用熔模铸件,技术水平要求高,附加值大,被划为高附加值熔模铸件,也可称为高端铸件。在我国,还存在一类以生产各种不锈钢、碳钢铸件的企业群体,主要生产出口国际市场的一般商用铸件,如不锈钢高尔夫球头、管接头、泵、阀、五金件、一般及其零件等[4]。

1.3熔模铸造(高端铸件)国内外发展现状

熔模铸造的历史可追溯到 4000 年前,但早期仅应用于铸造艺术品和装饰品。二战时期,美国工程师奥斯汀受传统失蜡法制造工艺品的启发,创造了现代熔模铸造法,并应用于机械零件的生产。此后,该技术在世界范围内得到迅速发展。1991年以前,在发达国家及地区,军工和航空产品占熔模铸造销售额的50%到70%。随着苏联解体和冷的战结束,行业结构发生了重大变化,民用精铸件用量攀升,国在精密铸造技术方面取得了重大进展。为提高产品竞争能力,各国在缩短生产周期、扩大产品领域、提高产品质量、降低成本、改善环境等方面技术发展较快。

我国于20世纪50年代初期,通过引进前苏联技术,开始发展现代熔模精,密铸造技术。70年代,研究主要集中在水玻璃型壳的快速制壳,新的硬化剂的开发,同时完善硅酸乙酯、开发硅溶胶、改善模料性能、提高制芯技术等精密铸造工艺方法研究;80年代,从国外引进了无余量熔模精密铸造生产线,开始了全面的技术吸收、消化和发展;90年代则实现了熔模铸造产量的大幅度提升。下面,将从高温合金、铝合金以及钛合金熔模铸造三个方面,详细讨论国内外发展现状。

(1)高温合金

航空发动机涡轮叶片是典型高温合金熔模铸件。上世纪80年代以来,国外对涡轮工作叶片和导向叶片的结构、材料及制造技术进行了深入的革命性研究,已相继研制出具有高效气冷效果的叶片冷却系统、材料和制造技术,制造的部件已经通过发动机的全面考核,如多孔层板合金件、多孔层板合金铸造的单晶叶片、超气冷空心叶片、微叠层复合材料叶片以及相应的发散冷却(Lamilloy)、铸冷(Cast Cool)、超气冷(Super cooling)等用于超级气冷空心叶片制造的新技术。

我国于20世纪50年代从前苏联引进了石蜡-硬脂酸模料和水玻璃-石英型壳加矾土水泥的湿法造型工艺,开始了航空熔模铸件的研制历程。我国在1966年研制成功第一代空心镍基高温合金涡轮叶片,于70年代末成功铸造出符合发动机性能要求的低压一级空心导向叶片。而高温合金近净形熔模精密铸造技术是在上世纪70年代末期80年代初期形成的,早期的研究技术水平与国外同时期先进

水平相当。迄今已经形成了以等轴晶、定向柱晶和单晶凝固结晶特征的叶片近净形熔模精密铸造技术、整体叶盘类控晶铸造技术和中小型复杂薄壁结构件整铸技术体系和研究保障条件。北京航空材料研究院近几年系统研究高效气冷单晶涡轮叶片近净形熔模精密铸造技术、双性能整体叶盘近净形熔模精密铸造技术、大型复杂薄壁结构件近净形熔模精密铸造等前沿技术,迄今已经在关键技术上取得突破:针对双层壁和其他复杂薄壁件结构的特点,在现有熔模材料上进行降粘和增强改性研究,并引入激光快速成形工艺对新型结构件整铸技术快速研究,形成新型熔模材料体系和熔模成形工艺;针对单晶叶片、整体叶盘和大型复杂薄壁结构件开展了凝固结晶过程控制的基础技术研究,形成针对叶片单晶生长、整体叶盘定向柱晶/等轴细晶复合生长、大流阻下致密充填与晶粒度复合控制的技术。

总的来说,经过长期的努力,我国航空发动机叶片熔模铸造有了长足的进步,但与国际先进水平尚存在不小的差距,特别是单晶叶片制造技术方面,国际上单晶叶片已经批量配备到航空发动机中,而我国在合金、工艺、设备等方面尚需进一步研究和提升[5]。

(2)铝合金

铝合金具有比强度高、比刚度高和抗疲劳性能优异的性能,是理想的结构材料。用铝合金替代钢铁可大大减轻产品的质量和增加结构的稳定性,在航空、航天、汽车、船舶、兵器、电子等行业已大量使用,特别是近年来越来越多地采用了铝合金熔模精密铸件。随着现代工业及铸造新技术的发展,对铝合金铸件的需求量越来越大,要求也越来越高,要求铸件尺寸精确、表面质量和内部冶金质量好,表面粗糙度一般要求Ra在0.8~3.2μm之间,并且向大型、薄壁、复杂、整体的方向发展。

目前,铝合金精密铸造技术在国外发达国家中发展较为迅速。铝合金熔模铸造可同时生产小件和大件,最大轮廓尺寸可达到1.8 m,最小壁厚可降到 2 mm,最大铸件的重量接近 1000 kg。尺寸精度也越来越高:在 25.4 mm 内,公差可以达到±0.125 mm;从 25.4 mm 到 254 mm 每增加 25.4 mm,公差增加 0.05 mm;尺寸大于 254 mm 时每增加 25.4 mm,公差增加±0.127 mm。表面粗糙度 Ra 最高可达到约 0.63μm(相当7~8水平),熔模铸件的力学性能也在不断提高。同时,各种模料辅助技术也发展较快,如日本研究的水溶性模料,可适用于在压力范围

在0.7~1.5MPa之内的压铸成型,美国TEM-PCRAFT生产的V-3002 型压蜡机的最大合型力可达到3000kN。

近20年来,国内对铝合金精密铸造技术也开展了大量的研究工作,在一些领域虽然取得了长足的进步,但与国外先进水平相比,仍然还有不小的差距。主要表现为:铝合金精密铸造专业化生产程度低;铝合金精密铸造生产设备和配套技术落后;铸件尺寸、尺寸精度、复杂程度和表面质量不高;铸件机械性能低;生产周期长等。目前还满足不了航空、航天领域对铝合金精密铸件更高的性能要求[6]。

(3)钛合金

钛合金具有比强度高、耐腐蚀性能好等优点,已成为一种优良的航空航天结构材料。近来年随着国内外航天事业的飞速发展,钛合金成形技术已经成为人们研究的热点。熔模铸造是钛合金最成功、也是应用最广泛的近净形成形技术,它具有铸件的表面粗糙度好、尺寸精度高等优点,可显著提高原材料的利用率(可达75%~90%)。

20世纪70年代初,美国PCC公司与德国的MTU发动机公司合作,采用氧化物陶瓷型壳整体精铸出直径800mm的RB199发动机的中间机匣,从而开创了生产大型薄壁复杂钛合金整体精铸件的新纪元。美国第四代歼击机F-22使用了大量的钛合金铸件,其中许多为关键部位的承力结构件。美国的AMAIC计划也在研究薄壁钛合金结构件,目的是生产厚度为0.9~1.3mm 的Ti-6Al-4V和Ti-6Al-2Sn-4Zr-2Mo的精铸件,这个厚度要比现在的降低30%~50%。近年来,国外在积极发展新型钛合金及钛铝金属间化合物成分优化设计及力学性能的同时,加强了对新型钛合金及金属间化合物熔化原理、凝固行为、熔体净化工艺的研究,并重点开发了钛合金、钛铝金属间化合物的近无余量的精密铸造工艺及关键技术。

我国目前也有许多研究院致力于钛和钛合金精密铸造技术的研发,如北京航空材料研究院、沈阳铸造研究所、洛阳船舶材料研究所、中科院沈阳金属研究所、哈尔滨工业大学等单位。北京航空材料研究院曾采用引进技术成功浇铸出尺寸为630mm×300mm×130mm,最小壁厚仅为2.5mm的某飞机用的复杂的框形结构。

未来,国内关于钛和钛合金精密铸造研究将集中在以下方向:

