乙烯裂解汽油加氢装置设计

乙烯裂解汽油加氢装置设计
乙烯裂解汽油加氢装置设计

乙烯裂解汽油加氢装置

设计

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乙烯裂解汽油加氢装置设计难点浅析

XXXXX

摘要:简要介绍了镇海炼化乙烯工程中70×104 t/a裂解汽油加氢装置的工艺特点,重点分析了装置中脱碳五塔、脱碳九塔、二段进料换热器、塔九加氢反应器的设计难点,通过分析比较,寻找适合镇海裂解汽油加氢装置的设计方案。

关键词:裂解汽油加氢脱碳五塔脱碳九塔二段进料换热器塔九加氢反应器设计难点1 镇海裂解汽油加氢装置简介

概述

镇海炼化裂解汽油加氢装置是镇海炼化100×104 t/a乙烯工程中的配套装置之一。本装置采用中国石化工程建设公司(SEI)的裂解汽油加氢工艺技术,加工乙烯装置副产的粗裂解汽油,生产C6~C8加氢汽油,为芳烃抽提装置提供原料,处理能力为70×104 t/a。

在国内乙烯裂解汽油加氢工艺技术中,技术专利商有很多家,但是工艺流程大同小异,分为全馏分加氢和中心馏分加氢两种工艺。本装置按中心馏分加氢设计,采用三塔三反流程,即脱碳五塔系统、脱碳九塔系统、碳九加氢系统、一段加氢系统、二段加氢系统和稳定塔系统。经过两段加氢后得到加氢汽油(C6~C8中心馏分)作下游乙烯芳烃抽提装置原料,副产品C5不加氢直接出装置,C9可经过一段加氢或不加氢作为产品出装置。

裂解汽油的主要组成

镇海炼化100×104 t/a乙烯的原料方案,共有三种,分别为CASE1、CASE1A、CASE2。ABB Lmmus公司模拟的裂解组成中,粗裂解汽油的组成分布见表1。

表1 粗裂解汽油组成 %

一般而言,在C5馏分中双烯烃(双环戊二烯、异戊二烯、间戊二烯)约占%,在C8馏分中苯乙烯占%,在C9+馏分中甲基苯乙烯、双环戊二烯占%。这些组分都是极易自聚的物质。

裂解汽油加氢装置的主要流程

从乙烯裂解装置来的粗裂解汽油先后进入脱碳五塔、脱碳九塔,分别脱去C5-轻组分、C9+重组分,中心馏分(C6~C8)进入一、二段加氢反应系统进行加氢,最终得到合格的加氢汽油产品。脱碳九塔塔釜的C9+重组分,进入碳九加氢系统,得到加氢的碳九副产品,见图1。

图1 裂解汽油加氢装置流程

2 镇海裂解汽油加氢装置的主要设计难点

脱碳五塔和脱碳九塔的设计

在裂解汽油组分中,含有大量双烯烃(双环戊二烯、异戊二烯、间戊二烯)、苯乙烯、甲基苯乙烯、双环戊二烯等极易自聚的物质,这就给脱碳五塔和脱碳九塔的设计和实际生产操作带来很大的挑战。裂解汽油加氢装置中的脱C5塔和脱C9塔的设计难度主要在塔盘的设计和选型上。塔盘的好坏直接影响到装置的运行周期和经济效益,下面根据国内其它装置生产实际来浅析设计难点。

在国内的不少乙烯装置中,裂解汽油加氢是乙烯装置中的一个工段,乙烯装置和裂解汽油加氢装置都是引进的。引进的脱C5塔和脱C9塔一般都是浮阀塔。浮阀种类略有不同,有V-1型(国内称F1型)和T型(国内称十字架)浮阀。V-1型用在脱C5塔和脱C9塔中,如金山、扬子、齐鲁石化公司的裂解汽油加氢装置,而T型浮阀阻力降较小,但造价稍贵,只用在负压操作的脱C9塔中,如燕山石化的裂解汽油加氢装置。

在20世纪90年代初期,随着乙烯装置普遍扩能改造,裂解汽油加氢装置也随之扩能。在1992年前后,上海石化公司的脱C5塔,为了扩能的需要,曾用规整填料来改造原有的浮阀板。改造初期,确实达到了扩能的目的,且塔的压力降减少,塔釜温度还下

降了。但好景不长,仅仅3个月左右的时间整个塔的规整填料全部堵死,无法生产,被迫停车,只好废弃全部填料,恢复成板式塔。

此后,国内裂解汽油加氢装置的扩能改造中,脱C5塔和脱C9塔普遍用板式,但是有二种选择。其一是仍用浮阀塔,但浮阀不仅是F1型,而且采用导向条型浮阀,即在条型浮阀上开孔,开孔方向朝着降液管。这种浮阀液面梯度及塔板压降较F1型阀小,通量大。如齐鲁、金山、扬子石化的扩能改造采用了此方案。其二是选用斜孔塔板。斜孔塔板是清华大学开发的,它的特点是板上液层低而均匀,塔板压降较浮阀板小1/3,通量大。斜孔塔板经过一年操作后,塔板上无自聚物堆积,当连续操作三年,塔釜的泵入口过滤器进行多次清理,但塔的操作仍如开车时一样,塔板不受自聚物的影响。斜孔塔板在燕山石化裂解汽油加氢装置中得到了良好的应用。

茂名石化的裂解汽油加氢装置可以说和燕山石化是殊途同归。茂名石化的脱C5塔最初的流程是在一段加氢反应器的后面,即裂解汽油中的双烯烃已被加氢成单烯烃,其自聚的倾向已大为减少,故脱C5塔的设计压力为 MPa,塔釜温度为140~150 ℃,经扩能改造后,操作压力为 MPa,塔釜温度为130 ℃左右。由于既要扩能又要利用原塔,因此压力不能降低(否则气相负荷大为增加,原塔能力不够),未经一段加氢的C5馏分在MPa和釜温140~150 ℃的条件下,该塔操作的最长时间不超过6个月,最短时仅2~3个月,就是由于C5和苯乙烯等的自聚而堵塞塔板,无法继续生产。在这种情况下,把原来的浮阀塔板改为斜孔板,这样脱C5塔可连续生产一年以上。尽管塔板上流动缓慢的区域已经有许多自聚物,在降液管的边角上,事后发现有4 cm厚的自聚物,但生产仍可进行。

