烧结砖厂的技术节能

烧结砖厂的技术节能
烧结砖厂的技术节能

?烧结砖厂的技术节能

?

1. 概述

建材工业是国民经济的重要原材料工业,属典型的资源依赖型工业。我国是目前全球最大的建材生产和消费国,建材工业的年能耗总量位居我国各工业部门的第三位。建材工业一方面大量消耗能源,同时又潜含着巨大的节能空间;在生产过程中既污染着环境,却又是全国消纳固体废弃物总量最多、为保护环境做出了重要贡献的产业。

我国砖瓦工业的产能约1万亿块(折烧结普通砖),实际产量约8500亿块(折烧结普通砖)。如果按每kg成品耗热1600kJ(含干燥及焙烧)计算,全行业年消耗热量约8200万吨标煤(产品孔洞率平均按30%计),考虑到约有三分之一的热量来自煤矸石、粉煤灰等含能工业废渣,每年耗热折标煤仍达5700万吨,约占全国煤耗的1.8%。砖瓦厂电耗贯穿于整个工艺过程,依破碎、化、成型、切码运、运转、热工系统设备选型不同,每万块成品电耗在350~650度,每年砖瓦工业耗电约400亿度。由于全国绝大多数地区已将工业废渣作为焙烧的部分或全部燃料,因此,节煤的主要方向将转化为技术节能以及产品的转型节能。随着烧结砖瓦工业技术水平和生产率的提高,国家产业政策的陆续出台,节能执法力度的加强,煤耗会有一个快速的下降,然后进入平台期;而电耗会有一个持续的增长,只有更先进的工艺、更高效的设备、更节能的电气才会有效地降低电耗。本文仅对烧结砖厂在技术节能的措施方面给出一些讨论,希望引起业的重视。

2. 用能标准和节能规

我国政府历来都非常重视能源的使用以及节能工作,颁布了一系列的能源政策以及节能的法律法规。涉及到烧结砖瓦工厂的能源使用的法律法规有:

1)、《中华人民国节约能源法》2007年10月28日修订;

2)、《中华人民国清洁生产促进法》2002年6月29日通过;

3)、《评价企业合理用电技术导则》GB/T3485-1998;

4)、《评价企业合理用热技术导则》GB/T3486-1993;

5)、《工业炉窑保温技术通则》GB/T16618-1996;

6)、《设备及管道保温保冷技术通则》GB/T11790-1996;

7)、《工业设备及管道绝热工程设计规》GB50264-1997;

8)、《设备及管道绝热设计导则》GB/T8175-2008;

9)、《余热利用设备设计管理规定》YB9071-1992;

10)、《节电措施经济效益计算与评价》GB/T13471-1992;

11)、《综合能耗计算通则》GB/T 2589—2008;

12)、《烧结砖瓦工厂设计规》GB50701—2011;

13)、《烧结砖瓦工厂节能设计规》GB50528—2009;

14)、《烧结砖瓦单位产品能源消耗限额》GBxxxxx—20xx;

3. 节能措施

3. 1.工艺系统节能

3. 1.1. 原材料选择

在建设烧结砖厂伊始,就应该对所用原材料进行较为详细的矿物学成分鉴别,确定其烧结特性以及一系列的工艺特征(如加工处理、成型、干燥等)。对烧成温度特别高的原材料,如含铝量过高的煤矸石或页岩原材料(一般情况下其三氧化二铝含量不超过23%),最好搭配烧结温度较低的黏土或其他原材料来进行调配,降低其烧成温度。对采集的原材料进行适当地混合处理或风化、化,增加塑化剂和助熔剂提高其成型性能、改善其干燥和焙烧性能,也是节能的有效措施。

3. 1.2. 工艺系统

工艺系统节能主要体现在优化工艺过程,即对不同的原料结合产品规格和产量采取合理有效的工艺流程和设备选型。大型现代化砖瓦厂主要由以下系统组成:原料制备(破碎、筛分、均化、化)、成型(搅拌挤出机或圆盘筛式喂料机、挤出机)、编运系统(切条机、切坯机、编组台、码坯机或机械手)、窑车运转系统(步进机、牵引机、摆渡车)、热工系统(干燥室、燃气及输配系统、窑炉、卸垛或打包机)、自动化系统(自动配料系统、自动化运转系统、热工监测系统、中央监控系统)。原料制备及成型系统集中了全线绝大部分大功率设备,电耗占全厂用量的60%左右;热工系统的所有送热、排潮、排烟、冷却风机虽装机容量不大但由于24小时连续运行,大约消耗了全厂用电的30%左右。生产用煤全部为窑炉(含干燥)消耗。因此上述三个系统是全厂节能的基础和关键。

原料制备的电耗集中在破碎工段,主要耗电设备是颚式破碎机、锤式破碎机、粗碎对辊机、高速细碎对辊机。破碎工艺及设备选型是系统能否节电的前提。针对不同原料应有相应的处理设备,如对干、硬物料(煤矸石、页岩):采用颚式破碎机→锤式破碎机→滚动筛→双轴搅拌机;湿软物料(黏土、黏土+粉煤灰):采用粗碎对辊机→细碎对辊机→双轴搅拌机。在满足物料细度要求和所有设备产量匹配的前提下,尽量采用装机容量小、可靠性好、运行稳定的设备。总而言之,只有系统设备达到最佳能效组合,加工过程才能快速有效进行。

成型工段主要耗电设备是搅拌挤出机(或圆盘筛式喂料机)及挤出机。实践证明经搅拌挤出机或圆盘筛式喂料机可以给化后的物料补水、强力搅拌、压缩等进行精细处理,可以使挤出机的压力、真空度得到快速提升,进而保证成型的质量、产量。切条机、切坯机虽然其功率合计在2.2~20千瓦不等,但是采用精准切割机可以将挤出泥条的利用率提高10%以上,也可以说成型系统节电至少10%。成型工段也是砖厂故障率最高的工段,原料及产品变更导致机口调整或更换,机械或电气故障、停电甚至雨雪天气都会影响到有效开机。能否连续化生产、降低停机时间是成型工段节电的标志。

对于低塑性的物料或在冬春季节,给搅拌挤出机和挤出机通入蒸汽对物料进行处理,可以将其潜在的塑性和结合能力充分发挥出来,也有利于缩短干燥周期,提高干燥质量、降低干燥能耗。

3. 1.3. 动力配置

从电气专业的角度来讲,烧结砖瓦行业三相异步电动机为最主要的电耗来源。目前全世界的50%以上电能来被三相异步电动机消耗,中国则占到

60%~70%,砖瓦行业的使用比例则更高。砖瓦企业想要在减少电耗的方向上下功夫,三相异步电动机的合理应用是核心问题之一

1)电机的合理选型

对于功率较大,占据全厂总耗电较大比例的电机,应注意合理的功率选型。如果功率选型过大,电机长期处于轻载, 则消耗的无功功率比例相应增大, 用电效率相应降低,造成电能的极大浪费,同时也可能面临供电部门低功率因数的额外收费。同样对于三相异步电机的选择,尤其是对于功率较大的电机,应避免为降低投资,购入低能效产品,而应更多考虑质量较好、铜耗较低、效率较高、性价比较高的一些国产优质品牌,长期使用也会节省可观的用电费用。

2)电机的合理使用

此外,我们还应当从工艺角度和工厂运行管理制度下手,尽量避免大功率电机频繁的负荷剧烈升降和长时间的空载运行。因为每当电机满足瞬时的高转矩要求后,都会较长时间处于相对轻负载运行状态,造成一段时间电机绕组磁饱和、电机效率较低。另外,大功率电机的不必要的长时间空载运行,也会造成电能的浪费。

3)节电设备的应用

结合我国烧结砖瓦行业现状,目前应使用其它行业已较为广泛应用、技术成熟、性价比高的节电设备,同时注意将其合适的设备匹配。例如,由于气候、工作制度、市场等因素的影响,生产线产量会有较大起伏,热工系统的风机电机可

能既需要长时间接近额定功率的高负载运行,又需要长时间处于较低负载运行,这种情况最好采用变频器这类变频调速设备。

3. 1.

4. 减少不必要的“过度加工”

根据原料的硬度、含水率及物料平衡要求配置破碎筛分设备即破碎机达到设计的颗粒级配,筛分设备的孔径及筛分效率满足设计产量,使筛余量始终保持在较低水平,真正做到高效破碎,及时筛分,避免了筛上料积蓄。在杂质过多时可将闭环破碎改为开环破碎——废弃筛上料,还可以避免低效破碎产生的配比失衡。

个别选用摆式磨粉机的生产线可能由于物料含水率过高,加之配套风机的风压或风量偏小,分析级安装过高致使细粉在破碎腔滞留甚至固结,磨机产量急剧下降。

砖瓦原料的粗、中、细颗粒并不是细料越多越好。物料中细粉过多,会导致坯体变形大,干燥收缩大、缺陷多,烧后制品尺寸公差超标,强度低。所以根据原料、产品、效率及能耗应该建立“经济破碎粒度”的概念。

3. 1.5. 提高单条生产线产能

我国的砖厂单线规模普遍偏小,工艺水平差异较大,但是工艺相近的砖厂随着产量增加单位能耗有所下降。以同等装备水平的煤矸石烧结砖厂为例:年产3000万块以下电耗约650kWh /万块,热耗约1700kJ/kg成品;年产4000~6000万块电耗约600kWh /万块,热耗约1600 kJ /kg成品;年产8000~12000万块电耗约550kWh /万块,热耗约1400kJ/kg成品。

3. 2.新型设备节能

近年来砖瓦行业鲜有新型节能工艺及装备的出现,原因有以下几点;

1)工艺技术标准不健全,产品标准单一;只有专用机械设备而无标准设备,即便是同一规格设备每个生产单位的安装图也不统一,有些厂家甚至不提供详细的安装图;图纸的不统一导致了工程图的延迟,而且一旦更换其他厂家的设备就得重新改造甚至重新施工设备基础;有些设备厂家不在机械结构、关键材料和加

工工艺上下功夫,只是单纯地加大功率以适应所有的原料和产品。不考虑砖厂因动力加大而带来的电力成本是砖瓦机械普遍存在的问题;

2)与其它非烧结墙体材料工厂比较,砖瓦厂工艺复杂、投资大、产品售价总体偏低,大部分投资者仍缺乏稳定而较高的收益,从而抑制了其采用先进工艺、配备高端设备上大规模生产线的积极性;