①钛合金铸件的生产成本限制了它在航空航天工业上的应用,因此钛合金的

发展将主要放在如何降低成本上,造型材料和真空熔炼是生产中的高成本环节,应进一步加大此方面的研究;

②钛合金铸件将越来越多地应用在易疲劳、易断裂等关键部位,加大钛合金研发,将是钛合金发展的又一大趋势;

③由于铸造钛合金在铸造过程中经常存在铸造应力、组织性能不均匀等问题,为确保铸件的使用质量,针对钛合金铸件开发热等静压和热处理技术研究显得尤为重要;

④熔模铸造只能生产中小型铸件,应寻求一种生产更大型、更净形、更高效铸件的工艺,提高钛合金铸件的生产能力;

⑤进一步扩大计算机模拟凝固技术在钛合金铸造中的应用,以提高铸件质量,减小铸件的废品率。[7][8]

1.4选题简介

本次课程设计,旨在了解熔模精密铸造的整体流程及工艺,对于熔模精密铸造有初步的认识,熟悉相关实验操作,培养实践的能力,在实践中加深对熔模铸造工艺流程和技术的理解。

具体而言,首先由指导老师董安平老师向我们介绍了熔模精铸的含义、工艺流程、发展现状及前景,并对实验室的具体设备和科学研究情况进行了介绍。接下来,采用冀浩同学提供的3d鼠标模型为蓝本,九个同学分为三个小组,分别对应负责鼠标按键、上盖、下盖的铸造工作。从而通过一系列步骤将3d模型变为实物。我们小组负责的是鼠标上盖部分的熔模精密铸造。

2. 铸件工艺流程设计

2.1模具的设计与制造

对于本次熔模精密铸造课程设计,由冀浩同学提供的鼠标3D模型为基础(见图2),选取其中三个主要构件,分别为按键,上盖,下盖,来作为三个铸件,

分给三个小组进行分别铸造。经过分析发现原有模型尺寸过小太薄,不便于熔模铸造,从而对于模型进行修改,鼠标的外形尺寸放大2.5倍,壁厚放大1.5倍,从而基本满足铸造要求。

图2整体鼠标3d模型

其中,我们小组负责熔模铸造的部件是上盖,见图3。其中铸件的蜡模模型由指导老师董老师找相关公司3d打印得到的树脂模型,见图4。

图3 鼠标上盖部分3d模型图

图4 鼠标上盖实际3D打印出的模型

得到的3d打印实物为上面的白色结构,接下来我们要为其设计浇注系统,并对设计好的浇注系统的进行模拟和合理性评估,从而获得我们的浇注系统。

2.2 浇注系统的设计与模拟

2.2.1浇注系统的设计

铸件在浇注过程中最大的问题首先是解决铸件的充型问题。在浇注系统设计的时候要注意浇、冒口的系统设计,同时要考虑到真空设备的能力,型壳装箱预热的方式,浇注过程中的速度以及铸件浇注后的保温等问题。因此在正式生产试验前,设计了浇注系统,设计了一个浇口和2个冒口。由于本铸件相对比较简单,所以在设计之后直接进行了模拟。浇注系统设计图如图5所示。

图5 浇注系统设计模拟图

2.2.2 浇注系统的模拟分析

针对以上设计的浇注系统,我们对其浇注过程和凝固过程进行了计算机模拟,采用ProCAST软件(ProCAST 软件是由美国 USE 公司开发的铸造过程的模拟软件采用基于有限元的数值计算和综合求解的方法,对铸件充型、凝固和冷却过程等提供模拟,提供了很多模块和工程工具来满足铸造工业最富挑战的需求。基于强大的有限元分析,它能够预测严重畸变和残余应力,并能用于半固态成形,吹芯工艺,离心铸造,消失模铸造、连续铸造等特殊工艺)。首先对于整体浇注系统进行了有限元网格划分,见下图。

图6 网格划分

之后,对于其浇注过程进行了模拟。见下图。

图7 t=0.2s时模拟浇注情况

图8 t=4s时模拟浇注情况

从图中可以发现,4秒时已经浇注完毕,而由于延迟,其实真实时间会更快。从而可以说明浇注几乎是瞬间完成的。接下来,就是铸件的冷却过程了。以下图捕捉了几个模拟时铸件冷却过程中的瞬间。

图9 t=44 s时模拟冷却情况

图10 t=1404 s时模拟冷却情况

图11 t=1604 s时模拟冷却情况

从以上几个图中,可知,铸件冷却现实从两侧薄壁处开始的,这与常识相符。并且冷却时间较长。最终冷却后铸件的缩松情况见下图,可以发现出现缩松最严重区域集中在浇口处,铸件本身缩松产生率较小。从而符合要求。综上所述,设计的浇注系统合理,可以实际使用。

图12 整体示意图

图13 剖面图

2.3 3D打印与制备蜡模

3D打印(3DP)即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印通常是采用数字技术材料打印机来实现的。常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件。该技术在珠宝、鞋类、工业设计、建筑、工程和施工(AEC)、汽车,航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支以及其他领域都有所应用。

将设计出的试样在软件中绘制出来,再利用3D打印技术将试样打印出来,我们此处为董老师委托相关公司打印制作。之后在实验室中,根据设计好的浇注系统,在3d打印出的树脂模型的基础上进行压蜡。压蜡主要是运用已经压好的不同型号的圆柱体蜡,将浇注系统以铸造蜡为原材料,通过手工制作的方式做好,并添加排蜡口和一些必要的修补。最终得到的蜡模如下图示。

图14 蜡模

2.4 制壳

2.4.1 制壳原材料

熔模精密铸造制壳使用原材料包括硅溶胶、锆粉(砂)、莫来粉(砂)、消泡剂(主要是醇类与有机硅类,用于消泡、抑泡)、润湿剂(主要是醚类非离子表面活性剂,用于降低界面张力,渗透湿润)、杀菌剂(用于控制细菌含量,延长浆料有效使用时间)、氨水(调整浆料PH值,延长浆料有效使用时间)、蒸馏水(调整浆料SiO

%,补充蒸发水分,延长浆料有效使用时间)。浆料使用前应

2

重点检测流杯黏度、PH值、比重,其次检测二氧化硅含量、总固含量、浆料寿命、细菌含量、涂片重量、透气性、强度(湿强度、干强度、高温强度)。依照检测结果判断浆料质量。

2.4.2 制壳工艺

目前国内精铸行业中广泛运用的四种制壳工艺分别是水玻璃型壳、复合型壳、硅溶胶-低温蜡型壳、硅溶胶-中温蜡型壳,所得精铸件质量由低到高。 1)水玻璃型壳。这一工艺在国内已有近50年的生产历史其厂点数至今仍在我国精铸厂家中占有相当比重。多年来由背层型壳耐火材料的改进和新型硬化剂的推广应用,