对于脱C9塔,由于分离的物料中含有大量的苯乙烯、甲基苯乙烯和双环戊二烯等物质,也存在自聚的问题,但该塔由于物料沸点较高,在图1的流程中普遍采用负压操

作,保持塔釜温度在140 ℃左右。从实际生产情况看,此塔自聚倾向比脱C5塔轻。虽然这样,燕山石化还是把原来的T型浮阀改为斜孔板。但是目前兰州石化的小乙烯装置中脱C9塔因扩能需要,已把浮阀塔改为规整填料,操作已经一年有余。兰州石化扩建的大乙烯装置中,脱C9塔也采用规整填料,已于2006年11月开车。规整填料的压降低、通量大,采用规整填料后,塔釜温度会有所下降。兰州石化的二座脱C9塔采用规整填料,在国内是一个新的尝试,若能长周期运转(即连续生产3~5年,不被堵塞),无需更换填料,这将会为裂解汽油加氢装置开出一片新的天地。上述现象使人们对问题的认识更加深刻,对有自聚倾向的物料应十分注意它在何种条件下发生自聚。如苯乙烯装置中的苯乙烯精馏塔在苯乙烯的浓度大于90%仍普遍使用规整填料,这说明苯乙烯在这种条件下不会发生自聚,造成塔的堵塞。

为考虑今后增加碳八抽提苯乙烯装置的可能性,镇海乙烯裂解汽油加氢装置脱碳九塔,从塔系统的设计上,考虑了既能够满足塔顶馏出C6~C8、塔底馏出C9+馏分(设计工况),又能够满足塔顶馏出C6~C7、塔底馏出C8~C9+馏分(能够操作)的要求。

二段进料换热器的设计

二段进料换热器是裂解汽油加氢装置中的重要设备之一,是二段加氢反应器出料与进料进行换热为二段加氢反应初期提供热量。二段进料换热器的型式和换热效率直接影响到装置正常运行时二段进料加热炉的停开,对装置能耗有很大的影响。一般而言,该换热器有以下四种型式:(1)单台立式单管程纯逆流换热器;(2)多台串联的常规管壳式换热器;(3)多台卧式串联换热器(单管程浮头式、纯逆流);(4)单台立式板壳式换热器。

根据目前掌握的资料,国内的几套裂解汽油加氢装置中大部分采用的二段进出料换热器为第一、第二的型式。以上四种换热器型式各有优缺点,比较如下:

(1)单台立式单管程纯逆流换热器的特点是:换热效率高;运行稳定后可以停用下游的二段进料加热炉,从而节省燃料气(初步测算,镇海裂解汽油加氢装每年可节省燃料气2 000 t);占地面积少。但设备投资较高,造价大概1 360万元(比多台串联型式多出约800万元);虽然检修周期长(数年检修一次),但检修时换热管束的抽出不方便。

(2)多台串联常规管壳式换热器的特点是:设备投资少,造价大概500万元;操作及维修简便。相对而言,换热效率比立式的低;不能停用二段进料加热炉,燃料气消耗相对较大。

(3)多台卧式串联(单管程浮头式、纯逆流)特点:制造成本低、管壳侧均可清洗,造价大概为400万元;与立式换热器相比检修相对容易,换热效果界于单台立式单管程纯逆流换热器与多台串联常规管壳式换热器之间,运行稳定后可以停用下游的二段进料加热炉,达到节省燃料气的目的,降低装置能耗;但在同样工艺条件下,换热面积比立式换热器大,设备阻力降较大。

(4)立式板壳式换热器特点:换热效果好、占地面积小、阻力降较小;但造价高,大概为850万元;流通面积小、抗堵性相对较差,在国内汽油加氢装置上还有待实践的检验。

根据以上四种换热器型式的方案比较,目前,镇海乙烯裂解汽油加氢装置二段进出料换热器采用第三种型式,即多台卧式串联换热器(单管程浮头式)进行工程设计。

碳九加氢反应系统的设计

根据目前碳九加氢反应的发展情况,尚没有发现国外的碳九加氢的工业化装置。国内仅在燕山石化和茂名石化各有一套碳九加氢装置,但规模较小,且原料均为切除C10以上馏分的精C9原料。而镇海乙烯裂解汽油加氢装置中碳九加氢单元,不但规模大,

而且碳九加氢的原料是由脱碳九塔釜直接来的含C10以上重组分的C9+馏分,组分更为复杂,给工程设计带来更大的挑战。

碳九加氢单元有如下的特点:

(1)碳九加氢的反应热较高,初期反应温升在100℃以上。

(2)碳九加氢要求高氢油比、高循环比、低空速。

根据碳九加氢的特点,由于高氢油比、高循环比、低空速,相对加氢反应器床层压降比较大,在本装置工艺设计中,反应器物料的进料方式可分为上进式(即加氢物料从反应器顶部进入)和下进式(即加氢物料从反应器底部进入)。其中上进式进料方式,物料在催化剂床层中气相为连续相,称为滴流床;下进式进料方式,物料在催化剂床层中液相为连续相,称为鼓泡床。两中进料方式比较中,下进式相对床层压降小(一般比上进式小~ MPa),物料分布均匀,不易产生沟流现象,催化剂活性利用率相对较高,但物料中的水含量对催化剂影响较大。由于脱碳九塔为负压操作,操作温度在140 ℃左右,碳九物料中几乎不含水。综合下进式的特点,本装置碳九加氢反应器采用下进式的进料方式,这样既可降低反应器床层压降,减少能耗,也可物料在催化剂床层中分布更加均匀,提高催化剂活性的利用率。

3 结论

(1)脱碳五塔和脱碳九塔的设计中,由于物料含有大量的双烯烃、炔烃等极易自聚的物质,这给脱碳五塔和脱碳九塔的设计和实际生产操作带来很大的挑战,对于这两个塔在设计中采用不同型式的塔盘,将直接影响到装置的运行周期,影响装置运行的经济效益。