3)在欧美,烧结黏土制品从来都是跨区域销售且是价值不菲的“奢侈品”,从业者也有很高的地位;而在我国,砖瓦一直是地位“低下”的地方建材,往往被人蔑视,甚至成为低端产业的代名词。在欧洲,烧结砖瓦行业有自己的一系列完整的原材料评价(矿物.成分、工艺特征、干燥特性、烧结性能等)体系、有着完备的工艺评价体系、有着成熟的热工系统考核方法,更有着先进的机械设备制造商,而且制造水平堪与航空、电子工业相媲美。甚至可以说:每一个砖厂就像是一个研究所,每一个机械厂就是一个。在我国,砖瓦工业最早进入市场,由于缺乏政策的强力扶持与严管,不管是机械还是砖瓦产品,鱼龙混杂,良莠不齐。由于缺乏原创性的研究和集成创新,没有借鉴其他行业的先进技术,大部分设备为相互克隆的产品,水平低下的机械设备与窑炉无情地吞噬着昂贵的电力和宝贵的煤炭资源。

当然,近十年来国家墙改力度的加大,国产引进型设备的广泛采用,房地产业的高速发展刺激和促进了墙体材料工业的技术进步和砖价的上涨,投资烧结砖瓦有了一定的利润空间;一些新技术和新装备在一些大型项目(多在地位不同的煤炭、电力行业)中得到应用并取得了一些成效。对于提高劳动生产率、扩大产能、生产高端产品、促进行业的技术进步具有示作用。如在原料及其制备工段采用自动化配料系统;原料破粉碎工段采用大型粉磨系统(烘干立式磨粉机、烘干球磨机、摆式磨粉机);化库采用桥式多斗挖土机;采用码坯机械手、自动码坯机、单层干燥自动化装卸载系统;采用成品卸垛机、打包机等。但是采用上述设备的生产线工艺比较复杂,工程造价提高,而且以消耗电能为代价,还增加了单位产品的成本。但是这些设备代表了砖瓦行业最新、最先进的技术,代表了砖瓦

工业的发展方向。目前在节电方面比较有成效的设备有:搅拌挤出机、圆盘筛式喂料机、多泥条挤出机、中压轴流风机(均带有变频调速装置)。

3.3.热工设施节能

3.3.1. 小断面干燥室——轮窑系统

1)干燥室

确定每一种产品的最适宜的码车图,以利干燥室热交换及坯体脱水;

进车端设置简易干燥门并在进车后及时关闭,防止吸入冷空气;

每个送热风支道都安装调节门以便将总风量分配均匀;根据原料和产品调整好支道各段混凝土盖板的间隙;

校验送、排风机选型参数是否得当,必要时更换机型或调整电机;送、排风机加装变频器随时调整风量以适应生产过程和气候的变化。

2)轮窑

对于仅采用热烟气作为干燥热源的、需要有热风炉补充干燥室不足热量的轮窑,在其直窑段每个窑室需要增加抽取余热风闸,独立设置热风道,抽出余热后再与烟热混合送往干燥室;

烧窑工要熟悉带有余热系统的轮窑结构,熟练掌握热风闸的操作。

3.3.2. “一次码烧”干燥室——隧道窑系统

1)干燥室

a、存在的问题

冬、春季倒坯、产量低,配套的系统操控性差、反应不灵敏是普遍存在的问题,由此加剧了窑炉热耗和配套设备电耗。主要是由于干燥室进车制度混乱、码坯方式不合理、排潮不畅、送风不到位、干燥室过短等诸多问题导致。

b、采取措施

稳定进车间隔:

码好的坯车必须按干燥室工作制度进车,成型工段下班前在存车道上必须存储够干燥室一个班或10h进车需要的坯车;存坯量不够的干燥室应在夜间降低

送风温度或按干燥室进车端湿度控制排潮风机的启停,如在湿度大于95%时开启风机,湿度小于75%时关停风机,最好使用变频器来控制风机。

控制码窑密度:

烧结普通砖220~240块/ m 3;多孔砖260~290块(折烧结普通砖)/ m3;空心砖280~320块(折烧结普通砖)/ m 3。而且燃砖要边密中稀,坯垛顶隙小于80mm;侧隙小于80mm。

顶送风与侧循环:

以顶送风为主,侧循环为辅。占送风总量的70%左右的热风以不低于600Pa 的压力从干燥室顶部的条形孔送入窑车上坯垛之间的空隙;侧循环风主要起扰动和搅拌作用,可有效降低干燥室断面温差和干燥残余含水率,为入窑后快速升温奠定基础;

辅助排潮:

在主排潮风机之后设置采用离心风机的辅助排潮系统抽取干燥室车面的湿气可有效的防止冬春季进车端倒坯;

延长干燥室或加一条干燥室:

干燥室的基本任务就是生产出满足进入隧道窑所要求的最低残余含水率的干坯,入窑后能够快速升温。这样不仅能够加快焙烧的进度(干燥程度不够的砖坯在进入隧道窑后还得继续干燥脱水,在一定程度上也等于缩短了隧道窑的长度),而且节约燃煤。过短的干燥室不仅降低了干燥周期,也限制了该系统的合理布置,如送排风口的布置;将残余水分过高的坯体入窑,窑的预热带就会变成干燥带,窑的有效长度就会缩短,产量萎缩,自然也不会给干燥室提供足够的热源。因此,要对原干燥室的干燥周期重新校核,如果达不到要求,在场地允许的情况可下适当延长干燥室或加一条干燥室。但是要增加干燥室就必须对热风源进行重新分配。总而言之,干燥能解决的就不要推到窑炉;前一工序能解决的就不要推到后续工段。

2)隧道窑

a、存在的问题

窑型:拱形窑顶部圆弧部位及侧面空隙过大,空气流速过快,断面温差大;

窑长:过短。系统设置不完备,温度曲线过陡,产品出窑温度高;

码坯:顶隙及侧隙过大,中部间隙过小甚至整个断面码成一垛,造成坯垛断面上有效通风面积过低;码坯密度过高,中部通风差,违反了“穿流”焙烧的基本原则。

材料:窑顶及窑墙选用材质导热系数过大且厚度太薄,导致窑体散热大;

排烟系统:排烟段偏短、排烟口不能卸灰导致排烟不畅、排烟口过高导致排烟温度过高弱化了排烟过程对干坯的预热功能;

车底压力平衡:未设置该个系统,使车下得不到冷却,约15%的热量得不到回收,窑轨道变形和车轴润滑失效带来的卡车、脱轨、倒垛甚至窑体坍塌时有发生;

窑顶空腔换热:窑顶换热使隧道窑顶处于微负压状态,可以有效减缓含硫气体对窑顶结构甚至钢结构厂房的侵蚀;

冷却带余热抽取位置及方法:该部位热量占隧道窑全部热量的70%以上,是最优质的热源。能否利用好这一热源决定一条生产线的成败。现有隧道窑的抽余热口大多设置在窑外墙两侧,而且间隔过大、数量偏少。一方面热量得不到快速有效的抽取,致使坯垛中部得不到有效冷却,另一方面坯垛与侧墙之间流速过快;出现中部砖“过烧”,边部砖不熟的现象;产品出窑温度高是其显著特征;

风闸:所用闸阀(锅)直径不够且年久失修,操作不灵活甚至失效;

烟道:截面积不够、塌陷严重、阻力大;积灰甚至阻塞;没有或者无法安装换热器;

投煤孔:起止点不当,投煤围与温度曲线不一致;定位有误,使外投煤落在坯垛之间或砂封槽,不但不能有效的燃烧还给窑车运行带来隐患;

窑车:窑车与窑体之间没有形成曲封,耐火及保温材料用量极少甚至不用,保温差,破损严重导致车下漏风;

窑门:没有设置截止门,出端窑门未安装冷却风机甚至没有出端门,使焙烧过程应处的封闭体系变成了敞开体系,生产过程易受环境影响而不好掌控;缺乏强制冷却延缓了焙烧过程,加大了推车间隔;

b、解决问题的措施

热工系统技术改造

由于隧道窑焙烧系统是节约热能消耗的主体,与其相关配套设备投资较大,许多不合理的问题普遍存在,而且由来已久,要完全解决这些问题需要有个过程。因此,各砖厂应从自己的实际出发,有针对性地抓主要矛盾,阶段性地完成节能技术改造。对于那些系统及结构落后、年久失修,能耗居高不下的窑炉要坚决拆除重建。技术改造要从完善系统、调整设备,加强窑体与窑车保温及管理做起,稳步提高进车速度,产量和质量逐渐上升,能耗会明显下降。具体可从以下方面实施:

窑型:采用吊平顶结构隧道窑,不仅气流分布均匀,而且便于机械化码坯、卸窑车。为了延长隧道窑的使用寿命,最好采用耐火砖吊顶;

窑长:2.5m断面:88.3~98.3m长;3.4m断面:108.1~134.2m长;4.6m 断面:131.3~144.35m长;6.9m断面:144.35~153.05m长;

码坯:码好坯垛的窑车是隧道窑中的最小单元,其尺寸取决于产品规格和码坯方式。要达到合适的“断面空隙率”和“码窑密度”就不要码的过高、过密。最好码成1×1 ×1.5~1.6m(长x宽x高) 的垛身,在入窑前最好通过检查门,既保证了较小的顶隙和侧隙,又不至于与窑墙碰檫;

材料:窑顶及窑墙最好采用复合结构,最大限度地减少窑体散热;

排烟系统:排烟过程的一个重要附加功能就是消除干燥过程的不均匀性,保证坯体得到充分预热。因此,排烟段不少于30m,低温及高温烟气排出口分别不低于6对和4对,低排烟温度控制在100~120℃;

车底压力平衡:必须设置该系统,使车底得到冷却、平衡车下与窑压力,并回收散入车下的热量,也有利于发生事故时救援人员的进入;

冷却带余热抽取:在窑的冷却带后部温度曲线对应450~200℃围窑顶设置9~12排不锈钢余热抽取孔,每排3个抽出口,孔径150~200mm,可有效抽取余热,为干燥室提供充足的热源;

烟道与风闸:采用钢制管道替换原有的砖砌风道,铸钢蝶阀代替铸铁闸锅,蝶阀下部连接卸灰口,可定时清理积灰;