水玻璃型壳强度有了成倍增长,铸件表面质量、尺寸精度及成品率有了很大提高。低廉的成本、最短的生产周期、优良的脱壳性能及高透气性至今仍是其他任何型壳工艺所不及的。存在的主要问题:①水玻璃粘结剂固有的缺点是Na2O含量高,型壳高温强度、抗蠕变能力远不及硅溶剂型壳。加之面层耐火料采用价低质次、粒度级配不良的石英砂(粉),因而必须不能获得高质量的精铸件。②型壳生产条件差,缺乏严格的生产过程及参数的控制。由于硬化剂的强腐蚀性,除尘设备简陋,很少车间有恒温、恒湿、除尘的生产环境。影响型壳和铸件质量的涂料配制、硬化、风干、脱蜡等工序,极少按行业规定的操作规范严格控制。型壳风干处的温度、湿度、风速等更是不加控制,故常在高、低温或梅雨季节发生批量报废的质量事故。总之,大部分工厂停留在手工作坊阶段,靠技艺而不是靠科学的质量管理进行生产。这是水玻璃型壳数十年来铸件质量不稳定、废品率、返修率高的重要原因之一。 2)复合型壳。目前不少工厂将第一、二层改用锆英粉及莫来石粉,硅溶胶型壳。背层仍要用原有水玻璃型壳工艺。它是结合硅溶胶型壳的优良表面质量和水玻璃低成本、短周期的优点的一种改进方案。与水玻璃型壳相比,其铸件表面质量有了很大提高,表面粗糙度降低、表面缺陷减少、返修率下降。生产周期与水玻璃型壳相近。存在的主要问题:①由于背层保留了水玻璃粘结剂,故其型壳整体高温强度、抗蠕变能力比硅溶胶型壳低,浇注的铸件尺寸精度及形位公差均比不上硅溶胶型壳。②透气性不如水玻璃型壳也不如硅溶胶型壳,型壳高温强度不及硅溶胶型壳,易造成废品。③复合型壳铸件质量稳定性比水玻璃好,但远不如硅溶胶型壳。④复合型壳由于采用价高的锆英粉作面层,其型壳成本是水玻璃型壳的4.5倍,若背层采用莫来石砂粉,其型壳成本与硅溶胶型壳成本相差无几,其成本低的优势并不明显。⑤复合型壳不能使用中温蜡料。中温蜡不能使用热水脱蜡。在高压釜中脱蜡时,由于高温、高压,中温蜡液会与背层中的水玻璃及残留硬化剂产生剧烈的皂化反应,不经回收处理无法回用。 3)硅溶胶-低温蜡型壳。低温蜡成型容易、设备简单,蜡模表面粗糙度相差不大,工艺比复合型壳质量稳定,尤其是铸件尺寸精度高,因它没有水玻璃存在,型壳高温性能好,焙烧后型壳透气性高,抗蠕变能力强,既可适用于薄壁件,复杂结构的中小件,又可生产重达 50~100kg的特大件。存在的主要问题:①由于采用低温蜡,大部分型壳在水中脱蜡,难免有皂化物残留进入型

壳中易产生铸件表面夹杂,返修率稍高。②制壳生产周期长是它的最大缺点和不足,尤其在生产大件,有深孔、深槽件时,每层干燥常用24~48h。③硅溶胶型壳(低温蜡)型壳成本较水玻璃型壳高5倍,比复合型壳高17%。铸件成本相应较高。 4)硅溶胶-中温蜡型壳。国际上通用的精铸件生产工艺,它具有最高的铸件质量、最低的返修率,特别适合于表面粗糙度要求高,尺寸精度高的中小件、特小件。存在的主要问题:①成本高,其型壳生产成本是水玻璃型壳的8倍。比低温蜡硅溶胶型壳也高也25%。②生产周期与低温蜡硅胶溶胶型壳相同,比水玻璃及复合型壳长得多。③生产中大件往往要采用中温液态蜡及高压注蜡,厚壁蜡模易缩凹,铸件尺寸精度并不太高。中大件对尺寸精度、表面粗糙度要求也没有小件那么高,故中大件较少采用硅溶胶(中温蜡)型壳。

2.4.3 制壳步骤

①配制涂料,模组的除油和脱脂:由于模组为石蜡,他们具有憎水性,因此用肥皂水货表面活性剂改善涂挂性②上涂料和撒砂:涂料要均匀,不可缺涂、局部堆积或积存气泡。(方法:模组在涂料中不断的翻转和上下移动);撒砂是为了增强型壳和固定涂料,可防止涂料干燥时因为收缩而产生穿透性裂纹,撒砂用材料应与配置涂料耐火材料相同(相同的膨胀系数)③型壳干燥和硬化。④重复以上步骤直至型壳完成。下图是最终效果。

图15 制壳效果图

2.5 浇注

2.5.1 脱蜡

熔失熔模的过程统称为脱蜡,是熔模铸造的主要工序之一。脱蜡的方法有多种如:有机溶剂法、热水脱蜡法、高压蒸汽脱蜡法、闪烧脱蜡法、微波脱蜡法、热砂脱蜡法等,目前应用最广泛的为高压蒸汽脱蜡法,而水玻璃型壳多采用热水脱蜡法。无论是何种脱蜡方法,要点都是高温快速脱蜡,以保证型壳在脱蜡过程中不开裂。型壳制成后一般要停放一段时间后(2~4h)方可进行脱蜡。本次实验采用高压蒸汽脱蜡法。下两图是脱蜡后的效果。可以观察到型壳外表面结实,内表面很光滑。

图16 脱蜡后实物图A

图17 脱蜡后实物图B

2.5.2 焙烧

焙烧的目的是去除挥发物(水,残余蜡料、皂化物)去除之后留下的空隙提供透气性;使粘接剂、耐火材料发生反应,改善力学性能(高温下);减少浇注时的温差,提高充型能力,避免胀型。如需造型(填砂)浇注,在焙烧之前,先将脱模后的型壳埋箱内的砂粒之中,再装炉焙烧。如采用高强度型壳时,可不必造型而将脱模后的型壳直接焙烧。焙烧时逐步增加炉温,将型壳加热至

800-1000℃,保温一段时间,即可进行浇注。

2.5.3 浇注

熔模铸造时常用的浇注方法有:1)热型重力浇注这是用得最广泛的一种浇注形式,即型壳从焙烧炉中取出后,在高温下进行由浇注。此时金属在型壳中冷却较慢,能在流动性较高的情况下充填铸型,故铸件能很好复制型腔的形状,提高了铸件的精度。但铸件在热型中的缓慢冷却会使晶粒粗大,这就降低了铸件的机械性能。在浇注碳钢铸件时,冷却较慢的铸件表面还易氧化和脱碳,从而降低了铸件的表面硬度、光洁度和尺寸精度。2)真空吸气浇注将型壳放在真空浇注箱中,通过型壳中的微小孔隙吸走型腔中的气体,使液态金属能更好地充填型腔,复制型腔的形状,提高铸件精度,防止气孔、浇不足的缺陷。该法已在国外应用。3)压力下结晶将型壳放在压力罐内进行浇注,结束后,立即封闭压力罐,向罐内通入高压空气或惰性气体,使铸件在压力下凝固,以增大铸件的致密度。在国外最大压力已达150atm。4)定向结晶(定向凝固)一些熔模铸件如涡轮机叶片、磁钢等,如果它们的结晶组织是按一定方向排列的柱状晶,它们的工作性能便可提高很多,所以熔模铸造定向结晶技术正迅速地得到发展。本次试验采用倾转式热型重力浇注。下图为浇铸过程。

图18 浇注过程

图19 浇注后实物图

2.5.4 熔炼铸件的清理

熔模铸件清理的内容主要包括:从铸件上清除型壳;自浇冒系统上取下铸件;去除铸件上所粘附的型壳耐火材料;铸件热处理后的清理,如除氧化皮、尽边和切割浇口残余等。获得的铸件如下图示。

图20 铸件实物图

2.6 后处理

杠杆零件的工艺设计课程设计

课程设计说明书 课程名称:机械制造工艺学 设计题目:“杠杆”零件的工艺设计 院系:机械工程系 学生姓名:刘立果 学号:200601100072 专业班级:机制自动化(3)班 指导教师:李菲 2009年12月17日

课程设计任务书 摘要:先从设计背景方面分析了零件作用和工艺,然后指定设计方案包

括毛坯的制造形式和对加工基面的选择最后实施方案。制定出工艺 路线,确定机械加工余量、工艺尺寸及毛坯尺寸,确定切削用量及 基本工时,最后进行了夹具的设计。 关键词:作用,工艺,毛坯,基面,路线,加工余量,尺寸,切削用量基本工时,夹具。 目录 1.零件的分析 (4) 1.1零件的作用 (4) 1.2零件的工艺分析 (4) 2.工艺规程设计 (5) 2.1确定毛坯的制造形式 (5) 2.2基面的选择 (5) 2.3制定工艺路线 (5) 2.4机械加工余量、工序尺寸及毛坯尺寸的确定 (6) 2.5确定切削用量及基本工时 (9) 3.夹具设计 (10) 4.结果与讨论 (11) 4.1课程设计结果 (11) 4.2课程设计结论 (11) 5.收获与致谢 (11) 6.参考文献 (11) 序言 机械制造工艺学课程设计是在我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要