(2)二段进出料换热器的设计型式、换热效果的好坏,直接影响装置中二段进料加热炉的运行、投资及装置运行时的能耗。

(3)碳九加氢系统高氢油比、高循环比、低空速,相对加氢反应器床层压降比较大的特点,采用下进式的进料方式,可以降低反应器床层压降,减少能耗。

汽油加氢装置工艺流程培训教案

汽油加氢装置工艺流程培训教案 1 汽油加氢装置简介 1.1 概况 乙烯装置来的裂解汽油(C5—C9馏份)中含有大量的苯、甲苯、二甲苯等芳烃成份,是获得芳烃的宝贵原料。裂解汽油中除芳烃外,还含有单烯烃,双烯烃和烯基芳烃,还含有硫、氧、氮杂质。由于有不饱和烃的存在,裂解汽油是不稳定的。裂解汽油加氢的目的就是使不饱和烃变成饱和烃,并除去硫、氮、氧等杂质,为芳烃抽提装置提供稳定的高浓度芳烃含量的原料—加氢汽油。 1.2 原辅料及成品的特性 本装置在工艺上属于易燃、易爆、高温生产线,易发生着火、爆炸和气体中毒等事故。 裂解汽油为淡黄色芳香味挥发性液体,是芳香族和脂肪碳氢化合物的混合体。主要是由苯、甲苯、二甲苯、乙苯及C5-C9以上烃类组成。对人体存在危害作用。 氢气是种易燃易爆气体。氢气与空气混合,爆炸范围为4-74%(V)。 加氢汽油主要是由由苯、甲苯、二甲苯、乙苯及C5-C8饱和烷烃组成,对人体也存在危害作用。 过氧化氢异丙苯为无色或黄色油状液体,有特殊臭味,易分解引起爆炸。 硫化氢属于高危害毒物,密度比空气重,能沿地面扩散,燃烧时会产生二氧化硫有毒蒸汽,对人体存在危害作用。 2 工艺流程简介

2.1工艺特点 汽油装置采用国产化汽油加氢技术,其生产方法是先切除C 5馏份和C 9馏份,剩下的C 6—C 8馏份进行一段加氢,二段加氢,最终得到芳烃抽提的原料—加氢汽油。 2.2装置组成 汽油加氢装置由以下三部分组成: A :预分馏单元(主要包括切割C 5、脱砷、切割C 9) B :反应单元(主要包括一段加氢、二段加氢、压缩、和过热炉) C :稳定单元(主要包括脱硫化氢系统) 2.3工艺说明 2.3.1生产方法 利用裂解汽油中各组分在一定温度、压力的条件下,其相对挥发度不同,采用普通精馏的方法,将C 5馏份和沸点在其以下的轻馏份、C 9馏份和沸点在其以上的重组份,通过脱C 5塔和脱C 9塔分离,得到C 6—C 8馏份,然后通过钯或镍系催化剂和钴钼催化剂,进行选择性二次加氢,将C 6—C 8馏份中的不饱和烃加氢成饱和烃,并除去其中的有机硫化物、氧化物、氯化物,其主要化学反应有: (1)双烯加氢,在一段反应器进行。例如: (2)单烯及硫、氧、氮、氯化物加氢,在二段反应器进行。 例如: H 3C-CH=CH-CH=CH-CH 3+H 2 H 3C-CH=CH-CH 2-CH 2-CH 3 Pa Al 2O 3 CH 3-CH 2-CH=CH-CH 2-CH 3+H 2 CH 3-(CH 2)4-CH 3 Co+Mo Al 2O 3

乙烯裂解炉工作流程

管式炉裂解 guanshilu liejie 管式炉裂解 pyrolysis in tubular furnace 石油烃通过管式裂解炉进行高温裂解反应以制取乙烯的过程。它是现代大型乙烯生产装置普遍采用的一种烃类裂解方法。 管式炉裂解生产乙烯的工艺已有60多年的历史。管式裂解炉是其核心设备。为了满足烃类裂解反应的高温、短停留时间和低烃分压的要求,以及提高加热炉的热强度和热效率,炉子和裂解炉管的结构经历了不断的改进。新型的管式裂解 炉的热强度可达290~375MJ/(m h),热效率已可达92%~93%,停留时间可低于0.1s,管式炉出口温度可到900℃,从而提高了乙烯的产率。 工艺流程可分为裂解和急冷-分馏两部分(图1[管式炉裂解工艺流程]

①裂解裂解原料经预热后,与过热蒸汽(或称稀释蒸汽)按一定比例(视原料不同而异)混合,经管式炉对流段加热到500~600℃后进入辐射室,在辐射炉管中加热至780~900℃,发生裂解。为防止高温裂解产物发生二次反应,由辐射段出来的裂解产物进入急冷锅炉,以迅速降低其温度并由换热产生高压蒸汽,回收热量。 ②急冷-分馏裂解产物经急冷锅炉冷却后温度降为350~600℃,需进一步冷却,并分离出各个产品馏分。来自急冷锅炉的高温裂解产物在急冷器与喷入的急冷油直接接触,使温度降至200~220℃左右,再进入精馏系统,并分别得到裂解焦油、裂解柴油、裂解汽油及裂解气等产物。裂解气则经压缩机加压后进入气体分离装置。 裂解原料和产品分布最初,美国管式炉裂解原料是用天然气、油田伴生气和炼厂气中回收的轻质烃,其中主要含有乙烷、丙烷、丁烷及碳五馏分。50年代,西欧和日本的石油化工兴起,由于缺乏石油及天然气资源,因而采用石脑油作裂解原料。60年代后,又相继开发以轻柴油、重柴油和减压瓦斯油为原料的裂解技术,扩大了裂解原料来源。对于不同的原料,裂解工艺参数不同、在适宜条件下的裂解产品分布也各异(见表[不同原料管式炉裂解产品