投煤孔: 将投煤孔的设置围延长到20m以上,并使投煤孔直径的三分之一在投影上与窑坯垛边缘重叠,使投煤不断受坯垛的碰檫以减缓其下降速度、提高燃烧效率;投煤孔的设置应与窑顶结构相吻合;

窑车:砌筑必要的耐火及保温材料,角砖与框砖的荷重软化点及热震稳定性最好达到3级高铝砖的指标;框砖与窑墙探头砖之间必须设置曲封;窑车与窑车之间耐火材料及钢结构也必须形成很好的封闭结合;

窑门:进车端门后一个车位设置截止门,以减少外部干扰;出端门安装冷却风机,为焙烧带供氧的同时强制冷却制品,有效缩短窑长;

必须配置自动化运转系统及热工检测系统

烧结砖瓦行业中,自动化设备和系统是为工艺和热工系统服务的。除去替代劳动力、监视系统安全稳定运行等作用,改善生产线能耗水平也是自动化系统的主要作用和发展方向之一。

自动化与过程与控制在烧结砖瓦厂的生产及管理已得到广泛应用。工控机、变频调速器、可编程控制器在切、码、运系统、热工运转系统、热工检测系统及生产管理系统的应用大大降低了设备电耗、工艺能耗,稳定了产品质量;使生产过程有了可靠的检测和控制手段,提高了劳动生产率。

干燥焙烧是烧结砖生产线中关键的环节,因而干燥室和隧道窑工作状况的稳定、窑车窑门运转设备及其运行管理将直接影响产品的质量和产量。应用工控机、变频调速器对干燥室隧道窑的温度、压力制度等进行巡检和控制,采用PLC可编程控制器对窑车运转系统进行程序化控制,稳定生产、提高产量、保证质量、节能降耗。目前国外砖厂都把热工测控及热工运转系统都放在比较重要的位置。

热工运转系统

为保证窑车窑门运转系统生产安全、可靠、准确、先进,窑车窑门运转工序采用可编程控制器进行程序自动化控制,兼顾系统的经济性。该系统对窑车、步进机(节拍器)、窑门、摆渡车、顶车机、出口拉引机,回车牵引机等运转设备进行集中控制并根据干燥室及隧道窑的干燥焙烧制度制定运转程序,可编程控制器按照程序控制各运转设备的运行,进一步提高了设备运行的可靠性,避免了因人为因素造成的误操作。对产品的质量而言,严格的进车制度保证了干燥室及隧道窑温度、压力的稳定、平衡,对产品的质量起到了稳定和保障作用。

热工检测系统

烧结砖生产线的干燥室及隧道窑温度、压力检测调节控制系统对半成品、成品的干燥及焙烧过程进行监测、预测和自动控制,是生产线上不可缺少的手段。该系统采用工控机作为上位机,与可编程控制器、传感器、执行器组成的检测系统,对干燥室及隧道窑温度、压力进行实时监控。工控机对整个干燥焙烧过程进行管理,监控各测点工作状况和发展趋势;可在线修改调节参数,或对控制逻辑进行组态修改;保存和处理温度、压力等的异常波动;自动诊断传感器故障;对紧急状况进行声光报警;可打印保存各种相关参数和统计图表。

该系统对干燥室隧道窑温度、压力的检测、调节,是通过稳定零压点和调节干燥室隧道窑各段排风量来实现的,其执行机构有变频调速器、电动或气动执行机构等。

该系统采用安装方便,抗干扰能力强。同时采用集散方式,可减少热电偶补偿导线、安装辅材等用量,维护及检修也相对方便。且上位机可与系统外进行通讯。

通过对干燥室隧道窑的温度、压力的检测、调节及窑车窑门运转设备的自动控制大大降低了劳动强度,优化了生产环境,减少能源消耗和人力资源的浪费,提高了企业管理水平。

热工监测系统需要进一步完善

虽然利用温度传感器(热电偶、热电阻等)对隧道窑进行全方位的温度值监测是十分必要的,热工监测系统从硬件和基本软件还比较完善;但是利用温、湿

度传感器对干燥难度较大的生产线的干燥室进行监测和干预,也有很大的必要性,目前做得还远远不够。作为以PLC为核心的程控系统,从硬件上来说热工监测系统组成并不复杂,衡量一套热工监测系统的标准主要还是软件的功能。热工监测系统的软件不但要有最基本的监测安全运行的数据、图表和画面显示,更应在热工系统节能上下功夫。热工监测系统应该服务于热工节能的宗旨,而不能擅自制定热工参数。要建立完善的热工节能软件,应该在热工专业针对特定热工系统给定的边界条件和图表下,在软件组态中,不但实现实际热工监测数据同最节能的理想焙烧曲线的数据比对和直观显示,也应有实际焙烧曲线偏离较大时的处理提示或反馈控制。

热工系统自动化的发展趋势

由于行业现状和国使用燃料的特殊性,自动化系统在烧结砖瓦行业并没有实现真正意义上的闭环控制自动化系统。但是,作为大量消耗燃料的行业,烧结砖瓦行业要真正实现节能,就必须由自动化系统精确、最优地控制燃料送料和燃烧过程,虽然目前这类技术从技术应用和市场环境来讲尚不成熟,但却是烧结砖瓦行业的未来的一个发展趋势。

想要控制隧道窑燃烧系统燃烧过程的精确性,目前来看有两个主要思路。一是在具备可接受电反馈信号驱动,且可量化控制的燃料送料系统的前提下(如可量化控制的燃气、燃油喷嘴或煤粉送粉系统),建立温度传感→数据对比→控制燃烧系统调整→温度传感这样真正的闭环自动化控制系统;二是也可通过一段时间的温度传感-数据对比分析-计算出车时间,做到精确控制出车时间的开环控制。不论哪种控制,都可在一定程度上做到燃料或燃烧系统的优化利用,从而达到节能的目的。

3.4. 生产管理

3.4. 1. 技术培训

生产线中对技术管理、电气控制、干燥室及隧道窑操作、码坯机及卸垛机、机修、成型等重要岗位对员工的素质及技术水平有较高的要求,应在施工中、投产前进行岗位培训,帮助职工尽快提高操作水平和故障排除能力。对上述岗位的

技术工人应重点培训、严格考核,条件具备的单位可依托有关机构技术认证,使其具有解决较大技术难题和突发事件的能力。对其他岗位的操作人员,在上岗前也要短期技术培训,每个人都应对生产线有所了解,掌握优质高产技能,掌握安全生产知识,了解本岗位工作责任与全局的关系,确保生产线正常运转。管理人员最好经历生产线的建设与调试,熟悉生产工艺,掌握主要质量控制点。要严格管理每一个工艺环节,使生产线无论在技术上、产品质量与产量上、还是在生产劳动组织上达到一个较高的水平。主要负责人应进行较高层次的技术和工商管理配训,在提高企业管理水平的同时,建立和提升企业文化,充分发挥人的主观能动性和设备潜能,获得最佳的经济效益。

3.4. 2. 建立规章制度和质量保证体系

为了使生产线能够正常运转,顺利生产出符合标准的优质产品,要求建立一套严格的规章制度,强化安全生产、环境保护、节能降耗责任制。

4. 节能效果预期

5. 规化热工系统示例

5.1. 干燥室——轮窑系统示例(年产3000万页岩烧结砖)

5.1.1. 产量指标

本项目确定的生产规模为3,000万块/年(折烧结普通砖砖)。干燥和焙烧两工序的累计废品率按10%考虑,则全年实际成型量为3,300万块。

5.1.2. 干燥室

码坯:码高630mm(90mm多孔砖240mm 1立+90mm4卧)毫米,每车码坯数161块(折普通砖273.4块);

干燥车:外形尺寸:长×宽×高1,100×1,040×250mm

数量:850辆(其中干燥室容车660辆)

1) 系统及结构

选用小断面隧道干燥室。干燥室采用砖混结构,侧墙为红砖墙,顶部由预制混凝土顶板,炉渣保温层组成,在其上铺冷底子油一道,二毡三油等作为防水层。

隧道干燥室主要热源为轮窑余热,热介质通过烟道由送热风机从底部供给每条隧道。隧道干燥室设有送风系统、排潮系统及检测系统。干燥车采用底层为竖码的码坯方式,以提高干燥效率和半成品的质量。

2)主要技术参数

总长:61m

容车数:55×2辆(双轨道)

宽: 2.2m(单通道)

有效高度:0.79m

每车装载量:161块(折普通砖273.4块)

码坯密度:286块/m3(折烧结普通砖砖)

送风温度:110~130℃

排风温度: 28~30℃

排潮湿度: 75~90%

干燥合格率:95%

干燥周期:37h

每组年产量:3,000万块(折普通砖)

每组通道数:5条

热耗指标:4,2 00kJ/ kg水

干燥室外形尺寸:61×12.94×1.34m(长×宽×高)

5.1.3. 轮窑

1)结构与特点

该生产线采用新型轮窑焙烧。该轮窑具有完善的燃烧系统、排烟系统、余热系统,通过对这些系统的调整,使窑的焙烧制度更趋合理,生产出合格的页岩烧结砖。

轮窑采用毛石基础、墙体采用烧结普通砖砌筑,火眼及抽余热口采用耐热混凝土浇注。

轮窑热源主要为燃掺料所含热量,不足部分由外投煤补充。

2)轮窑的主要技术参数

窑室规格

门数36~42门

直通道部分几何尺寸:

门距 5.00m

宽 3.60 m

高 2.70 m

断面面积7.97 m 2

每窑室容积39.85 m 3

弯窑部分几何尺寸:

外弯半径 4.76 m

弯半径 1.16 m

窑室容积:72.57 m3

窑顶结构:

拱型三心拱

夹角α=60°,β=60°

半径R=2.40 m, r=1.20 m

矢高 1.36 m

部火日产量:5~6万块

工艺参数:

码坯密度240块(普通砖)/m3

燃程度~80%

热耗指标1400 kJ/kg产品

坯体入窑水分5~6%

成品率95%

年工作日330天

工作班制3班/日

焙烧制度:

烧结温度950~1050℃

火行速度 1.2m/h

余热直接余热+烟热

排烟方式机械排烟(全部送往干燥室)

5.2.“一次码烧”干燥室——隧道窑系统示例(年产3000万页岩/煤矸石烧结砖)