的地位。 就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的“四化”建设打一个良好的基础。 由于能力有限,设计尚有许多不足之处,恳请各位老师给予指教。 1. 零件的分析 1.1 零件的作用 题目所给的零件是杠杆(见附图1),它位于传动轴的端部。主要作用是传递扭矩,零件中部有一孔ф20H7,两端分别是通孔和盲孔ф8H7,三孔均要求有较高的配合精度,用于传递较小扭矩。 1.2 零件的工艺分析 共有两组加工平面,它们之间有一定的位置要求,现分述如下: 1.上表面 这一组表面包含两个ф8H7的孔和其倒角;与两孔垂直的平面包括通孔的端面ф16、盲孔的端面ф20和中部孔的端面ф32. 2.下表面 此加工面包括长宽均为68的下表面轮廓还有ф20H7孔及其倒角。 2.工艺规程设计 2.1 确定毛坯的制造形式 零件材料为HT200,由于零件为大批量生产且轮廓尺寸不大,可采用熔模铸造。2.2 基面的选择 加工下表面轮廓是以ф20的端面ф32为粗基准;在以加工好的下表面为基准加工通孔ф8的端面ф16、盲孔ф8的端面ф20和ф20的端面ф32。 2.3 制定工艺路线 工序I 依次粗铣和精铣下底面轮廓1,通孔ф8的端面ф16和孔ф20的端面ф32,盲孔ф8的端面ф20. 工序II 依次钻、粗铰和精铰通孔和盲孔ф8H7并锪倒角0.5×45°;粗铰后精铰

铸造工艺

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性(任何铝铸件均存在这些问题)。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1)流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金《共晶铝硅合金 (ZL102 、 YL102 、 ZL108 、 YL108 和 ZL109)》的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。(这个度要靠经验来掌控,也是一个铸造技师,一辈子要研究的事) (2)收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,(我喜欢这句话,一看就是实际生产中中总结的)铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是(使)缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

熔模铸造工艺流程

熔模铸造工艺流程

模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点83℃-88℃(环球法)60℃±1℃ 针入度100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率0.9%-1.1% 比重0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色 蜡(模)料处理 工艺参数: 除水桶搅拌时温度110-120℃ 搅拌时间8-12小时 静置时温度100-110℃ 静置时间6-8小时 静置桶静置温度70-85℃ 静置时间8-12小时 保温箱温度48-52℃ 时间8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。

2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。 5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序 1、从保温槽中取出蜡缸,装在双工位液压蜡模压注机上,使用前应去除蜡料中空气及 硬蜡。 2、将模具放在压注机工作台面上定位,检查模具所有芯子位置是否正确,模具注蜡口 与压注机射蜡嘴是否对正。 3、检查模具开合是否顺利。 4、打开模具,喷薄薄一层分型剂。 5、按照技术规定调整压注机时间循环,包括压射压力、压射温度、保压时间、冷却时 间等。

解析精密铸造技术

解析精密铸造技术 精密铸造是相对于传统的铸造工艺而言的一种铸造方法。它能获得相对准确地形状和较高的铸造精度。较普遍的做法是:首先做出所需毛坯(可留余量非常小或者不留余量)的电极,然后用电极腐蚀模具体,形成空腔。再用浇铸的方法铸蜡,获得原始的蜡模。在蜡模上一层层刷上耐高温的液体砂料。待获得足够的厚度之后晾干,再加温,使内部的蜡模溶化掉,获得与所需毛坯一致的型腔。再在型腔里浇铸铁水,固化之后将外壳剥掉,就能获得精密制造的成品。 失蜡法铸造现称熔模精密铸造,是一种少切削或无切削的铸造工艺,是铸造行业中的一项优异的工艺技术,其应用非常广泛。它不仅适用于各种类型、各种合金的铸造,而且生产出的铸件尺寸精度、表面质量比其它铸造方法要高,甚至其它铸造方法难于铸得的复杂、耐高温、不易于加工的铸件,均可采用熔模精密铸造铸得。 熔模精密铸造是在古代蜡模铸造的基础上发展起来的。作为文明古国,中国是使用这一技术较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡铸造技术,用来铸造带有各种精细花纹和文字的钟鼎及器皿等制品,如春秋时的曾侯乙墓尊盘等。曾侯乙墓尊盘底座为多条相互缠绕的龙,它们首尾相连,上下交错,形成中间镂空的多层云纹状图案,这些图案用普通铸造工艺很难制造出来,而用失蜡法铸造工艺,可以利用石蜡没有强度、易于雕刻的特点,用普通工具就可以雕刻出与所要得到的曾侯乙墓尊盘一样的石蜡材质的工艺品,然后再附加浇注系统,涂料、脱蜡、浇注,就可以得到精美的曾侯乙墓尊盘。 现代熔模铸造方法在工业生产中得到实际应用是在二十世纪四十年代。当时航空喷气发动机的发展,要求制造象叶片、叶轮、喷嘴等形状复杂,尺寸精确以及表面光洁的耐热合金零件。由于耐热合金材料难于机械加工,零件形状复杂,以致不能或难于用其它方法制造,因此,需要寻找一种新的精密的成型工艺,于是借鉴古代流传下来的失蜡铸造,经过对材料和工艺的改进,现代熔模铸造方法在古代工艺的基础上获得重要的发展。所以,航空工业的发展推动了熔模铸造的应用,而熔模铸造的不断改进和完善,也为航空工业进一步提高性能创造了有利的条件。 我国是于上世纪五、六十年代开始将熔模铸造应用于工业生产。其后这种先进的铸造工艺得到巨大的发展,相继在航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及刀具等制造工业中被广泛采用,同时也用于工艺美术品的制造。 所谓熔模铸造工艺,简单说就是用易熔材料(例如蜡料或塑料)制成可熔性模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和

工程材料课设报告

工程材料课设报告

南京航空航天大学《工程材料与热加工基础》课程设计 学院:航空宇航学院 专业:飞行器设计与工程 学号: 完成日期:2009年6月18日

说明书目录 任务书---------------------------------------------------------------------------3 铸造件设计---------------------------------------------------------------------5 锻造件设计---------------------------------------------------------------------9 焊接件设计--------------------------------------------------------------------13 总结------------------------------------------------------------------------------17 心得体会------------------------------------------------------------------------18 参考文献------------------------------------------------------------------------18 一、课程设计任务书 课程设计任务书

1.课程设计的目标: (1)通过课程设计的实践,使学生进一步加深了解和巩固课堂所学的有关知识,提高学生综合运用所学知识的能力。 (2)通过课程设计使学生初步达到在一般机械设计中,能合理选择材料,选择毛坯制造方法,并能合理地安排热处理工艺及零件制造工艺流程。 2.课程设计的选题: 本课程设计包括典型零件的材料选择,热处理工艺路线的安排,零件毛坯生产方法的选择(主要包括铸造(液态成型)、压力加工(塑性成形)和焊接(连接成型)三种成型方法)。 3.课程设计的主要内容: 1)根据图纸熟悉产品的结构、各零件的作用和工作条件。 2)依据零件的受力情况(或给定的条件),环境即失效形式进行零件的选材设计(即选择合适的材料成分,组织及热处理状态)。 3)根据零件的使用条件、制造精度、形状尺寸、材料及生产性质等条件,对指定的零件毛坯进行毛坯部分种类的选择(即选择锻压铸造、或焊接的方法),并进行结构工艺分析、完成工艺设计的部分内容(铸件的铸造方法、浇注位置、分型面的选择、并在零件图上示意标出冒口位置;锻件结构工艺、选择的锻造方法;零件的焊接方法、结构工艺、合理布置焊缝等)。 4)对轴类零件(或齿轮)应设计制造工艺流程,正确选择热处理工艺,工艺流程的合理安排,并作详细的说明。 5)对上述第(4)项中的零件,用相应的材料制成试样,分别用自己设计的热处理工艺进行处理,分别测其硬度、磨制试样观察其组织,判断是否达到预期效果,并作分析。