催化裂化汽油的选择性催化加氢脱硫技术

催化裂化汽油的选择性催化加氢脱硫技术 孙爱国 汪道明 中国石油化工股份有限公司安庆分公司(安徽省安庆市246001) 摘要:论述了催化裂化汽油选择性加氢脱硫技术的现状和发展趋势,着重介绍了催化裂化汽油选择性加氢催化剂的制备、影响选择性的若干因素,以及选择性加氢脱硫工艺技术的进展。对选择性加氢技术与临氢改质技术的差异、选择性加氢工艺与其它工艺的组合应用等问题也进行了讨论。 主题词:催化裂化 汽油料 加氢脱硫 述评 我国催化裂化(FCC)加工能力占二次加工能力比例较大,大部分炼油厂其它二次加工手段欠缺,使得我国汽油总合与国外有很大不同,一般FCC汽油组分占汽油总合的70%~80%,部分炼油厂甚至超过85%。而国外汽油一般来自FCC 34%、催化重整33%、以及烷基化、异构化、醚化和叠合共约33%。我国汽油中的硫和烯烃主要来自FCC汽油组分,因此与国外相比我国车用汽油具有高硫、高烯烃的特点。 通过调整FCC操作,应用降烯烃催化剂如G race公司的RFG催化剂和石油化工科学研究院(RIPP)的G OR催化剂、降烯烃助剂,降烯烃的FCC工艺如RIPP的MIP工艺等手段可以降低FCC汽油中的烯烃含量;通过降低重整操作的苛刻度、提高重整原料的切割点,切除苯的前身物———甲基环戊烷和环己烷,可以有效降低汽油的芳烃和苯含量。但是目前尚没有办法仅通过应用新型催化剂或仅对工艺参数进行调整即可使FCC 汽油的硫含量大幅降低。FCC汽油脱硫成为生产清洁汽油的关键问题。 1 降低FCC汽油硫含量的技术[1~2] 目前正在研究或已得到工业应用的FCC汽油脱硫技术有多种。如FCC原料加氢预处理;改进FCC催化剂;生物脱硫和吸附脱硫等。 2 FCC汽油加氢脱硫技术的比较 临氢改质技术是在对FCC汽油深度加氢脱硫后,通过选择性裂化或异构化等手段使汽油辛烷值恢复。如Exx onM obil公司有多篇专利通过应用ZS M25分子筛选择性裂化低辛烷值的直链烷 烃,使FCC汽油因深度加氢、烯烃大量饱和造成的辛烷值损失得到恢复。该公司开发的OCT2 G AI N T M工艺宣称不仅能够有效脱除FCC汽油中的硫,还能够控制产品的辛烷值。而UOP公司的IS A L工艺和RIPP的RI DOS则是通过对经过加氢脱硫处理的FCC汽油进行异构化处理使受到损失的辛烷值得到恢复。两者的区别在于前者对汽油进行深度加氢脱硫,后者则是进行选择性加氢脱硫。 临氢改质技术可以直接生产硫含量低于30μg/g的清洁汽油组分,而且汽油的烯烃含量很低,辛烷值损失可以控制,但一般氢气消耗很大;操作温度高达350℃;操作空速较低,加氢和改质两段催化剂总空速一般为0.5~1.5h-1,使得催化剂用量增大;在高温下,即便是异构化处理,也会发生比较剧烈的裂化反应,汽油收率会显著降低,依据辛烷值恢复程度不同,收率损失在5%~15%,这些问题使得临氢改质技术的操作费用和生产成本大为增加。 选择性加氢脱硫从提高加氢催化剂的选择性出发,在大量脱除汽油含硫化合物的同时,尽量减少高辛烷值烯烃组分的饱和。一般反应温度较低(多低于300℃);空速较高(液时空速为2~4 h-1);加氢氢耗较低,催化剂用量较小,操作费用相对较少。由于烯烃饱和较少,对国内炼油厂而言,使用选择性加氢脱硫技术,在辛烷值损失可接受的操作条件下难以使汽油烯烃体积含量符合低 收稿日期:2002-03-26。 作者简介:孙爱国,工程师,1993年毕业于江苏石油化工学院石油加工专业,从事加氢工艺及清洁燃料生产工艺研究工作。 炼 油 设 计 2002年10月 PETRO LE UM REFI NERY E NGI NEERI NG 第32卷第10期

乙烯裂解(题库)

乙烯裂解 初级一 填空题 (A) 328. 1米=( )毫米=( )微米=( )丝=( )埃 (K HD:工艺基本知识) 答文:1000 10 10 10 330. 1公顷=( )米=( )市亩,1英亩=( )市亩。 (KHD: 工艺基本知识) 答文:10 15 6.072 336. 汽化有两种方式,即( )和( )。 (KHD:工艺基本知识) 答文:蒸发沸腾 339. 分子组成和分子量完全相同,但分子结构不同,因而性 质也不同的物质叫做( )。 (KHD:工艺基本知识) 答文:同分异构体 341. 烷烃的分子通式是( ),烯烃分子的通式是( )。 (KHD:工艺基本知识) 答文:CnH n+2 Cn H2n 351. 热量传递的基本方式有( ),( ),( )。 (KHD:工艺基本知识) 答文:导热对流传热辐射传热 352. 一种或几种物质分散到另一种物质中,形成的均匀、稳 定的混合物叫( ),被溶解的物质叫( ),而溶解 其它物质的物质叫( )。 (KHD:工艺基本知识) 答文:溶液溶质溶剂 353. 在分子中只有( )和( )两种元素所组成的有机化合物 ,叫做烃、 (KHD:工艺基本知识) 答文:碳氢 354. 石油化学工业是指以( )和( )为原料的化学工 业。 (KHD:工艺基本知识) 答文:石油天然气 420. 分散控制系统的含义是( ) (KHD:工艺基本知识) 答文:风险分散 425. 生产乙烯的原料,按其状态可分为( )与( )两大类,按其密度,则可分为( )与( )。 (KHD:工艺基本知识)

答文:气态原料液态原料轻质原料重质原料 431. 某班的工艺参数有200个,当班共记录三次,经检查发现有6个错误,则其差错率为( )。 (KHD:工艺基本知识) 答文:1% 441. 蒸汽--空气烧焦的反应方程式为( )。 (KHD:工艺基本知识) 答文:C+O →CO +Q 451. 废热锅炉的作用,一是( )( ),二是( )。 (KHD:工艺基本知识) 答文:将裂解气降温,减少二次反应 回收裂解气的热量 456. 水蒸汽稀释比,俗称水油比,是指( )( )。 (KHD:工艺基本知识) 答文:稀释蒸汽与裂解原料重量流量之比值。 531. 工艺水质量上的控制要求是( );( )。 (KHD:工艺基本知识) 答文:PH值在8-9 油含量比较低 534. 新区急冷水循环泵的超速跳闸值是( )(根据本装置实际情况回答)。 ( KHD:工艺基本知识) 答文:4180转/分 536. 裂解汽油干点的设计值为( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:<205℃ 537. 当新区急冷系统压力过低时,可由PIC-1121补入( )或( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:N 燃料气 539. 老区急冷油循环泵出口压力低联锁值是( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:6.86Kg/cm (表) 540. 丙烷精制的原料来自( )。 (KHD:工艺基本知识) 答文:丙烯精馏塔塔釜 541. 对GK-V型炉而言,辐射段炉管管壁温度不应超过( )℃,上、下温差不应超过( )℃,混合原料预热段(下段)最大壁温不应超过( )(根据本装置实际情况回答)。 (KHD:工艺基本知识) 答文:1125 30 750 543. 新区高压锅炉给水中注入的药剂是( ),其分子式为( )。 (KH D:工艺基本知识) 答文:磷酸钠 Na PO ·12H O 566. 所谓三级安全教育指( )、( )、( )。 (KHD:工艺基