5.2.1.干燥与焙烧热工设备的确定

根据原料及工艺,干燥和焙烧两个工序所需的热工设备分别采用中断面干燥室和中断面平吊顶隧道窑。此种工艺的特征为:工艺流程短、投资合理、生产过程灵活,充分利用了隧道窑余热,发挥了隧道窑的能力。有利于缩短工艺流程、减少消耗。此外,隧道干燥室和隧道窑温差小、热效高、产量大,技术先进,窑体和附属设备及关联构筑物投资少,有利于降低生产成本,提高产品质量,可在短期达产达标,提高经济效益。

5.2.2. 干燥与焙烧技术参数

1)产量指标

本项目确定的生产规模为烧结普通砖3,000万块/年。干燥和焙烧两工序的累计废品率按10%考虑,则全年实际生产量3,300万块。

2)、码窑形式及窑车的规格尺寸

码窑形式及码坯量

砖坯采用人工码坯。窑车纵向码2垛、横向3垛,多孔砖90mm高度码14层(烧结普通砖115mm高度码12层)。

窑车尺寸:长×宽×高2900×3460×840mm(含衬砖高度)

窑车数量:110辆(其中干燥室和隧道窑容车30+46 =76辆)

3) 干燥室

a、系统及结构

本工艺选用平顶干燥室。干燥室采用砖混结构,钢筋混凝土顶板,曲封以上墙厚490mm。

干燥室热源为隧道窑余热,热介质通过外部管路系统供给干燥室。干燥室设有主送风机侧进风系统、主排潮及辅助排潮系统、检测系统。除检测系统外,其余系统均由金属管路及相应的风机组成。为防止干燥介质直接冲击坯体,产生不良影响,把所有的进风口、排风口设在坯垛之间的预留空间上。由于干燥室的所有风管都设置在干燥室外部,将给调试工作带来很大方便,也为检修工作创造了良好的条件。

b、主要技术参数

总长:87.8m

容车数:30辆(有效容车29辆)

宽: 3. 4m

高: 1.40m(90mm多孔砖码高14层、总收缩4%,顶隙90mm)

每车装载量:2,352块(多孔砖4压7码法,即孔洞垂直向上,码高14层,折烧结普通砖3,994块)

码坯密度:289块/m3(折烧结普通砖)

送风温度:100~120℃

排潮温度: 30℃

排潮湿度: ≥80%

干燥合格率:95%

干燥周期:27.6h

单条年产量:3,000万块

热耗指标:4,2 00kJ/kg水

窑车规格:2,900×3460×840mm

干燥室规格:87.8×3. 4×2.35m

烧结砖厂生产整个过程及原理

烧结砖厂生产工艺流程及原理 烧结砖生产工艺过程总的来讲有原料的制备、坯体成型、湿坯干燥和成品培烧四部分组成。各部分的重要性总的概括起来说,原料是根本,成型是基础,干燥是保证,焙烧是关键。这四部分是互相依存关系。 页岩→皮带机配内燃料→锤式破碎机破碎→笼筛筛分→双轴搅拌机搅拌→陈化库陈化→双轴搅拌机搅拌(两级)→真空挤砖机挤出成型→切条→切坯→分坯→机械码窑车→回车线自然干燥→隧道窑干燥焙烧→成品出窑→成品堆场。 一、原材料 (一) 原料化学成份 评价某种物料是否能生产出烧结砖,其主要取决于它的物理性能,而化学成份对制品的性能具有间接的影响。在判断原料性能时,化学的成份分析可以作为判断的参考依据。化学分析通常测定二氧化硅、三氧化二铝、三氧化二铁、氧化 (二氧化硅)是烧结砖原料中的主要成份,钙、氧化镁、硫矸和烧失量等。SiO 2 含量在55~70%之间,超过此含量时,原料的塑性大为降低制品的强度极限。Al O3(三氧化二铝)在制品原料中的含量以10~20%为宜,低于10%时制品的2 力学强度降低,高于20%时,虽然制品强度较高,但烧成温度也高,耗煤量加大,并使制品的颜色变淡。Fe2O3(三氧化二铁)是制砖原料中的着色剂,一般含量为3~10%为宜,含量过高时会降低制品的耐火度。CaO(氧化钙)在原料中的石灰石(CaCO3)的形成出现,是一种有害物质,含量不宜超过10%,如含量过高时将缩小烧结温度的范围。当氧化钙含量大于15%时,烧结范围将缩小25℃,给焙烧操作造成困难,其颗粒较大于2mm时更易形成酥砖或引起制品爆裂,可导致坯体严重变形,如吸潮、松解、粉化等。MgO(氧化镁)原料中的含量不超过3%,越少越好,其化合物如硫酸镁在制品中会产生一种白色的泛霜,影响产品的质量。SO3(硫矸)在原料中的含量一般不超过1%,越少越好。硫矸在焙烧过程中的逸出,使制品发生膨胀和产生气泡的原因。其它的含硫物也对制品有害,如硫酸钙引起制品泛白和起霜,硫酸镁能引起制品泛霜和膨胀。 (二)原料物理性能 原料物理性能测试时,通常测定颗粒组成、可塑性、收缩率、干燥敏感性,烧结性等项目名称。 1、颗粒组成:原料的颗粒组成就是不同角度的颗粒在制砖原料中含量的数量化。原料颗粒的组成直接影响制砖的可塑性、收缩率和烧结性等性能影响很大,

建筑节能考试重点

1.1.5建筑节能的重要意义: 1)经济可持续发展的需要 2)大气环保的需要 3)宜人的建筑热环境的需要 1.3.5中国建筑节能的目标和任务: (1)新建建筑节能 (2)既有建筑节能改造 (3)可再生能源在建筑中规模化应用 3、体形系数:定义为建筑物与室外大气接触的外表面积与其所包围的体积之比,即单位建筑体积所占有的外表面积,其中外表面积中不包括地面面积 4、采暖居住建筑的能耗构成: 1)建筑耗热量主要由通过围护结构的传热耗热量构成,73%-77% ; 2)通过门窗缝隙的空气渗透耗热量,23%-27% 5、建筑节能的基本原理是:最大限度争取得热,最低限度的向外散热。 6、 2.4.1影响空调负荷的主要因素 1)围护结构的热阻和蓄热性能 应采用热阻较大,蓄热能力较小的轻质围护结构,以及内保温的构造有利于节能。 2)房间朝向和蓄热能力 无论围护结构热阻和蓄热能力如何,顶层及东西向房间的空调负荷都大于南北向房间。因此将空调房间避开顶层设置以及减少东西向空调房的设计。 3)窗墙比,窗户遮阳和空气渗透情况 提高窗户的遮阳性能,加强气密性。 7、空调建筑得热三种途径: 1)太阳辐射通过窗户进入室内构成太阳辐射得热 2)围护结构传热得热 3)门窗缝隙空气渗透得热 8、根据空调建筑物夏季得热途径,总结出以下节能设计要点: 1)空调建筑应尽量避免东西朝向或东西向窗户,以减少太阳直射得热 2)空调房应集中布置,上下对齐。温湿度要求相近的空调房间宜相邻布置 3)空调房间应避免布置在转角处,有伸缩缝处及顶层。必须布置在顶层时应有良好的隔热措施4)在满足功能要求的前提下,空调建筑外表面积宜尽可能小,表面宜采用浅色,房间净高 宜降低。

日产25万块标准煤矸砖烧结砖厂(1)

日产25万块标准煤矸砖烧结砖厂 一次码烧隧道窑投资预算 一、主要技术参数 1、窑炉规格:145m×3.5m×2条 2、日产量: 30万块(折标) 3、需窑车: 160辆 4、窑车规格:3.6m×3.4m×0.75m 5、产品规格:240×115×53(mm)标砖 240×115×90(mm)KP1多孔砖 240×240×115(mm)空心砖 240×190×115(mm)空心砖 6、成品率: 95% 7、生产时间:300天/年 8、烧成温度:950摄氏度—1050摄氏度 9、烧成周期:19小时(KP1多孔砖) 20小时(空心砖) 10、码坯数: 4200块(折标)/车 11、进车时间: 40分钟(标砖) 50分钟(KP1多孔砖) 二、干燥段主要技术参数 1、干燥介质:隧道窑烟热,冷却带余热。 2、送风方式:窑顶、窑侧双送风。 3、排潮方式:顶、侧双排潮。 4、干燥周期:16-20h 5、合格率: 95% 6、有效车数:86辆 7、结构形式:砖混结构 8、选用热耗指标:350kj/kg.w 9、送风温度:不低于120摄氏度 10、热耗量:6.9×106KJ/h 11、送风量:10万m3/h 三、隧道窑投资预算: 序号项目单位数量计划单价(元) 计划资金额(元) 备注 1、窑用耐火砖吨520 700.00 364,000.00 2、窑车用耐火砖吨300 700.00 210,000.00 3、窑用水泥吨600 400.00 240,000.00 4、沙子立方800 80.00 64,000.00

5、石子立方800 80.00 64,000.00 6、石灰立方400 150.00 60,000.00 7、红砖万块140 4,000.00 560,000.00 8、建筑钢材吨54 5,000.00 270,000.00 9、窑用钢材吨24 5,000.00 120,000.00 10、窑用钢轨吨36 5,000.00 180,000.00 11、窑车用钢材吨176 5,000.00 880,000.00 每辆车1.1吨, 12、外购窑车轮,轴套160 3,200.00 512,000.00 13、窑车加工安装费辆160 800.00 128,000.00 14、顶车机台 2 68,000.00 136,000.00 推力60吨 15、排烟风机台 2 56,000.00 112,000.00 20#-75KW 16、摆渡车台 3 52,000.00 156,000.00 17、步进机台 2 52,000.00 104,000.00 18、牵引机及钢丝绳台 5 18,000.00 90,000.00 19、木材立方10 3,500.00 35,000.00 20、工具及模型费套 1 26,000.00 26,000.00 21、窑炉施工费条 2 350,000.00 700,000.00 22、技术服务费条 2 60,000.00 120,000.00 合计:5,131,000.00 四、原料处理及成型设备: 序号设备规格及名称单位数量单价总价配套电机 1、50/50-35真空挤砖机台 1 260,000.00 260,000.00 132+75kW 2、420/4000双轴搅拌机台 1 52,000.00 52,000.00 55kW 3、700/600高速对辊机台 1 56,000.00 56,000.00 37+37kW 4、1000/800锤式破碎机台 2 65,000.00 130,000.00 90+90kW 5、滚筒筛台 1 22,000.00 22,000.00 7.5kW 6、800/4000供料箱台 2 38,000.00 76,000.00 11+11kW 7、切条、切坯机套 1 22,000.00 22,000.00 5.5kW 8、分坯运坯系统套 1 36,000.00 36,000.00 5.5kW 9、2SK-6真空泵台 1 12,000.00 12,000.00 15kW 10、胶带输送机台10 11,000.00 110,000.00 30kW 设备合计:776,000.00 电机及起动器合计:180,000.00 设备基础费52,000.00 设备安装费39,000.00 设备运输费36,000.00 合计1,031,000.00