熔模精密铸造_实验报告

1.实验目的 1.了解熔模精密铸造的工艺过程和特点。 2.学生动手实践,可翻制小型艺术品,提高实验兴趣。 3.体会工艺参数对铸件质量的影响。 2.实验工艺流程和实验内容 1)实验工艺流程 压蜡→补焊→组树→制壳→脱蜡→焙烧→浇铸→脱壳→后期处理 其中,制壳步骤包括,涂涂料、撒砂,如此反复几次,直到形壳的厚度达到要求(根据不同要求,大概有4—10层)。最后一层要涂涂料,这样可以防止沙粒脱落,造成不便。 后期处理包括补焊、热处理、喷丸和精整等步骤。 2)实验内容 压制蜡型 压制蜡型使用的是挠性模具,压制蜡型过程中,需要注意蜡的温度,模具的温度,注入时间等因素。压蜡过程中,要保证蜡充满型腔,登蜡充分凝固之后再取出,取出时注意不要将蜡模损坏。 模具的制作 这次的模具制作主要分为两种,一种为热压橡胶,将模样放到橡胶片之间,放到制模仪器中压实。通电40 min左右(注意烫伤),压制完成之后取出成品,用刀子小心的剖开,取出模样,这样就可以完成一个挠性的模具。 另一种为硅橡胶制造模具,将硅橡胶取出,按照比例倒入凝结剂(大概为1.7%)迅速搅匀,将搅好的硅溶胶倒入已经放好模样的容器中,大概等30 min,待硅溶胶凝固之后取出,这样可以制得模具的一个模具,再按照同样的方法制造另一半模具即可。 零件的浇铸 制壳过程、脱蜡过程和焙烧过程我们是没有看到的,我们看到的是从焙烧炉直接取出的型腔进行浇铸,其中石膏型的焙烧需要缓慢加热,防止裂开。制型腔过程中,需要抽真空,将石膏中的气体排出,防止浇铸过程中产生气孔等缺陷。浇铸结束,待金属液冷却之后可以采取不同的脱壳方式。对于石膏型,通过浸水处理,石膏的溃散性很好,可以很容易的除去外壳;对于硅溶胶为粘结剂的砂型,可以通过敲击的方法

熔模铸造的工艺流程

熔模铸造的工艺流程 时间:2010-04-21 10:18来源:unknown 作者:36 点击:9次 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精 2009年07月15日 熔模铸件尺寸精度较高,一般可达DT4-6(砂型铸造为DT10~13,压铸为 DT5~7),当然由于熔模铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但其一致性仍需提高(采用中、高温蜡料的铸件尺寸一致性要提高很多)。压制熔模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。此外,型壳由耐高温的特殊粘结剂和耐火材料配制成的耐火涂料涂挂在熔模上而制成,与熔融金属直接接触的型腔内表面光洁度高。所以,熔模铸件的表面光洁度比一般铸造件的高,一般可达Ra.1.6~3.2μm。熔模铸造最大的优点就是由于熔模铸件有着很高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。由此可见,采用熔模铸造方法可大量节省机床设备和加工工时,大幅度节约金属原材料。 熔模铸造方法的另一优点是,它可以铸造各种合金的复杂的铸件,特别可以铸造高温合金铸件。如喷气式发动机的叶片,其流线型外廓与冷却用内腔,用机械加工工艺几乎无法形成。用熔模铸造工艺生产不仅可以做到批量生产,保证了铸件的一致性,而且避免了机械加工后残留刀纹的应力集中。中国精密铸造、中国铜合金精密铸造、中国不锈钢铸造生产企业,新疆精密铸造欢迎您。 1)适应范围广。铸造法几乎不受铸件大小、厚薄和形状复杂程度的限制 , 铸造的壁厚可达 0.3 ~ 1000mm, 长度从几毫米到十几米 , 质量从几克到 300t 以上。最适合生产形状复杂 , 特别是内腔复杂的零件 , 例如复杂的箱体、阀体、叶轮、发动机汽缸体、螺旋桨等。 2)铸造法能采用的材料广 , 几乎凡能熔化成液态的合金材料均可用于铸造。如铸钢、铸铁飞各种铝合金、铜合金、续合金、铁合金及钵合金等铸件。对于塑性较差的脆性合金材料 ( 如普通铸铁等 ) , 铸造是惟一可行的成形工艺 , 在工业生产中以铸铁件应用最广 , 约占铸件总产量的 70% 以上。 3)铸件具有一定的尺寸精度。一般情况下 , 比普通锻件、焊接件成形尺寸精确。 4)成本低廉、综合经济性能好、能源、材料消耗及成本为其它金属成形方法所不及。

铸造工艺课程设计课程教学改革研究

铸造工艺课程设计课程教学改革研究 结合《铸造工艺课程设计》实践教学的实际教学中存在的问题,采取及时更新工艺设计题目、增设工艺设计方案验证环节、引入任务驱动型自主学习模式、强化教师实践教学能力以及改善考核方法等一系列措施,从而有效提高学生的工程实践能力和自主学习能力,以适应铸造行业对人才的需求。《铸造工艺课程设计》作为材料成型及控制工程专业的重要实践教学环节,其教学目标是能够运用所学铸造理论及工艺设计知识比较系统地学习掌握铸造工艺及工装设计方法,使学生能够制定出比较合理的铸造工艺,并设计出结构合理的工装模具;同时通过课程设计,也使学生进一步提高设计绘图能力、查阅工艺设计资料的基本技能以及分析解决铸造工程实际问题的能力,以满足铸造行业用人需求。然而在《铸造工艺课程设计》实践教学过程中还存在一些不足之处。(1)课程设计题目陈旧且数量较少现有题目陈旧,缺乏时效性,与铸造生产实际脱节,致使学生的专业素质很难达到铸造行业的需求。图纸数量较少,难以满足1人1题,甚至需要多人共用1题或每年重复使用,这就导致存在学生之间相互抄袭或抄袭往届学生作品的现象,不利于培养学生具备独立自主从事铸造工艺设计工作的能力。(2)缺乏工艺验证环节课程设计通常只包括工艺设计、工装设计以及设计说明书的撰写等内容,而不进行实际生产验证,这就导致学生无法判断工艺设计方案的合理性及可行性。(3)教师指导不足通常1名老师指导1个班级的课程设计工作,人数在40人左右,这就导致指导教师无法详细指导每位学生。(4)考核评价机制不够全

面课程考核更侧重于图纸质量以及设计说明书的规范性,而忽略了对设计过程中学生的自主性、创新性及工程实践应用能力的考核与评价。鉴于此,以《铸造工艺课程设计》核心课程建设为契机,本文归纳总结了铸造工艺课程设计实践教学中所采取的的改革与实践方法。 1.及时更新工艺设计题目 铸造工艺课程设计题目要做到推陈出新,以激发学生的设计热情。为此建立了以企业实际在生产零件为主的课程设计零件图纸库,且图纸数量要多于专业人数,且要保证每年有10%以上的题目更新,以保证课程设计与企业生产实际接轨。图纸库的建立与更新由教研室每年定期审核通过,以保证图纸的规范性及零件结构复杂程度适中。课程设计分配设计任务时,保证1人1题,且指导教师要综合考虑所带学生的设计基础差异问题,题目的选择与分配要有难度区分,并在课程设计任务分配时给出明确说明及评分标准。 2.增设工艺设计方案验证环节 本课程增设了工艺设计方案验证环节,有两种不同方式可供学生自主选择。第一种验证方法是引入Procast及AnyCasting等铸造模拟软件对铸件充型、铸造温度场以及铸造缺陷出现的位置和数量等进行模拟分析,进而优化工艺设计方案。模拟仿真环节的引入有利于学生发现和解决工艺设计中存在的问题,使铸造工艺设计更符合铸造生产实际,同时也提高了学生学习与应用软件的能力。第二种验证方法则是按照其工艺设计方案进行实际铸造生产,铸造生产可直接在校内铸造生产实训中心进行,该中心不仅有砂型铸造所需设备及原材料,且