40万吨汽油加氢装置开工及运行总结

40万吨/年汽油加氢脱硫装置开工运行总结 张超群崔昕宇 重整加氢车间 一、装置概况 中国石油玉门油田公司炼油化工总厂40万吨/年汽油加氢装置,采用中国石油化工研究院研发的DSO技术,运用低压固定床工艺,以催化汽油为原料,对催化汽油进行预加氢、加氢精制和加氢改质,以改善汽油产品质量,满足全厂调和生产国Ⅳ汽油产品的需求,并为满足全厂调和生产国Ⅴ汽油产品打下基础。根据玉门炼化总厂催化汽油的生产情况,本装置预加氢部分设计规模为40万吨/年,操作弹性为60%~110%,设计年开工时间8400h。玉门炼化总厂40万吨/年汽油加氢装置由中国石油华东勘察设计院EPC项目总承包,于2013年9月28日装置建成中交,炼化总厂从9月29日开始组织装置投料试车。 二、开工情况 1、非临氢系统主要开工过程: 9月29日至10月4日进行分馏、稳定系统吹扫;10月5日至7日原料脱砷、分馏、稳定系统试压;10月8日至9日单机试运后水联运;10月10日至11日冷油联运;10月12日热油联运,带分馏塔底循环加热炉烘炉。10月16日分馏系统冲压至操作压力0.7MPa、稳定系统冲压至操作压力0.9MPa,气密结束。10月18日E-1205密封面整改完毕,稳定塔冲压做气密。10月19日分馏塔底再沸炉烘炉完毕。10月22日18:00装置广播对讲系统调试完毕。10月23日至30日进行非临氢系统检查,并对发现问题及时整改。 2、临氢系统主要开工过程: 9月28日至10月2日临氢系统爆破吹扫;10月3日至5日临氢氮气置换,系统1.0MPa氮气气密、试压、整改漏点,并进行新氢压缩机、循环氢压缩机试运;10月6日至9日临氢系统2.2MPa 氮气气密、试压、整改漏点;10月9日至13日加氢脱硫产物加热炉烘炉、反应系统升温干燥;10月13日至15日,各反应器催化剂的装填完毕;10月16日脱砷剂装填完毕。10月17日20:00启动循环氢压缩机,预加氢催化剂、加氢脱硫催化剂开始干燥;10月20日19:50,预加氢催化剂和加氢脱硫催化剂干燥结束;10月21日8:20,开始干燥后处理催化剂;10月22日22:30,后处理催化剂干燥结束;10月23日8:30,开始脱砷剂干燥;10月24日15:30 脱砷剂干燥结束;10月25日至28日,装置所有工艺联锁逻辑回路调试完毕。11月6日至9日,预加氢催化剂、加氢脱硫催化剂、后处理催化剂硫化结束,20:10导通开工正向流程。21:10预加氢反应器开始充液。11月10日4:50切进催化汽油原料,调整操作参数。 11月11日20:00,R-1101入口温度升至80℃,R-1201入口升至215℃,R-1202入口温度升至260℃,汽油产品总硫降至48.95ppm,硫醇硫2ppm,辛烷值损失小于1,产品质量达到设计值,

上海石化-汽油选择性加氢脱硫工艺(RSDS-Ⅱ)的应用

汽油选择性加氢脱硫工艺(RSDS-Ⅱ)的应用 屈建新 (中国石化上海石油化工股份有限公司上海 200540) 摘要:第二代催化裂化汽油选择性加氢脱硫技术(简称RSDS-Ⅱ技术)在上海石油化工股份有限公司进行了工业应用。标定结果表明,RSDS-II技术具有非常好的脱硫选择性,在深度脱硫条件下 辛烷值损失小,完全可以满足生产欧IV/沪IV(S<50μg/g)清洁汽油的需要。本文还就生产中遇 到的问题进行了探讨,并制定了相应的措施。 关键词:催化裂化汽油加氢脱硫应用 1 引言 为了降低汽车尾气排放以保护环境和人类健康,世界各国的车用汽油质量标准越来越严格,其中硫含量和烯烃含量降幅最大。 汽油质量标准的不断升级,使炼油企业的汽油生产技术和工艺面临着越来越严峻的挑战。上海石化的成品汽油中催化裂化汽油占60%以上,重整汽油约占10%,加氢裂化汽油约占13%,其他为汽油高辛烷值调和组分如甲苯、二甲苯、甲基叔丁基醚等,有时还调和少量直馏汽油。上海石化催化裂化稳定汽油的烯烃含量在40v%~50v%、硫含量400~500μg/g,而其他的汽油调和组分中的硫和烯烃含量均很低。由于上海石化所产的催化裂化汽油中部分烯烃被抽提出来作为化工用料,调和汽油中的烯烃含量能够满足要求,因此,上海石化汽油质量升级的关键是降低催化裂化汽油中的硫含量。 2003年上海石化采用石油化工科学研究院(RIPP)开发的第一代催化裂化汽油选择性加氢脱硫(RSDS-Ⅰ)技术进行FCC汽油脱硫。标定结果表明,在催化裂化汽油烯烃体积分数约50%的情况下,RSDS汽油产品脱硫率为79.7%时(生产硫含量小于150μg/g的汽油为目的),RON损失0.9个单位;RSDS汽油产品脱硫率为91.8%时(生产硫含量小于50μg/g的汽油为目的),RON损失1.9个单位[1]。该工艺为上海石化满足2005年后汽油硫含量小于150μg/g的标准提供了技术保证。 2010年世博会在上海举行,上海市提出绿色世博的理念,要求车用汽油的硫含量在2010年前达到50μg/g以下。这意味着,上海石化的FCC汽油的脱硫率要达到90%以上,如果继续采用RSDS-Ⅰ技术,虽然可以达到目的,但汽油辛烷值的损失也要达到1.9个单位,经济效益受到很大的影响。因此,上海石化应用新的FCC汽油选择性加氢脱硫技术(RSDS-Ⅱ),达到了深度脱硫,同时降低辛烷值损失的目的。 2 工艺流程和催化剂 上海石化50万吨/年RSDS-Ⅱ装置的原则流程见图1。来自催化裂化汽油稳定塔塔底的催化裂化汽油(以下简称FCC汽油原料)在分馏塔中被切割为轻馏分(LCN)和重馏分(HCN),轻馏分进入汽油脱硫醇装置进行碱抽提脱硫醇,重馏分进入加氢单元进行选择性加氢脱硫,然后抽提硫醇后的轻馏分和加氢后的重馏分再混合进入固定床氧化脱硫醇装置,产品称为RSDS-Ⅱ汽油。RSDS-Ⅱ装置加氢反应部分采用石科院开发的RSDS-21、RSDS-22催化剂(主催化剂)。与RSDS-I比较,RSDS-Ⅱ在脱硫反应器前增加选择性脱二烯烃反应器(内装RGO-2