烧结普通砖砌体

烧结普通砖砌体 砌筑前准备 选砖:用于清水墙、柱表面的砖,应边角整齐,色泽均匀。 砖浇水:砖应提前1~2d浇水湿润,烧结普通砖含水率宜为10%~15%。 校核放线尺寸:砌筑基础前,应用钢尺校核放线尺寸,允许偏差应符合表13-25的规定。 放线尺寸允许偏差表13-25 长度L、宽度B(m)允许偏差(mm) L(或B)≤30 ±5 30<L(或B)≤60 ±10 60<L(或B)≤90 ±15 L(或B)>90 ±20 选择砌筑方法:宜采用“三一”砌筑法,即一铲灰、一块砖、一揉压的砌筑方法。当采用铺浆法砌筑时,铺浆长度不得超过750mm,施工期间气温超过30℃时,铺浆长度不得超过500mm。 设置度数杆:在砖砌体转角处、交接处应设置皮数杆,皮数杆上标明砖皮数、灰缝厚度以及竖向构造的变化部位。皮数杆间距不应大于15m。在相对两皮数杆上砖上边线处拉准线。 清理:清除砌筑部位处所残存的砂浆、杂物等。 砖基础 砖基础的下部为大放脚、上部为基础墙。 大放脚有等高或和间隔式。等高式大放脚是每砌两皮砖,两边各收进1/4砖长(60mm);间隔式大放脚是每砌两皮砖及一皮砖,轮流两边各收进1/4砖长(60mm),最下面应为两皮砖(图13-2)。

图13-2 砖基础大放脚形式 砖基础大放脚一般采用一顺一丁砌筑形式,即一皮顺砖与一皮丁砖相间,上下皮垂直灰缝相互错开60mm。 砖基础的转角处、交接处,为错缝需要应加砌配砖(3/4砖、半砖或1/4砖)。 图13-3所示是底宽为2砖半等高式砖基础大放脚转角处分皮砌法。 图13-3 大放脚转角处分皮砌法 砖基础的水平灰缝厚度和垂直灰缝宽度宜为10mm。水平灰缝的砂浆饱满度不得小于80%。 砖基础底标高不同时,应从低处砌起,并应由高处向低处搭砌,当设计无要求时,搭砌长度不应小于砖基础大放脚的高度(图13-4)。 图13-4 基底标高不同时,砖基础的搭砌 砖基础的转角处和交接处应同时砌筑,当不能同时砌筑时,应留置斜槎。 基础墙的防潮层,当设计无具体要求,宜用1:2水泥砂浆加适量防水剂铺设,其厚度宜为20mm。防潮层位置宜在室内地面标高以下一皮砖处。

答案建筑节能选修课试题

建筑节能选修课试题 本试题算16学时 1、夏季室内热量的主要来源是什么? 1)维护结构向室内的传热。在太阳辐射和室外气温共同作用下,外围护结构外表面吸热升温,将热量传入室内,并以传导、辐射和对流的方式使维护结构内表面及室内空气温度升高。 2)透进的太阳辐射热。通过窗口直接进入的太阳辐射热,使部分地面、家具等吸热升温,并以长波辐射和对流换热方式加热室内空气。此外,太阳辐射热投射到房屋周围地面及其他物体,其一部分反射到建筑的墙面或直接通过窗口进入室内;另一部分被地面等吸收后,使其温度升高而向外辐射热量,也可能通过窗口进入室内。 3)通风带入的热量。自然通风或机械通风过程中带进的热量。 4)室内产生的余热。室内生产或生活过程中产生的余热,包括人体散热。 2、建筑室内外热交换主要包括哪些方面? 建筑室内外传热主要包括辐射、对流和导热三方面。 1)辐射与辐射换热。温度不同的诸表面,当表面间的介质具有透过性(如真空、空气等)就会产生辐射换热。热能以电磁波的形式由一个物体传递给另一个物体。由于物体的热辐射与物体表面的热力学温度的四次方成正比,因而温差越大,由高温物体向低温物体转移的热量就越多。利用材料辐射放热的不同性能,可以达到建筑节能的效果。 2)对流与对流换热。对流换热是流体中分子做相对位移而传递热量的方式,按促成流体产生对流的原因可分为自然对流和受破对流。对于采暖建筑,当维护结构质量较差时,室外温度愈低,则窗与外墙内表面温度也愈低,邻近的热空气与其之间温差就愈大,表面对流换热量增大,使热空气迅速变冷下沉,这样就使得这种房间只有在采暖设备附近及其上部温度较高,外围特别是下部温度很低。当维护结构的质量较好时,其内表面温度较高,室温分布较为均匀,无急剧的对流换热现象产生,保温节能效果较好。 3)导热和导热换热。导热可产生于液体、气体、导电固体和非导电固体中。它是由于温度不同的质点热运动而传送热量,只要物体内有温差就会有导热产生。一般来说密实的重质材料导热性能好,而保温性能差;反之,疏散的轻质材料导热性能差,而保温性能好。 3、分析影响建筑能耗的几个因素?怎样控制它们以提高建筑的整体节能效能? 建筑是否节能,节多少能,主要还是由建筑单体本身的属性,包括建筑外形、建筑朝向、建筑维护维护结构设置(如窗墙比、维护结构热惯性)等因素所决定的。 1)控制建筑体形对建筑能耗的影响:1、减少建筑面宽,加大建筑进深;2、增加建筑物的层数,减少或避免建造单元少的点式平面的底层建筑;3、加大建筑物长度或增加组合体;4、建筑外形不易变化过多,建筑外形采用长条状为好,而体形复杂,凹凸面过多的住宅建筑对节能是不利的。 2)控制建筑朝向对建筑能耗的影响:冬季能有适量并具有一定质量的阳光射入室内及主墙面;夏季尽量减少太阳直射;冬季避免冷风吹袭;夏季有良好的通风;充分利用地形和节约用地;照顾居住建筑组合的需要。 3)控制窗墙比对建筑能耗的影响:1、通过提高窗用型材的规格尺寸、准确度、尺寸稳定性和组装的精确度以增加开启缝隙部位的搭接量,减少开启缝的宽度以达到减少空气渗透的目的。2、采用气密条,提高外窗气密水平。各种气密条由于所用材料、断面形状、装置部位等情况不同,密封效果也略有差异。

砖厂安全评价报告

砖厂安全评价报告 第一章项目概况 一、地理位置 渐江县增华窑厂现位于渐江县七雄镇,该厂东、南面均为人工水塘(占地35亩),西面为七雄镇三支渠、北面为农田。 二、自然条件 渐江县地处省北部,位于沂沭河下游,地理坐标为北纬33度53分至34度25分,东经118度30分至119度11分,南北55公里,东西60公里。北与东海县接壤,南与泗阳县、区相连,东与灌云县、灌南县、涟水县毗临,西与宿豫区、新沂市接界。地形西高东低,山是全县最高峰,海拔70米,全县国土面积2298平方公里。其中耕地面积204万亩,水面45.28万亩,荒滩13.5万亩。 渐江县处于温暖带季风气候区,气候温和,四季分明,日量充足,雨量充沛,其相关气象条件如下: 历年平均气压:10130Mpa 历年平均降雨量:910mm 历年年最大降雨量:1050.8mm 历年一日最大降雨量:224.6mm 历年平均气温:14℃平均日照时数为2291.6小时 极端最高气温:39.4℃极端最低气温:-13℃ 平均雾日为44天历年平均相对湿度:76% 历年平均雷暴日:20d 历年最大风速:18.6m/s 常年主导风向为东—东北风,西北风次之 历年最大冻土深度:26mm 地震基本烈度:七度 三、企业简介 渐江县增华窑厂建于1981年,厂长王以成。企业占地约80亩,企业固定资产90万元,企业现有职工70多人。该厂主要生产砖,年生产能力为标准砖2.5万方,有力地支持了地方建设。 主要设备有:笼式破碎机2台、成型挤压机1台,置式滚筒破碎机1台、B50皮带输送机2台,接入动力源有200KVA变压器一台。企业拥有20门轮机窑一座(高5.5米),烟囱1座(高45米)。原料(φ80米*φ55米*3米圆台形)和半成品及成品堆场各一处。

某化工厂安全评价报告(doc 73页)

某化工厂安全评价报告(doc 73页)

编制说明 按照国家《安全生产法》规定:对生产、储存危险物品建设项目应按照国家有关规定进行安全评价。同时国家安全生产监督管理局《关于印发〈危险化学品生产企业安全评价导则(试行)〉的通知》等规定:对危险化学品生产单位应进行安全评价,为确保危险化学品生产单位安全生产,应委托有安全评价资格的单位对危险化学品生产单位进行安全评价,并编制安全评价报告。 AAA服务中心受BBB市×××化工厂(以下简称×××化工)的委托,根据国家有关法律法规的要求,按照国家规定的程序,遵循系统安全的原理, 运用科学的评价分析方法,本着实事求是、科学客观的原则,对位于BBB市新市镇新市工业园区的×××化工一条3000吨/年85%磷酸生产线和两套400吨/年70%泥磷酸生产装置、一个1000吨/年磷酸三钠车间、一个300吨/年聚磷酸铵车间的安全生产现状进行综合评价,最终依据评价经过及评价结果形成以下评价报告。由于安全生产具有的动态性,故本报告所反映的安全生产状况,仅为企业接受安全评价时的安全生产现状。 1