熔模精密铸造过程疑难问题解答

熔模精密铸造过程疑难问题解答 前言 三百六十行,行行出人才。各行各业都有自己的特长。各从业人员必须熟练地掌握本行业、本岗位的职业技能,具备一定的包括职业技能在内的职业素质,才能胜任工作,把工作做好,为本行业做出应有的贡献,实现自己的人生价值。 熔模铸造业是技术密集型的行业。本行业对其职工职业素质的要求比较高。在科学技术迅速发展的今天,更是这样。精铸业的职工队伍中,大部分是技术员工。他们是企业的主力军,是振兴和发展本企业的技术力量。技术人员素质如何,直接关系到本企业的生存和发展。在市场经济条件下,企业之间的竞争,是质量之竞争;价格之竞争;也是技术之竞争;归根结底是人才的竞争。优秀的技术员工是企业各类人才中重要的组成部分。企业必须有这样一支高素质的技术工人队伍,有这样一批技术过硬、技艺精湛的能工巧匠,才能保证产品质量,提高生产效率,降低物料消耗,使企业获得经济效益;才能支持企业不断生产出高难度的产品,去发掘市场、占领市场;才能在激烈的市场竞争中立于不败之地! 由于本人水平有限,加之时间仓促,难免存在不足和错误,诚恳希望专家,工程师和同仁批评指正。 吴光来 第一章熔模铸件工艺设计与模具设计 §1、熔模铸件工艺设计 1.1、熔模铸件的尺寸精度受到哪些因素的影响? 答:铸件尺寸精度受铸件结构、材质、制模、制壳、焙烧、浇注等多种因素的影响。1)、铸件结构的影响:(1)、铸件壁厚,收缩率大;铸件壁薄,收缩率小;(2)、自由收缩率大,阻碍收缩率小。 2)、材质的影响:(1)、材料中含碳量越高,线收缩率越小,含碳量越低,线收缩率越大;(2)常见材质的铸造收缩率如下:铸造收缩率K=(LM-LJ)/LJ×100% LM—型腔尺寸;LJ—铸件尺寸 K受以下因素的影响:蜡模K1、铸件结构K2、合金种类K3、浇注温度K4。 合金种类收缩率 自由收缩受阻收缩 铸铁件 0.8% 0.7% 碳钢及低合金钢 1.6-2.0% 1.3-1.7% 不锈钢 2.0-2.3% 1.7-2.0% 3)、制模对铸件线收缩率的影响: (1)蜡(模)料的线收缩率约为0.9-1.1%; (2)蜡模径向(受阻)收缩率仅为长度方向(自由)收缩率的30-40%,射蜡温度对自由收缩率的影响远远大于对受阻收缩率的影响。(最佳射蜡温度为57-59℃,温度越高收缩

砂型铸造工艺流程

砂型铸造工艺流程 砂型铸造工艺流程图 制作木模-造型-熔化-浇注-落砂-冒口拆除-检验入库 熔模铸造工艺 失蜡铸造现在称为熔模铸造。这是一种很少切割或不切割的铸造工艺,是铸造行业的一项优秀技术。它被广泛使用。它不仅适用于各种类型和合金的铸造,而且可以生产出比其他铸造方法具有更高尺寸精度和表面质量的铸件,甚至复杂的、耐高温的、难以加工的、其他铸造方法难以铸造的铸件也可以通过熔模精密铸造来铸造。 熔模铸造是在古代蜡模铸造的基础上发展起来的。作为一个古老的文明,中国是最早使用这项技术的国家之一。早在公元前几百年,中国古代劳动人民就创造了这种失传的铸蜡技术,用来铸造钟鼎和具有各种精美图案和文字的器皿,如春秋时期曾侯乙墓的青铜板。曾侯乙墓雕像板的底座是多条龙缠绕在一起,首尾相连,上下交错,形成一个中间镂空的多层云纹图案。这些图案很难用普通的铸造工艺来制作,而失蜡法的铸造工艺可以利用石蜡无强度、易雕刻的特点,用普通的工具雕刻出与曾侯乙墓的雕像板相同的石蜡工艺品,然后加入浇注系统,经过上漆、脱蜡、浇注,得到精美的曾侯乙雕像板 现代熔模铸造法在20世纪40年代实际应用于工业生产当时,航空喷气发动机的发展要求制造具有复杂形状、精确尺寸和光滑表面的耐热合金部件,如叶片、叶轮和喷嘴。由于耐热合金材料难以加工,零件形状复杂,因此不可能或难以用其他方法制造。因此,需要找到一

种新的精确的成型工艺。因此,现代熔模铸造法借鉴了古代传下来的失蜡铸造法,通过对 材料和工艺的改进,在古代工艺的基础上取得了重要的发展。因此,航空工业的发展促进了熔模铸造的应用,熔模铸造的不断改进也为航空工业进一步提高性能创造了有利条件。 中国在20世纪50年代和60年代开始将熔模铸造应用于工业生产此后,这种先入为主的铸造技术得到了极大的发展,并已广泛应用于航空、汽车、机床、船舶、内燃机、燃气轮机、电信仪器、武器、医疗器械、切割工具等制造业,以及工艺品的制造。所谓的 熔模铸造工艺简单地指用易熔材料(如蜡或塑料)制作易熔模型(称为熔模或模型),在其上涂覆几层特殊的耐火涂层,干燥并硬化形成整体外壳,然后用蒸汽或温水将外壳上的模型熔化,然后将外壳放入砂箱中,在其周围填充干砂,最后将模具放入穿透式烘烤器中进行高温烘烤(例如,当使用高强度外壳时,脱模后的外壳可以不造型直接烘烤)、模具或外壳 熔模铸件尺寸精度高,一般可达CT4-6(砂型铸造CT10~13,压铸CT5~7)。当然,由于熔模铸造工艺过程复杂,影响铸件尺寸精度的因素很多,如模具材料的收缩、熔模的变形、加热和冷却过程中模壳的线性变化、合金的收缩率以及铸件在凝固过程中的变形等。因此,普通熔模铸件的尺寸精度相对较高,但其一致性仍有待提高(使用中高温蜡材料的铸件的尺寸一致性有待提高)用 压制熔体模具时,采用型腔表面光洁度高的型材,因此熔体模具的