加氢装置火灾爆炸危险性及安全措施(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢装置火灾爆炸危险性及安全 措施(通用版)

加氢装置火灾爆炸危险性及安全措施(通用 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 作业五区8套装置,基本都有加氢工艺,以加氢工艺装置为例,汽柴油加氢装置含有多种可燃气体,且有高温、中压的特点,因而具有易燃易爆的特点。工艺物料中的氢气、燃料气、汽柴油等这些物质具有强爆炸危险性和穿透性;而主要危险性为火灾爆炸危险性,以下主要分析物料的火灾爆炸危险性;工艺装置火灾危险性;工艺设备的火灾危险性。通过对主要危险性分析,结合作业05年以来,发生的火灾情况,从装置的工艺、设备及安全管理方面提出综合控制措施,降低装置发生火灾的概率,提高装置安全运行。 一、汽柴油加氢装置火灾爆炸危险性 1物料的火灾爆炸危险性 汽柴油加氢装置以焦化汽柴油、催化柴油和直馏柴油为原料,在催化剂作用下,经高温、中压、临氢反应,并在分馏塔内进行脱硫化氢以及汽、柴油的分离,以生产高质量的汽柴油产品。所用燃料气来

裂解汽油加氢(汇编)

第二节裂解汽油加氢 一、裂解汽油的组成 裂解汽油含有C6~C9芳烃,因而它是石油芳烃的重要来源之一。裂解汽油的产量、组成以及芳烃的含量,随裂解原料和裂解条件的不同而异。例如,以石脑油为裂解原料生产乙烯时能得到大约20%(质、下同)的裂解汽油,其中芳烃含量为40~80%;用煤柴油为裂解原料时,裂解汽油产率约为24%,其中芳烃含量达45%左右。 裂解汽油除富含芳烃外,还含有相当数量的二烯烃、单烯烃、少量直链烷烃和环烷烃以及微量的硫、氧、氮、氯及重金属等组分。 裂解汽油中的芳烃与重整生成油中的芳烃在组成上有较大差别。首先裂解汽油中所含的苯约占 C6~C8芳烃的 5 0%,比重整产物中的苯高出约5~8%,其次裂解汽油中含有苯乙烯,含量为裂解汽油的3~5 %,此外裂解汽油中不饱和烃的含量远比重整生成油高。 二、裂解汽油加氢精制过程 由于裂解汽油中含有大量的二烯烃、单烯烃。因此裂解汽油的稳定性极差,在受热和光的作用下很易氧化并聚合生成称为胶质的胶粘状物质,在加热条件下,二烯烃更易聚合。这些胶质在生产芳烃的后加工过程中极易结焦和析碳,既影响过程的操作,又影响最终所得芳烃的质量。硫、氮、氧、重金属等化合物对后序生产芳烃工序的催化剂、吸附剂均构成毒物。所以,裂解汽油在芳烃抽提前必须进行预处理,为后加工过程提供合格的原料。目前普遍采用催化加氢精制法。 1.反应原理 裂解汽油与氢气在一定条件下,通过加氢反应器催化剂层时,主要发生两类反应。首先是二烯烃、烯烃不饱和烃加氢生成饱和烃,苯乙烯加氢生成乙苯。其次是含硫、氮、氧有机化合物的加氢分解(又称氢解反应),C—S、C—N、C—O键分别发生断裂,生成气态的H2S、N H3、H2O以及饱和烃。例如: 金属化合物也能发生氢解或被催化剂吸附而除去。加氢精制是一种催化选择加氢,在

3乙烯裂解装置

概论 世界上有六大乙烯生产技术,它们分别是鲁姆斯公司乙烯技术、斯通-韦伯斯特公司乙烯技术、凯洛格公司乙烯生产技术、布朗公司乙烯生产技术、荷兰动力技术国际公司乙烯技术、林德公司乙烯技术。 Lummus公司的乙烯技术是国内熟知的技术,我国70年代中后期引进的燕山、齐鲁、扬子、上海四套30万吨乙烯装置,均采用Lummus公司的乙烯技术,80年代中后期引进的盘锦、抚顺种中原乙烯装置好采用Lummus公司的乙烯技术。在全世界范围内采用。鲁姆斯公司乙烯技术的装置其总生产能力约占世界乙烯生产能力的45%左右。 斯通-韦伯斯特(S&W)公司是美国十大工程公司之一,在乙烯技术方面,与美国的Lummus公司、Kellogg公司三足鼎立。S&W公司已在世界上建成乙烯装置100多套,总生产能力约占世界乙烯总生产能力的22%左右。S&W公司的裂解炉分有V型、W型、M型。我国大庆乙烯装置采用的是S&W公司的16W型裂解炉。1996年建成的茂名30万吨乙烯采用的也是S&W 公司技术。扬巴一体化乙烯装置也采用S&W公司乙烯技术。 美国.凯洛格公司成立于1901年,目前是世界级的工程设计公司。就乙烯技术来说,其最大成就是开发了毫秒炉裂解技术,把物料在裂解炉中的停留时间缩短至秒,突破了秒的大关。我国兰化公司1988年投产建成了5台毫秒炉。 CF布朗公司是1909年成立的一家国际性工程设计和建设公司。其乙烯技术的主要特点是采用高选择性长周期运行的辐射炉管、前加[wiki]氢[/wiki]除炔、前脱丙烷、广泛采用热泵技术、专有的脱甲烷系统等。