1

1.1.4通过评价为×××化工提出消除、减弱事故隐患的对策与措施,为事故隐患治理提供依据,提高企业安全管理水平,实现安全平稳的生产。 1.2评价内容 (1)企业85%磷酸、70%泥磷酸生产过程的危险、有害因素辨识; (2)企业85%磷酸、70%泥磷酸生产装置、设施的安全状况评价; (3)企业85%磷酸、70%泥磷酸生产装置、设施所在地的周边环境条件评价; (4)企业85%磷酸、70%泥磷酸生产过程中固有的危险有害因素危害程度评价; (5)《危险化学品生产企业安全生产许可证实施办法》所规定的各项安全生产条件评价。 1.3评价依据 1.3.1国家法律、法规 (1)《中华人民共和国安全生产法》(国家主席令70号) (2)《危险化学品安全管理条例》(国务院令第344号) (3)《特种设备安全监察条例》(国务院令373号) 1

最新烧结砖厂的技术节能

?烧结砖厂的技术节能 ? 1. 概述 建材工业是国民经济的重要原材料工业,属典型的资源依赖型工业。我国是目前全球最大的建材生产和消费国,建材工业的年能耗总量位居我国各工业部门的第三位。建材工业一方面大量消耗能源,同时又潜含着巨大的节能空间;在生产过程中既污染着环境,却又是全国消纳固体废弃物总量最多、为保护环境做出了重要贡献的产业。 我国砖瓦工业的产能约1万亿块(折烧结普通砖),实际产量约8500亿块(折烧结普通砖)。如果按每kg成品耗热1600kJ(含干燥及焙烧)计算,全行业年消耗热量约8200万吨标煤(产品孔洞率平均按30%计),考虑到约有三分之一的热量来自煤矸石、粉煤灰等含能工业废渣,每年耗热折标煤仍达5700万吨,约占全国煤耗的1.8%。砖瓦厂电耗贯穿于整个工艺过程,依破碎、陈化、成型、切码运、运转、热工系统设备选型不同,每万块成品电耗在350~650度,每年砖瓦工业耗电约400亿度。由于全国绝大多数地区已将工业废渣作为焙烧的部分或全部燃料,因此,节煤的主要方向将转化为技术节能以及产品的转型节能。随着烧结砖瓦工业技术水平和生产率的提高,国家产业政策的陆续出台,节能执法力度的加强,煤耗会有一个快速的下降,然后进入平台期;而电耗会有一个持续的增长,只有更先进的工艺、更高效的设备、更节能的电气才会有效地降低电耗。本文仅对烧结砖厂在技术节能的措施方面给出一些讨论,希望引起业内的重视。 2. 用能标准和节能规范 我国政府历来都非常重视能源的使用以及节能工作,颁布了一系列的能源政策以及节能的法律法规。涉及到烧结砖瓦工厂的能源使用的法律法规有:

1)、《中华人民共和国节约能源法》2007年10月28日修订; 2)、《中华人民共和国清洁生产促进法》2002年6月29日通过; 3)、《评价企业合理用电技术导则》GB/T3485-1998; 4)、《评价企业合理用热技术导则》GB/T3486-1993; 5)、《工业炉窑保温技术通则》GB/T16618-1996; 6)、《设备及管道保温保冷技术通则》GB/T11790-1996; 7)、《工业设备及管道绝热工程设计规范》GB50264-1997; 8)、《设备及管道绝热设计导则》GB/T8175-2008; 9)、《余热利用设备设计管理规定》YB9071-1992; 10)、《节电措施经济效益计算与评价》GB/T13471-1992; 11)、《综合能耗计算通则》GB/T 2589—2008; 12)、《烧结砖瓦工厂设计规范》GB50701—2011; 13)、《烧结砖瓦工厂节能设计规范》GB50528—2009; 14)、《烧结砖瓦单位产品能源消耗限额》GBxxxxx—20xx; 3. 节能措施 3. 1.工艺系统节能 3. 1.1. 原材料选择 在建设烧结砖厂伊始,就应该对所用原材料进行较为详细的矿物学成分鉴别,确定其烧结特性以及一系列的工艺特征(如加工处理、成型、干燥等)。对烧成温度特别高的原材料,如含铝量过高的煤矸石或页岩原材料(一般情况下其三氧化二铝含量不超过23%),最好搭配烧结温度较低的黏土或其他原材料来进行调配,降低其烧成温度。对采集的原材料进行适当地混合处理或风化、陈化,增加塑化剂和助熔剂提高其成型性能、改善其干燥和焙烧性能,也是节能的有效措施。 3. 1.2. 工艺系统

完整版建筑节能原理与技术期末复习题

建筑节能原理与技术 第一章绪论 建筑节能的含义:建筑节能是指提高建筑使用过程中的能源效率,主要包括采暖、通风、空调、照明、炊事、家用电器和热水供应等的能源效率。 建筑节能的意义:①提高了建筑物在使用期间的能源利用效率②减少CO2的排放,降低大气污染③是改善建筑室内热环境,提高居住水平的必由之路。 常用的建筑能耗:采暖,空调,照明。 降低建筑能耗可采取的措施:①确定建筑节能工作的主要对象,找出工作重点②发挥政府宏观调控作用,引导并促进建筑节能相关法律法规的执行③重点开发建筑节能技术,构建节能技术创新机制④建立科学的能源利用评价体系⑤提高全民节能意识⑥完善节能法律法规体系。 怎样理解建筑节能的气候适应性原理:建筑节能的气候适应性起源于建筑的气候适应性,在一种气候条件下节能成功的建筑在另一种气候条件下不一定适应。①建筑起因于气候②建建筑设备的性能和能耗大小与气候紧密相关③筑热工性能与气候密不可分 第二章建筑节能气候学 建筑节能设计气候主要要素:太阳辐射、空气温度和湿度、风等。 太阳常数:在大气层上界的太阳辐射能,随太阳与地球之间的距离以及太阳的活动情况而变化,其范围为1.8~2.0卡/厘米2·分,平均值为1.97卡/(厘米2·分),此值称为太阳常数。 绝热降温和绝热升温:高度的变化也会使气温变化。当一起团上升的时候,气压陡高处下降,气团膨胀而变冷:反之,当气团下降时,则因压缩而升温,属于绝热降温和绝热升温过程。温度随高度的变化率约为1℃/hm。 温度直减率:在自由大气中,空气温度随高程增加而降低,直至同温层的高度。这种降低称为温度直减率。随着季节与昼夜时间而改变,平均值约为0.6℃/hm。 在同一地区内,风的分布与特性取决于若干全球性和地区性的因素。其主要的决定性因素是:气压的季节性的全球分布,地球的自转,陆,海加热和冷却的日变化,以及该地区的地形与其周围的环境。 热岛现象:由于城市地面覆盖物不同于自然原野,密集的城市人口的生活和生产中产生的大量热量,造成城市内的温度高于郊区温度,温度分布复杂。如果绘出等温曲线,就会看到与岛屿的等高线相似。人们把这种现象成为“热岛”。 气候分区:西方学者柯本剔除的全球气候分区法一起问和降水两个气候要素为基础,并参照自然植被的分布,把全球气候分为6个气候区:赤道潮湿性季候区(A),干燥型气候区(B),湿润性温和型气候区(C),温润性冷温型气候区(D)和极地气候区(E),其中ACDE为温润气候,B 为干旱气候。 根据柯本的理论和气候分区图,我国被分为C,D,B,H四个气候区,和我国的热工分区有部分是重叠一致的。 建筑热工设计分区:建筑热工设计分区是根据建筑热工设计的要求进行气候分区,所依据的气候要素是空气温度。建筑热工设计分类用累年最冷月(即一月)和最热月(即七月)平均温度作为分类主要指标,累年日平均温度≤5℃和≥25℃的天数作为辅助指标,将全国划分成五个区,即严寒、寒冷、夏热冬冷、夏热冬暖和温和地区。 分区名称主要指标设计要求

安全现状评价设计报告

编号:YNJXAP(FMK)-2005-X589 南涧县小军庄机制砖厂 安全现状评价报告 巨星安全技术有限公司 (YN-APJ-0021-2005-FMK)

前言 随着我国法制化的日趋健全和完善,安全生产监督管理体系也逐步向科学化、规化、制度化发展,安全评价作为现代先进安全生产管理模式的主要容之一越来越受到重视。“安全第一、预防为主”是我们党和始终不渝的安全生产方针,开展安全评价正是突出“安全第一”、体现“预防为主”的一项重要工作,是“安全第一、预防为主”方针在企业安全生产中的具体体现。安全评价不仅能有效地提高企业和生产设备的本质安全程度,而且可以为各级安全生产监督管理部门的决策和监督检查提供有力的技术支撑。 《安全生产许可证条例》(国务院令[2004]397号)第二条规定,对矿山企业、建筑施工企业、危险化学品和烟花爆竹、民用爆破器材生产企业实行安全生产许可制度。企业未取得安全生产许可证的,不得从事生产活动。第六条第十款规定,企业取得安全生产许可证必须依法进行安全评价。《非煤矿矿山企业安全生产许可证实施办法》(安监局令[2004]9号)第五条第九款规定,非煤矿山企业取得安全生产许可证必须依法进行安全评价。第四十八条规定,《安全生产许可证条例》施行前已经进行生产的非煤矿山企业,应当在2005年1月13日前,按照该实施办法的规定向安全生产许可证颁发管理机关申请办理安全生产许可证。 南涧县小军庄机制砖厂是一家从事建筑用红砖生产、销售的集体所有制企业,由取土场、制坯车间、晾晒场和轮窑等组成。该企业为了向安全生产监督管理部门申请办理安全生产许可证,特委托巨星安全技术有限公司承担其取土场的安全现状综合评价工作。本次安全评价主要依据的是:《中华人民国安全生产法》、《中华人民国矿山安全法》、《非煤矿山企业安全生产许可证实施办法》和《非煤矿山安

化工厂安全评价报告

编制说明 按照国家《安全生产法》规定:对生产、储存危险物品建设项目应按照国家有关规定进行安全评价。同时国家安全生产监督管理局《关于印发〈危险化学品生产企业安全评价导则(试行)〉的通知》等规定:对危险化学品生产单位应进行安全评价,为确保危险化学品生产单位安全生产,应委托有安全评价资格的单位对危险化学品生产单位进行安全评价,并编制安全评价报告。 AAA服务中心受BBB市×××化工厂(以下简称×××化工)的委托,根据国家有关法律法规的要求,按照国家规定的程序,遵循系统安全的原理, 运用科学的评价分析方法,本着实事求是、科学客观的原则,对位于BBB市新市镇新市工业园区的×××化工一条3000吨/年85%磷酸生产线和两套400吨/年70%泥磷酸生产装置、一个1000吨/年磷酸三钠车间、一个300吨/年聚磷酸铵车间的安全生产现状进行综合评价,最终依据评价经过及评价结果形成以下评价报告。由于安全生产具有的动态性,故本报告所反映的安全生产状况,仅为企业接受安全评价时的安全生产现状。 一.安全评价的目的和依据 1.1安全评价的目的 安全评价的目的是贯彻“安全第一,预防为主”的方针,寻求最低事故率、最少损失和最优的安全投资效益。本次安全现状评价要达到的目的包括以下四个方面: 1.1.1对×××化工85%磷酸、70%泥磷酸生产过程中的潜在危害因素进行定性分析和预测。