熔模精密铸造工艺简介

熔模精密铸造工艺简介 熔模精密精密铸造(Investment Casting)又脱蜡铸造或失蜡铸造(Lost-wax Casting),这种铸造工艺可以生产出精密复杂、接近于产品最后形状,可不加工或很少加工就可直接使用的金属零件或精美工艺品,是一种近净形的金属液态成形工艺,应用非常广泛。 熔模铸造是以最终产品为摹本的批量复制技术,先要制做金属模具,在射蜡机上用金属模具压制出蜡模,将单个的蜡模组合到浇注系统上形成一棵棵蜡树,在蜡树上涂敷多层耐火材料,干燥硬化后形成型壳,然后将型壳内的蜡熔化使之流出,再将型壳焙烧使之坚固,最后再将熔化的液态金属浇注入型壳中,液态金属在型壳中冷却凝固后即成为所需要的铸件。 熔模精密铸造是在古代蜡模精密铸造的基础上发展起来的。作为文明古国,中国是使用这一技术较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡精密铸造技术,用来精密铸造带有各种精细花纹和文字的钟鼎及器皿等制品。 现代熔模精密铸造方法在工业生产中得到实际应用是在二十世纪四十年代。当时航空喷气发动机的发展,要求制造象叶片、叶轮、喷嘴等形状复杂,尺寸精确以及表面光洁的耐热合金零件。由于耐热合金材料难于机械加工,零件形状复杂,以致不能或难于用其它方法制造,因此,需要寻找一种新的精密的成型工艺,于是借鉴古代流传下来的失蜡精密铸造,经过对材料和工艺的改进,现代熔模精密铸造方法在古代工艺的基础上获得重要的发展。 我国是上世纪五、六十年代开始将熔模精密铸造应用于工业生产。其后这种先进的精密铸造工艺得到巨大的发展,相继在航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及刀具等制造工业中被广泛采用,同时也用于工艺美术品的制造。早期的熔模铸造工艺是采用石蜡硬脂酸模料、水玻璃粘接剂制壳。九十年代开始发展铸造专用中温模料、硅溶胶制壳、中频快速熔炼技术,铸件尺寸精度和表面光洁度有了很大的改善,成为当今生产出口精密铸件的主流工艺。 熔模铸件尺寸精度较高,铸钢件一般可达GB/T6414之CT5-7(砂型精密铸造为CT10~13),小型铸件甚至可以达到CT4。当然由于熔模精密铸造的工艺过程复杂,影响铸件尺寸精度的因素较多,例如模料的收缩、熔模的变形、型壳在加热和冷却过程中的线量变化、合金的收缩率以及在凝固过程中铸件的变形等,所以普通熔模铸件的尺寸精度虽然较高,但与机械加工相比仍有差距。 压制蜡模时,采用型腔表面光洁度高的压型,因此,熔模的表面光洁度也比较高。此外,与熔融金属直接接触的型腔内表面由极细的耐火涂料涂挂在熔模上而制成。所以,熔模铸件的表面光洁度比普通铸造件的高,表面粗糙度一般在Ra.3.2~6.3μm之间,更好的可以到Ra1.6以下。 熔模铸造采用热壳浇注,充型能力强,可以生产出薄壁铸件和细微的文字图案(如商标、规格型号等),铸件的最小壁厚已经可以做到2毫米以下。 熔模精密铸造最大的优点就是由于熔模铸件有着比较高的尺寸精度和表面光洁度,所以可减少机械加工工作,只是在零件上要求较高的部位留少许加工余量即可,甚至某些铸件只留打磨、抛光余量,不必机械加工即可使用。熔模铸造还可以把一些焊接组合件铸成一体,省去组合与焊接工作。由此可见,采用熔模

熔模铸造课程设计详细内容与要求

07届熔模铸造课程设计内容与要求 12月1日: 下发图纸,每人领取一张零件图,看懂零件结构,尺寸精度要求,每个表面粗糙度要求,位置精度、形状精度要求等,并利用绘图软件重新绘制一张与下发的零件图相同的完整的零件图纸。如果零件图纸是非铸件材质,均视其为灰铁件HT200,将分配到每个人的图纸打印出来,每人再打印一份课程设计任务书,并仔细阅读。 12月2-3日: 认真复习铸造工艺及熔模铸造工艺等专业课程,理论联系实际,对下发的零件图进行熔模铸造工艺性分析,制定出几种工艺方案,并对所定方案进行分析,选择出一种最佳工艺方案,并说明选择的理由,即分析每种方案的优点与缺点。 工艺方案的内容主要包括:分型面的选择、浇注系统的位置与尺寸的设计、型芯形状与个数的设计,加工余量、铸造斜度的确定,总收缩的确定等。并绘制工艺图(用红、蓝色笔在零件图上绘制)。 每位同学都要将设计过程记录下来,作为之后设计说明的撰写内容。 12月6日: 全体同学集合,观察实验室里的几套压型模具的结构,观察时注意以下内容: (1)压型模具的主要结构、动作过程; (2)观察压型模具分型面的选择、成型零件结构、定位机构的设计、锁紧机构的设计以及取模机构的设计等。 (3)进行塑压型模具的装配及拆卸; (4)根据模具零件的作用了解和掌握模具零件的材料选择方法; (5)选定一个与自己的零件图结构相似的模具进行更加仔细的观察。 同时,教师检查工艺图的绘制情况,并打分,地点:材料楼325。 12月7-9日: 根据选定好的工艺方案首先设计压型模具装配草图,在草纸上汇出装配草图,注意定位机构的设计、锁紧机构的设计以及取模机构的设计情况并大体确定单个零件的形状、尺寸。这里注意以下内容: (1) 设计一型安排几腔(小件要一型多腔,提高生产率)。 (2) 计算型腔尺寸时要注意先确定综合线收缩率。 (3) 上、下型体结构的设计,形体壁厚的设计以及金属芯的设计。 (4) 注蜡口的形状与尺寸的设计。 (5) 内浇口形状与尺寸的设计. (6) 组合件的配合精度设计。 例:如下销与孔的配合精度(7 86786s H f H ΦΦ或) (7)压型用材料的设计 (8)总装技术要求 总体设计方案确定以后,绘制出一张完整的压型装配图,注意视图要正确、完整,符合国家最新标准要求,图纸名称一栏填写:××压型装配图。图纸的大小自己定,但必须看清图中线条和文字,注意要使用标准标题栏,无论几号图,宽度均为180mm 。

熔模精密铸造

编制:审核:批准:实施: 熔模精密铸造 PROCESS OF INVESTMENT CASTING 一工艺流程(PROCESS) 1.目的:规范本公司熔模铸造工艺流程过程的各生产工序。 2.范围:适用于中温模料,压蜡机射蜡,手工或压蜡机制作模头,硅溶胶粘结 剂制壳,蒸汽脱蜡,酸性或碱性中频电炉熔炼,生产表面要求喷丸、酸洗或喷砂处理的不锈钢、碳素钢、低合金碳钢等精密铸件的工艺。 3.工艺流程 蜡处理(1-1)模具制作(1-2) 蜡模制作(2-1)模头制作(2-2) 蜡件检验(3-1)模头检验(3-2) 组树(4) 涂料配制(5-1)模壳制作(5-2) 风干(6)

转1-1 脱蜡(7-1)配料(7-2) 模壳焙烧(8-1)熔炼(8-2)浇注 去除模壳(震壳+吊钩抛丸) 切割浇口 研磨内浇口 ** 清理小件孔内模壳(滚筒抛丸、钻孔、砂轮修) 抛丸(或喷砂) 品检 焊补、修磨 复检 ** 热出理

** 抛丸(或喷砂) ** 校形 检验酸洗喷砂 涂防锈油抛丸检验 入库钝化入库 ** 盐雾处理 检验 入库 4.工艺流程说明: 4.1、蜡料回收及蜡处理 4.1.1、(不使用蜡水分离器时) 经过静置的蜡,先将沉淀后的水分去掉,再去除表面的杂质蜡,将回收蜡块放入熔蜡桶中。 4.1.2、熔蜡桶要保持干净,避免残杂物渗入。每10天清理一次。

4.1.3、(必要时,熔蜡桶中,混入1/4~1/3的新蜡,重新使用。混入新蜡时必须搅拌使其混合均匀。)将蜡保温在120~140℃将残留水分蒸发(蜡温不可过高,否则会损坏蜡的性能)。视残留水分的多少,脱水时间至少4小时。然后将熔蜡桶保温温度降至100℃,熔蜡桶内无气泡后方可使用。 4.1.4、根据射蜡情况,随时用熔蜡桶中处理好的蜡补充蜡保温箱的蜡(接蜡时必须经过80目筛网过滤),注入的蜡液沿着桶壁稳静流入。保温箱的温度设定为55~65℃。保温箱要保持清净、干燥,保温时间至少12小时,保温箱内蜡的温度均匀后,呈粘稠状,才可使用。 4.1.5、射蜡之前,先将保温桶上端的水泡、气泡刮掉。 4.2、模头制作 4.2.1、作模头用熔蜡桶温度控制在100~120℃。视其中蜡的多少随时用熔蜡桶中处理好的蜡补充。 4.2.2、模具腔内的水分,要用布擦干净,等待注蜡。 4.2.3、注入的蜡液,沿着模壁,稳静流入,注满后停止。 4.2.4、模内蜡液泠却时,上端水平急剧下降,要给予补充。 4.2.5、将模具和未冷却的蜡液一起放入水中冷却,注意防止水分进入蜡液内部。 4.2.6、模头取出后,要将水分去除,(必要时表面磨平,)去掉毛刺。将冷却后的模头快速浸入熔融的蜡液中,迅速取出,使其表面均匀涂上一层蜡液,以填充满孔穴和裂缝。 4.2.7、作好后的模头至少冷却2小时,才可使用。 4.3、射蜡 4.3.1、射蜡要在恒温(20~24℃)、恒湿(40~60%)的环境下进行。