荷兰动力技术国际公司(KTI)系目前世界上主要的乙烯厂设计和设备制造公司。近年来该公司与法国德希尼公司和意大利的TPL公司合作在欧州大量建厂,其数量已超过鲁姆斯公司和斯通-韦伯斯特公司。1994年北京东方建成的乙烯装置采用了KTI的乙烯技术。我乙烯装置BA103炉改造也选用了KTI的GK-Ⅵ裂解炉。 林德公司是世界上久负盛名的低温工程公司,成立于1879年。在乙烯技术方面,Linde公司应用专有的低温分离技术,于1931年建成了世界上第一个用低温蒸馏方法从焦炉气中生成乙烯的工厂。60年代前,其基本上没有专有的裂解技术,裂解炉基本上采用其它公司的技术回收系统则采用自己的专利。1960年开始,林德公司开始研究开发管式炉蒸汽裂解技术,1965年采用自己技术建成了较大型的乙烯装置。吉化公司1996年建成投产的30万吨乙烯装置就采用了德国林德公司的专利技术。 乙烯裂解炉 乙烯裂解炉的构造: 乙烯裂解炉分为对流段和辐射段。一般地说,对流段作用是回收烟气余热,用来预热并汽化原料油,并将原料油和稀释蒸汽过热至物料的横跨温度,剩余的热量用来过热超高压蒸汽和预热锅炉给水。在原料预热汽化过程中,注入稀释蒸汽,以降低原料油的汽化温度,防止原料油在汽化过程中焦化。裂解炉对流段每一组盘管主要由换热炉管(光管或翅片管)通过回弯头组焊 而成,端管板和中间管板支持起炉管,有些盘管的进出口通过集箱汇集到一起。每一组盘管的四周再组对上炉墙,则构成一个模块。 乙烯裂解炉要根据工艺特点定制的.目前我们国内的乙烯装置工艺包多是买国外的先进工艺技术专利,裂解炉根据工艺设计由设计方指定的几个厂家进行投标产生. 裂解炉是乙烯装置的能耗大户,其能耗占装置总能耗的50%-60%。降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着能源价格的不断上涨,国内外相关部门均加强了裂解炉节能措施的研究。裂解炉的能耗

汽油加氢装置改造过程的HSE管理(2021年)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 汽油加氢装置改造过程的HSE管 理(2021年) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

汽油加氢装置改造过程的HSE管理(2021 年) 2004年4月,石家庄炼油化工股份有限公司100×104t/a汽、柴油加氢精制装置顺利开工、投产。由于该加氢装置已完全满足生产任务,公司决定将原有的60×104t/a加氢装置改造为催化重汽油选择性加氢脱硫装置。装置改造成功后,可处理重汽油32×104t/a,处理后汽油硫含量将有较大幅度降低,可完全满足欧Ⅱ质量标准,是一项环保改造项目。 为了使整个改造工程安全、如期完成,我们进行了HSE管理,通过预先运用危险源辨识和风险评价以及环境因素识别,辨识出改造施工过程中风险度较大的危险源以及重要环境因素,制定相应的安全措施,确保了装置改造过程的施工安全。 1、32×104t/a汽油加氢装置改造工程概况

根据工艺的要求,本次改造后的流程基本没有变化,增加一套紧急停车控制系统ESD。中控室部分和DCS控制系统利旧不变。原装置的仪表需要更新的,其型号均和过去保持一致。主要设备大部分都利旧,这些设备必须按照《在用压力容器检验规程》的要求进行检验,满足要求后方可使用。因操作条件改变,此次新增一台重汽油产品水冷器(E-305),增上一台原料泵(泵301/3),原有的控制阀和手阀控制改为完全自动控制,工艺管线做相应的改动,催化剂进行更换。此工程吊装、动火交叉作业频繁,参与作业人员多,西临正在运行的100×104t/a加氢装置,其稳定系统、含硫污水线、汽油线及汽油不合格线、污油线,高低压酸性气线、放空线、循环水线运行的100×104t/a加氢装置正在使用,给运行装置的安全生产和施工带来很大的困难。 2、装置常规检修和改造过程中危害识别和环境因素识别 2.1运用HSE管理方法开展风险评价 在施工前期,我们遵循科学性、系统性、综合性、实用性的原则对PSA装置拆除和恢复过程中的危害和环境因素进行了识别,评

乙烯裂解工艺的进展

乙烯裂解工艺的进展 班级:化工11-2班 姓名:郝龙帅 学号:2011010519

乙烯裂解工艺的进展 1、技术进展 1.1 低碳烯烃转化技术 炼厂催化裂化装置和乙烯装置副产的C4和C5馏分、轻质裂解汽油或轻质催化汽油中含有大量C4-8低碳烯烃,可通过催化裂解或烯烃歧化两种工艺,将其转化为丙烯、乙烯。 1.1.1 催化裂解 选择性催化裂解工艺以利安德/KBR公司的Superflex工艺(流化床)和鲁奇公司开发的Propylur工艺(固定床)为代表。Superflex 工艺可将2/3的进料转化为乙烯和丙烯,南非萨索尔技术公司2005年已启动一套装置采用该技术生产丙烯和乙烯。Proloylur工艺可以丁烯、戊烯和己烯为原料,其示范装置已在德国Worringen地区的BP公司装置上运行。此外,UOP与Atofina公司开发的催化裂解工艺OCP已经过示范装置的验证。 1.1.2 烯烃歧化 烯烃歧化工艺是一种通过烯烃双键断裂并重新转换为新烯烃产物的催化反应,主要有鲁姆斯公司的OCT工艺和IFP的Meta-4工艺

等。OCT技术以乙烯和2-丁烯为原料进行歧化生产丙烯,我国上海赛科90万t/a乙烯装置应用了此项技术。据报道,至2008年亚洲将有7家公司采用OCT技术。Meta-4烯烃转化工艺已在我国台湾省中油公司高雄炼厂完成中试验证。 1.2 乙烯技术国产化进展 (1)在裂解技术方面,先后开发成功了CBL-I、Ⅱ、Ⅲ、Ⅳ、V型裂解炉技术,适用于乙烷、石脑油、轻柴油和加氢尾油等原料的裂解,已在辽阳化纤、齐鲁石化、吉化公司、抚顺石化、燕山石化、中原乙烯及天津乙烯获得工业应用。近期又采用CBL技术为齐鲁石化建设了1台9万t/a的乙烷炉和2台6万-8万t/a的液体原料裂解炉。迄今为止,已建设的小于10万t/a的CBL炉共18台,累计生产能力达94万t/a。近年来与鲁姆斯公司合作开发10万t/a大型裂解炉技术,采用合作开发的SL-I、SL-Ⅱ型裂解炉技术已建和在建的裂解炉总能力达300万t/a,其中采用基于CBL技术的SL-I型炉已运行和在建的有4台,天津100t/a乙烯装置的11台10万t/a大型裂解炉正在设计中,镇海100万t/a乙烯的裂解炉也将采用SL-I型技术; (2)开发工艺软件包和相关工程技术,用CBL技术和乙烯工艺软件包成功地完成了中原乙烯和天津乙烯装置的扩能改造; (3)开发分凝分馏塔技术(CFT),并成功地完成了试验验证,已用于装置改造;