1.1.2通过评价确认×××化工的85%磷酸、70%泥磷酸生产系统安全生产条件是否满足《危险化学品生产企业安全生产许可证实施办法》中所规定的要求,作为企业申办安全生产许可证的依据。 1.1.3根据已确定的危害因素,分析、确定×××化工85%磷酸、70%泥磷酸生产装置、设施的固有危险程度,并预测可能发生的危险化学品事故后果。 1.1.4通过评价为×××化工提出消除、减弱事故隐患的对策与措施,为事故隐患治理提供依据,提高企业安全管理水平,实现安全平稳的生产。 1.2评价内容 (1)企业85%磷酸、70%泥磷酸生产过程的危险、有害因素辨识; (2)企业85%磷酸、70%泥磷酸生产装置、设施的安全状况评价; (3)企业85%磷酸、70%泥磷酸生产装置、设施所在地的周边环境条件评价;(4)企业85%磷酸、70%泥磷酸生产过程中固有的危险有害因素危害程度评价;(5)《危险化学品生产企业安全生产许可证实施办法》所规定的各项安全生产条件评价。 1.3评价依据 1.3.1国家法律、法规 (1)《中华人民共和国安全生产法》(国家主席令70号)

烧结砖生产工艺流程教案资料

烧结砖生产工艺流程

烧结砖生产工艺流程 煤矸石、页岩、粘土、粉煤灰、江河淤泥、工业尾矿等新型制砖原料经汽车运输至原料场防雨堆存,根据原料的软硬程度及含水率不同,将以上制砖原料公为软质原料和硬质原料。为使生产工艺科学合理。不同制砖原料采用不同的原料破碎处理工艺,以达到最佳的破碎效果。 软质原料由装载机送入箱式给(ji)料机均匀定量配比,经皮带输送机送入齿辊或对辊机粗碎,然后进入对辊机主碎,最后进入细碎对辊机细碎,以达到制砖原料工艺要求。软质原料因质地软、塑性好、含水率偏高,通常采用三道对辊破碎的处理工艺,该破碎方式适用于粘土、软质页岩及泥质煤矸石等原料处理。硬质原料由装载机经颚式破碎机粗碎,进入链板式给料机均匀定量配比,由皮带输送机送入锤式破碎机进行细碎,再进入圆滚筛或振动筛进行筛选,筛下料直接进入下道工序,未达到工艺要求的筛上料再返回锤式破碎机破碎。硬质原料通常采用破碎机加筛选的处理工艺。该破碎方式适用于含水率及塑性偏低、质地较硬的原料处理。根据投资情况和制品要求,也可以采用粗碎加细碎两道对辊机或轮碾机取代筛选工序的方式进行破碎处理,比较先进的生产线大多采取此种方式。无论采用哪一种破碎处理工艺,都要与原料的特性相

吻合,确保工艺设备的科学配套,以达到原料优化处理的目的,使原料在整个破碎处理过程中达到预期的工艺粒度要求。 通过细碎处理后的制砖原料掺配定量的原煤或煤矸石等内燃料进入双轴搅拌机适量加水混合搅拌后,经由皮带输送机送到陈化库的可逆皮带机上均匀对陈化库进行布料,使原料中的水份有足够的时间进行渗透交换,并软化原料,进一步提高原料的均匀性和液塑性等综合性能指标,更利于原料挤出成型,减少设备磨损,降低能耗等。同时陈化库也起着中转储存的作用,将原料处理系统和砖坯成型系统分离,减少挤出机的频繁停机,提高设备工作性能及生产能力,延长设备使用寿命。陈化库环境是个相对封闭的空间,避免了原料与室外空气长时间接触而受气压、气温、风速、湿度等因素的影响失去了原料陈化的作用及目的。经过陈化处理的原料经过多斗挖土机均匀取料经皮带输送机进入箱式给料机均匀定量供料进入下一道工序。陈化库采用可逆皮带机均匀布料、多斗挖土机均匀取料、箱式给料机均匀供料的三均匀工艺,投资合理,机械化程度高,原料的匀化处理好,经陈化后的原料其综合性能指数会得到较大提高,更适用于各种原料烧结制砖的生产需要,保证了产品质量,可根据生产要求灵活处理,为生产各种新型墙材烧结制品创造了必要条件。

烧结砖在隧道窑中通常生产的异常情况

烧结砖在隧道窑中通常生产的异常情况及产品缺陷消除办法 烧结砖生产的产量与质量能否达到设计标准要求,在生产过程中,通常碰到过倒坯、火势上飘、底火差、蹲火、裂纹、哑音、黑脚砖、压花、面包砖、石灰爆裂等现象制约了产量与质量的达标,导致废品难以处理。笔者根据有关生产厂家所了解的情况及处理办法归述一下,供烧结砖有关生产厂家进行参考,有利于在生产过程中控制出现类似情况发生。 一、窑车坯垛倒塌几种情况分析 1、码好的窑车尚未进入预热带而发生倒塌,其原因有:一种纯属操作不慎,码车不稳;其二炕腿坯体强度太低,不能承受坯垛垛身的重量力所致。遇到这种情况,烧成带要及时蹲火,把倒塌的窑车及时处理,不能使倒塌的窑车进入预热带和烧成带。 2、在预热带倒塌,主要原因是入窑坯体残余水分过高,再加上预热带烟气相对湿度较大,遇到冷坯发生凝露,使坯体变软而倒塌。 解决方式:缩短预热带,由相对集中开闸排烟改为相对分散开闸排烟,以降低烟气相对湿度,降低坯体入窑水分。 对一次码烧隧道窑,当码好的窑车进入窑的干燥带的几个车后就倒塌,其原因也是由于坯体入窑水分过高,窑内相

对湿度高造成的。解决的办法也是严格控制坯体入窑水分,改相对集中排潮为相对分散排潮,适当提高排潮温度。 3、在烧成带倒塌,造成原因是温控不准,内燃掺配过高而不均匀,使局部砖坯过烧软化倒塌。这种情况一般发生在坯垛的中下部。 解决方式:发生这样的情况,一般让它继续烧过去,不过要缩短进车间隔时间,甚至可以连续进车,以便缩短烧成带,还可以将烧成带和投煤孔或余热闸打开放“火”。此外,必须及时地合理调整内燃掺量及其均匀程度,也是必不可少的措施。 二、火势上飘、底走火 造成窑内火向上飘、底走火差的原因:其一排烟设备抽力不足,炕腿形式较低,燃料灰分过大,底部投煤过多,灰渣堵塞下火道,使腿部通风不良,造成底火不好而火势上飘。其二有时与窑车的曲封有关,漏气严重也会使底火差火势上飘。其三码窑不合适,炕腿太高太稀,冷却带过短,造成通风过大,下部冷却过快,后火熄灭过早。 解决的方式:首先要查明原因合理调整各带的长度,改变腿炕的码法,及时调节排烟支闸的开度,适当提高近闸降低过闸。 以上几种措施要综合考虑,单纯采取某一种措施,往往无济于事。

建筑节能复习题及参考答案

建筑节能复习题及参考答案 一、填空题 1、影响材料导热系数的两个主要参数是密度和含水率。 2、见证取样送检是施工单位在监理工程师或建设单位见证下,按照有关规定 从施工现场随机抽查试样,送至有见证检测资质的检测机构进行检测的活动。 3、依据《建筑构件稳态热阻传递性质测定标定和防护热箱法》GB/T13475-2008 ,标定热箱法的试件最小尺寸是 1.5m×1.5m 。 4、JGJ144-2004试件制备、养护和状态调节中规定:温度为10~25℃,相对湿 度不应低于50%,试样养护时间应为 28 d。 5、浙江省属于全国建筑热工设计分区的哪一个地区夏热冬冷。 6、《建筑保温砂浆》(GB/T 20473-2006)中堆积密度规定:Ⅰ型应不大 于 250 kg/m3,Ⅱ型应不大于350 kg/m3。 7、GB/T8484-2008,规定了建筑外窗保温性能分级及检测方法。现有一樘窗的传 热系数K值为2.6W/(m2·K),它对应的保温性能分级为 5 级。 8、建设工程质量检测业务的内容分为见证取样检测和专项检测。 9、承担专项检测的现场检测,现场检测人员不得少于 2 个。 10、从事建设工程质量检测的单位,应当依法取得相应的资质,并在其 许可的范围内从事建设工程质量检测活动。 11、依据GB/T13475-2008,试件的状态调节,为减少试件中热流受到所含水份的影 响,建议试件在测量前调节到气干状态。 12、《居住建筑节能检测标准》(JGJ/T 132-2009)外窗窗口气密性能应在受检外窗几 何中心高度处室外瞬时风速不大于 3.3 m/s的条件下进行。。 13、JGJ/T 132-2009《居住建筑节能检测标准》中定义的室内活动区域是:由距地面 或楼板面 700 mm和 1800 mm,距内墙内表面300mm,距离外墙内表面或固定的采暖空调设备600mm的所有平面所围成的区域。 14、检测技术人员经过岗前培训和考核,取得岗位证书,方可从事检测工作。 15、检测机构应当对其检测数据和检测报告的真实性和准确性负责。 16、GB/T 8813-2008《硬质泡沫塑料压缩性能的测定》中试件状态调节规定:温度 23±2 ℃,相对湿度50±10%,至少6h。 17、外门窗室内、外表面所受到的空气绝对压力差值。当室外表面所受的压力低 于室内表面所受压力时,压力为负压。 18、外墙节能构造钻芯检验中,当实测芯样厚度的平均值达到设计厚度的 95% 及 以上且最小值不低于设计厚度的 90% 时,应判定保温层厚度符合设计要求。 19、混凝土砌块夹芯保温外墙,由______、______、______组成。(结构层保 温层保护层) 20、承重保温装饰空心砌块是集______、______、______三种功能于一体的新型 砌块,同时解决了______与______稳定可靠连接的问题。(保温承重装饰装 饰面结构层) 21、施工时墙体及钢筋铺设经______后方可浇筑______混凝土,并应通知______ 和______人员旁站监督混凝土浇筑。(检验合格墙体质检监理) 22、混凝土砌块堆放场地应______并便于______。混凝土砌块不得任意______ 和______,不宜______堆放,须按______分别堆放,使用之前严禁______。(夯