熔模精密铸造

熔模精密铸造 熔模精密铸造也叫失蜡铸造,采用可溶一次性蜡模和一次性陶瓷型壳及陶瓷型芯铸造成型的方法。这种方法非常适合生产尺寸公差小、薄壁、拔模斜度小和表面光洁度大的铸件用该方法生产的铸件尺寸精度高,表面质量好,,经常不需要特殊的处理就能直接装配使用。 基本工艺流程为:将耐火材料和粘结剂配制成粘度适中的浆料,把表面清洁、尺寸精确的蜡模在浆料里浸貳,撒砂。待其干燥后,重复多次蘸浆、撒砂步骤,每一层浆料的粘度与所撒得砂的粒度都有变化,一般面层为细沙,背层为粗砂;最后一层只挂浆,不撒砂;待型壳充分干燥后,用水蒸汽或热水进行脱蜡,最后进行焙烧,使型壳具有一定强度。浇注铸件前,型壳要预热到一定温度,以保证金属具有较好的流动性;浇注金属液,待铸件凝固后,除壳,清砂,得到所需铸件。其工艺程见图所示。 熔模铸造方法生产的铸件内部难免有缩松、缩孔产生,因此铸件在使用前一般要经过热等静压处理,以减少内部缺陷对铸件性能的影响。山于,在热等静压后的铸件容易变形,因此还需要采取一些辅助措施来防止铸件变形。 1.模料制备 1.1.精铸中常用的模料 对于航空航天产品,其铸件尺寸精度和表面光度要求较高,因此熔模尺寸精度和表面光洁度比铸件要求更高,通常要高1-2级。为此作为精密铸造用模料要求选用热稳定性好、强度高、流动性好、膨胀收缩小的优质材料。按照模料的基体材料组成,可分为蜡基模料、树脂基模料、塑料模料、填衬模料及水溶性模料。 其中蜡基模料和树脂基模料被广泛使用,其模料性能日益完参, 其种类己被人们所熟知。主要就近几年发展的后三种介绍一下: 水溶性模料受到重视是由于航空航天工业的发展,要求生产越来越多尺寸大而壁薄的精铸件,一般蜡制熔模收缩较大,容易变形,难以满足要求。主要水溶性模料有尿素基水溶性模料、纯尿素模料、

工程材料课程设计

《工程材料应用》课程设计说明书 专业 学生姓名 班级 学号 指导教师 完成日期

目录 第一章任务书---------------------------------------------------------------------------2 第二章铸造件设计--------------------------------------------------------------------- 第三章锻造件设计--------------------------------------------------------------------- 第四章焊接件设计-------------------------------------------------------------------- 第五章总结------------------------------------------------------------------------------ 第六章心得体会------------------------------------------------------------------------ 参考文献------------------------------------------------------------------------ 格式方面: 1、大标题采用二号黑体加粗; 2、小标题采用四号黑体字,顶格; 3、正文部分采用小四宋体,多倍行距1.25,首行缩进2字符; 4、页面采用A4纵向,上页边距采用上、下各2.5,左3,右2.6; 5、封面采用机械学院发布的统一格式。

铸造工艺学课程设计案例

前言 铸造工艺学课程是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法和步骤以及掌握铸造工艺和工装设计的基本技能的一门主要专业课。课程设计则是铸造工艺学课程的实践性教学环节,同时也是我们铸造专业迎来的第一次全面的自主进行工艺和工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点:通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程和其他先修课程的的理论与实际知识去分析和解决实际问题的能力。 通过制定和合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺和工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析和解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量和尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册等。

目录 零件铸造工艺分析 (4) 零件基本信息 (4) 材料成分要求 (4) 铸造工艺参数的确定 (4) 铸造尺寸公差和重量公差 (5) 机械加工余量 (5) 铸造收缩率 (5) 拔模斜度 (5) 其他工艺参数的确定 (5) 工艺补正量 (5) 分型负数 (5) 非加工壁厚的负余量 (5) 反变形量 (5) 分芯负数 (6) 铸造三维实体造型 (6) 上冠件图纸技术要求 (6) 上冠件结构工艺分析 (6) 基于UG零件的三维造型 (6) 软件简介 (6) 零件的三维造型图 (6) 第三章铸造工艺方案设计 (7) 工艺方案的确定 (7) 铸造方法 (7) 型(芯)砂配比 (8) 混砂工艺 (8) 铸造用涂料、分型剂及修补材料 (8) 铸造熔炼 (8) 熔炼设备 (9) 熔炼工艺 (9) 分型面的选择 (9) 砂箱大小及砂箱中铸件数目的确定 (10) 砂芯设计及排气 (11) 芯头的基本尺寸 (11) 芯撑、芯骨的设计 (12) 砂芯的排气 (12) 第四章浇冒系统的设计及计算 (12) 浇注系统的类型及选择 (12) 浇注位置的选择 (12)

精密铸造过程工艺流程图

精密铸造过程工艺流程图 本文由灵寿县洞里矿产加工厂整理制作,转载请注明出处,公司网址https://www.360docs.net/doc/aa6137512.html, 公司专业生产铸造用石英砂、石英粉、铝矾土,质优价廉,真诚期待与您的合作 具设计-----磨具制造----压蜡-----修蜡-----组树-------制壳(沾浆)-----脱蜡----型壳焙烧------化性分析---浇注----清理-----热处理-------机加工-----成品入库。 如过在详细点就是: 压蜡(射蜡制蜡模)---修蜡----蜡检----组树(腊模组树)---制壳(先沾浆、淋沙、再沾浆、最后模壳风干)---脱蜡(蒸汽脱蜡)-------模壳焙烧--化性分析--浇注(在模壳内浇注钢水)----震动脱壳---铸件与浇棒切割分离----磨浇口---初检(毛胚检)---抛丸清理-----机加工-----抛光---成品检---入库 铸造生产流程大体就是这样总的来说可以分为压蜡、制壳、浇注、后处理、检验 压蜡包括(压蜡、修蜡、组树) 压蜡---利用压蜡机进行制作腊模 修蜡---对腊模进行修正 组树---将腊模进行组树 制壳包括(挂沙、挂浆、风干) 后处理包括(修正、抛丸、喷砂、酸洗、) 浇注包括(焙烧、化性分析也叫打光谱、浇注、震壳、切浇口、磨浇口) 后处理包括(喷砂、抛丸、修正、酸洗) 检验包括(蜡检、初检、中检、成品检) 现代熔模精密铸造方法在工业生产中得到实际应用是在二十世纪四十年代。当时航空喷气发动机的发展,要求制造象叶片、叶轮、喷嘴等形状复杂,尺寸精确以及表面光洁的耐热合金零件。由于耐热合金材料难于机械加工,零件形状复杂,以致不能或难于用其它方法制造,因此,需要寻找一种新的精密的成型工艺,于是借鉴古代流传下来的失蜡精密铸造,经过对材料和工艺的改进,现代精密铸造方法在古代工艺的基础上获得重要的发展。所以,航空工业的发展推动了精密铸造的应用,而精密铸造的不断改进和完善,也为航空工业进一步提高性能创造了有利的条件。 我国是于上世纪五、六十年代开始将精密铸造应用于工业生产。其后这种先进的精密铸造工艺得到巨大的发展,相继在航空、汽车、机床、船舶、内燃机、气轮机、电讯仪器、武器、医疗器械以及刀具等制造工业中被广泛采用,同时也用于工艺美术品的制造。 所谓精密铸造工艺,简单说就是用易熔材料(例如蜡料或塑料)制成可熔性模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳后,再用

相关文档
最新文档