砖厂安全风险评估报告详解

合江县火麻沟砖厂 安 全 风 险 评 估 报 告 风险评估单位:合江县火麻沟砖厂2016年03月18日

目录 一、风险评估对象 (1) 二、风险评估活动概述 (5) 三、风险辨识 (7) 四、事故风险分级 (10) 五、风险评估 (11) 六、定性、定量风险评估 (18) 七、综合分析与评估 (27) 八、整改意见 (31)

合江县火麻沟砖厂 风险评估报告 一、风险评估对象 1、交通地理任置 合江县火麻沟砖厂位于合江县县城东北方向,直距约17km,政隶属合江县南滩乡中塝村。采矿权人:合江县火麻沟砖厂,属民营独资企业,法人代表:韩明杰,现持采矿许可证证号:C51120099871,有效期自2010年12月30日至2015年12月30日,露天开采页岩矿,生产规模0.7万吨/年,登记面积为0.0131km2,开采深度+300m~+250m。矿山位于南(滩)~石(龙)水泥公路东侧,交通方便。 主要从事页岩矿石的生产和销售。 目前,矿山从业人员9人,其中管理人员3人,特殊工种人员2人,其它作业人4人。开采矿石主要用于生产建筑用砖瓦,产品面向当地乡镇。 砖厂位于四川盆地南缘,属亚热带湿润季风气候,受高原和盆地影响,春暖夏热,潮湿多雨。 本地属地震波及区,四川地震区主要位于东经104°以西高原山地。国家地震局1981年对泸州市地区地震观测表明,本区属0~3级地震区。根据国家地震局1990年版《中国地震烈度区划图》,评估区内地震烈度小于Ⅵ度。 砖厂生产及生活用水均取自附近的山泉水和南滩乡供水管路水。 砖厂电源来自南滩乡供电站,10KV线路已至砖厂。

2、周边重要基础设施: 距离南滩乡政府约8公里、距合江县县城路程在1小时以内,地理位置十分便利。 距泸州矿山救护队约1.00小时路程。 距合江县急救中心、人民医院不超过1小时路程。 3、评估企业概况

安全现状评价报告

机电学院机加工实训车间 安全现状评价报告 33安全评价机构 资质证书编号:APJ—(国)—— 2012年10月22日

编号:0001 33机电学院 机加工实训车间 安全现状评价报告 法人代表:董刚 技术负责人:刘景良 评价项目负责人:何桥 2012年10月22日

评价人员 姓名资格证书号从业登记编号签字项目负责人何桥 何桥 评价组成员 报告编制人何桥 报告审核人刘景良 过程控制负 刘景良 责人 技术负责人 技术专家 姓名:刘景良签字

目录

机电学院机加工实训车间安全现状评价 第一章概述 1.1安全评价的目的 安全评价的目的是贯彻“安全第一,预防为主,综合治理”的方针,寻求最低事故率、最少损失和最优的安全投资效益。本次安全现状评价要达到的目的包括以下两个方面: (1)通过评价确认该厂是否满足各项相关法律、法规、标准的规定。(2)通过评价为该厂提出消除、减弱事故隐患的对策与措施,为事故隐患治理提供依据,提高该厂安全管理水平,实现安全的经营。1.2安全评价的过程与范围 1.2.1评价范围 受某某大学机电学院的委托,职大安全评价机构承担了本项目的安全现状评价工作。 本次评价的对象为车间内各场所安全现状,评价的范围包括该车间安全管理、电气安全和防火防爆安全等方面的危险有害因素辨识和安全评价。并对车间内各方面安全水平做出客观的评价结论。确认其安全生产条件是否满足相关法律、法规、标准规定的要求。 1.2.2评价过程 评价程序包括:前期准备、辨识与分析危险有害因素、划分评价单元、选择评价方法、定性定量评价、提出安全对策措施建议、作出评价结论、编制安全预评价报告。

烧结砖生产工艺流程

烧结砖生产工艺流程 煤矸石、页岩、粘土、粉煤灰、江河淤泥、工业尾矿等新型制砖原料经汽车运输至原料场防雨堆存,根据原料的软硬程度及含水率不同,将以上制砖原料公为软质原料和硬质原料。为使生产工艺科学合理。不同制砖原料采用不同的原料破碎处理工艺,以达到最佳的破碎效果。 软质原料由装载机送入箱式给(ji)料机均匀定量配比,经皮带输送机送入齿辊或对辊机粗碎,然后进入对辊机主碎,最后进入细碎对辊机细碎,以达到制砖原料工艺要求。软质原料因质地软、塑性好、含水率偏高,通常采用三道对辊破碎的处理工艺,该破碎方式适用于粘土、软质页岩及泥质煤矸石等原料处理。硬质原料由装载机经颚式破碎机粗碎,进入链板式给料机均匀定量配比,由皮带输送机送入锤式破碎机进行细碎,再进入圆滚筛或振动筛进行筛选,筛下料直接进入下道工序,未达到工艺要求的筛上料再返回锤式破碎机破碎。硬质原料通常采用破碎机加筛选的处理工艺。该破碎方式适用于含水率及塑性偏低、质地较硬的原料处理。根据投资情况和制品要求,也可以采用粗碎加细碎两道对辊机或轮碾机取代筛选工序的方式进行破碎处理,比较先进的生产线大多采取此种方式。无论采用哪一种破碎处理工艺,都要与原料的特性相吻合,确保工艺设备的科学配套,

以达到原料优化处理的目的,使原料在整个破碎处理过程中达到预期的工艺粒度要求。 通过细碎处理后的制砖原料掺配定量的原煤或煤矸石等内燃料进入双轴搅拌机适量加水混合搅拌后,经由皮带输送机送到陈化库的可逆皮带机上均匀对陈化库进行布料,使原料中的水份有足够的时间进行渗透交换,并软化原料,进一步提高原料的均匀性和液塑性等综合性能指标,更利于原料挤出成型,减少设备磨损,降低能耗等。同时陈化库也起着中转储存的作用,将原料处理系统和砖坯成型系统分离,减少挤出机的频繁停机,提高设备工作性能及生产能力,延长设备使用寿命。陈化库环境是个相对封闭的空间,避免了原料与室外空气长时间接触而受气压、气温、风速、湿度等因素的影响失去了原料陈化的作用及目的。经过陈化处理的原料经过多斗挖土机均匀取料经皮带输送机进入箱式给料机均匀定量供料进入下一道工序。陈化库采用可逆皮带机均匀布料、多斗挖土机均匀取料、箱式给料机均匀供料的三均匀工艺,投资合理,机械化程度高,原料的匀化处理好,经陈化后的原料其综合性能指数会得到较大提高,更适用于各种原料烧结制砖的生产需要,保证了产品质量,可根据生产要求灵活处理,为生产各种新型墙材烧结制品创造了必要条件。 陈化后的原料再次进入辊式细碎机碾练把关,进入双轴

烧结砖防泛碱措施

路面烧结砖防泛碱措施 烧结砖在烧制过程中因工艺等因素,砖中留有一定的孔隙,因而这种砖有一定的吸水率。基层中的可溶性盐随着水分转移到砖的表面,形成我们所说的白霜。防止砖面出现白霜也是一个迫切需要解决的问题。根据我们在全国各地的施工经验,为防止页岩砖出现白霜,我们建议在工程施工时,应该注意以下几个方面: 1、施工中所使用的水泥应使用正规厂家生产的低碱硅酸盐水泥,不应使用非正规厂家生产的矿渣水泥。我们发现,如果使用正规厂家生产的硅酸盐水泥,则砖面就基本不出现白霜,若使用的是矿渣水泥,则砖面的白霜就比较严重。(注:烧结砖本身不含碱,因烧结砖有很好的透气性,所以铺装后期垫层里面水泥灰中的碱会通过砖体返到表面,形成白霜。) 2、施工中使用的水应为河水,不能使用海水。在施工中若使用海水,海水中含有的盐分也将造成砖面上的白霜。施工中使用的砂子应为河砂,避免使用海砂。施工的过程中施工的工人一定要注意砖面的清洁,边铺装边撒细沙覆盖,这样就避免了园林施工过程中水泥灰等在砖体表面形成难以清除的污迹。 3、在烧结砖铺装之前,应尽量早的打好垫层。这样的好处在于铺装之前水泥垫层里面的碱会提前泛出来,这样铺装之后的烧结砖就不会有表面大量泛碱的现象出现。 如果工程上的砖面出现了白霜,目前常用的方法为 1、在烧结砖大面积泛碱后,用潮湿的河沙覆盖于铺装表面,在这个过程中碱会溶于湿沙,把湿沙扫走后碱也就与湿沙一起带走。这样反复几次,水泥灰中的碱基本会清理干净。 2、盐酸清除法。即用2%的盐酸来清除砖表面上的白霜。 3、此外,有机硅防水涂料(水溶性)清除法也是一种行之有效的方法。 有机硅防水涂料是以进口有机硅为主要原料经先进的工艺配制乳化而成。喷涂或涂刷在砖表面后就能渗入砖内数毫米,形成一层肉眼见不到的薄膜,这样,基层中即使有可溶性盐,也无法渗出到砖表面。而且施工方法也十分简单,先清理砖面,然后取有机硅防水涂料一份加6~9份自来水配制,经充分搅拌均匀后用喷雾器或漆刷直接喷刷,一般为两遍,在第一遍固化前再喷第二遍。 关于烧结砖的厚度和尺寸 1、在砖的厚度上,因烧结砖的强度要比水泥砖高很多,在铺装的时候可以考虑用40㎜铺人行步道,50㎜铺车行道及消防通道,60㎜铺重型车道。 2、因烧结砖在1100℃至1200℃高温的环境下烧结而成,所以烧结砖都存在自然地尺寸误差。烧结砖铺装过程中砖与砖应留2㎜左右的缝隙,这样铺装的效果要更理想。 中节能国环新型材料有限公司

相关文档
最新文档