汽油加氢技术

汽油加氢技术 主要是加氢脱硫 对于汽油加氢脱硫 按照原料是否加氢前切割,可以分为全馏分汽油加氢脱硫和切割馏分汽油加氢脱硫现在的汽油加氢技术很多。如法国ifp、美国uop 等都有这方面的专利技术。其原理就是加氢脱硫而尽量不饱和烯烃,以减少辛烷值的损失。国内石化研究院有一种技术是先将烯烃芳构化,然后再进行加氢脱硫。 目前比较牛逼的技术:国外就是prime-g+,szorb;国内就是抚研院的oct-m,石科院的rsds;prime-g+:首先进行加氢预处理,解决二烯烃问题,再切割轻重两部分,轻馏分去无碱脱臭,重馏分加氢脱硫,再轻重调合。(原料适应性较好,流程复杂,投资高)cdtech: 一种组合技术,贵金属类催化剂,不适合我国情况。 s-zorb:沸腾床吸附脱硫,辛烷值损失最小,原料适应性强,要

求规模大,投资最大。oct-m:无预处理,直接切割轻重两部分,轻馏分去无碱脱臭,重馏分加氢脱硫,再轻重调合。(工艺简单)rsds:无预处理,直接切割轻重两部分,轻馏分进行碱液抽提(有环保压力),重馏分加氢脱硫,再轻重调合催化剂上活性金属基本上是:co、mo、ni 发生的反应为(以噻吩硫为例):噻吩在催化剂活性金属的催化下,与氢发生反应,生成烃类和硫化氢 技术的关键控制指标:辛烷值损失与硫脱除率 1.国外工艺技术概况 国外f汽油脱硫、降烯烃的主要工艺技术有以下几种:isal(加氢脱硫/辛烷值恢复技术)、octgain(加氢脱硫/辛烷值恢复技术)、scanfining(选择性加氢脱硫工艺)、prime-g和prime-g+(选择性加氢脱硫工艺)、cdhydrocdhds(催化蒸馏加氢脱硫工艺)和s-zorb工艺等。 上述几种工艺技术可以分为固定床加氢技术(含催化蒸馏技术)

裂解汽油加氢第二章操作指南

第二章操作指南 2.1一段反应器系统 控制目标:一反加氢汽油苯乙烯含量:≤0.4%,双烯值:≤1.5。 相关参数:进料量、入口温度、床层温度、内循环量 控制方式:来自乙烯装置和贮罐40-T-106A/B的粗裂解汽油首先通过流量阀F17002控制进入聚结器(10-V-704)脱除夹带的水,然后进入DPG一段进料缓冲罐(10-V-705). DPG进料缓冲罐(10-V-705)具有缓冲反应器(10-R-701A/B)进料流量和组成发生波动的能力,在操作条件发生变化或受到干扰时,能够使操作人员能够采取正确措施. 缓冲罐(10-V-705)在压力控制阀P7001A/B控制氮封压力下进行操作.反应器进料是通过流量控制阀F17004A/B控制的,缓冲罐设有液位指示器LI-17502 和液位报警,缓冲罐底部要定期检查有没有游离水的存在,若有须及时脱水。 在一段反应器10-R-701A/B中,粗裂解汽油在低温液相下被加氢。粗裂解汽油与液相循环物料混合后进入一段反应器10-R-701A/B中,氢气由压力控制阀P17002A/B控制进入一段反应器,在一段反应器内二烯烃、苯乙烯、炔及其他非稳定组分被选择性加氢,来自一段的加氢产品几乎是一个烯烃和石腊的混合物。 随着操作的进程,由于胶质和聚合物在催化剂活性表面上不断积累,使催化剂的活性下降,当活性下降到最高入口操作温度达110℃时,产品质量不能够达到要求时,催化剂必须再生。 一段反应器催化剂的暂时性毒物如:游离水和硫,都能影响催化剂活性,因此操作时要避免游离水进入一段反应器。重金属如:铅能使一段反应器催化剂永久性中毒,但硫中毒使催化剂活性消失可以通过催化剂再生来恢复。 一段反应器中温度的偏差是很小的,然而反应在超温下操作结果会产生温度偏差,这种误操作可以导致芳香族的加氢,它是一个高的放热反应,正常情况下,芳香族是不反应的,当设备中放入新的高活性的催化剂时,出现温度偏差的可能性很大,但此后随着加工时间的积累,这种可能性在递减,当装有新催化剂反应器在开工时,要仔细观察反应器床层温升,如发生温度偏差,装置就要停车。 在操作中,一段反应器的入口操作温度是最重要的操作变量,反应器的入口温度正常调节是产品质量的保证,产品质量通过对苯乙烯含量和双烯值的分析来测定,要调节入口温度以保持二段反应器进料中苯乙烯的含量小于0.4%(wt),二段进料中的双烯值还需小于1.5,双烯值的测试既麻烦,可靠性小,因此苯乙烯含量的测定分析将作为一段反应器性能的更精确的指示。 若一段反应器产品苯乙烯含量超过规范要求,反应器入口温度将要增加,通常入口温度调节1℃,当入口温度过高时,易产生反应器温度偏差,因此要避免在过高的入口温度下操作。 一段反应器加氢过的产品循环起双重作用,一是调节新鲜物料经一段反应器加H2反应放热所引起的温升,二是具有洗涤作用,使催化剂的污染减小到最小。 一段反应器催化剂床层的温升不应超过大约52℃,通常大约是30--50℃,循环液对新鲜进料的

年产30万吨乙烯裂解气脱甲烷系统工艺设计(毕业设计)

摘要 摘要:在乙烯生产中,脱甲烷系统的能量消耗相当的大,大约是整个分离系统能量的50%,确立一个能量消耗低、投资小、流程简单的脱甲烷系统流程相当的重要。这次设计过程中将首先对几种分离方法做简单的比较,然后选择技术成熟、操作稳定、产品纯度高、能耗低的深冷分离法。从能耗来看,在深冷分离的三种流程中,以顺序流程的能耗最低。流程确立后,将要根据已知产品的产量和要求,对整个脱甲烷系统工艺流程进行相应的计算,确定各部分的操作条件,然后对主要的分离设备的工艺尺寸计算,并做出流程图和主设备图。 关键词:乙烯;脱甲烷塔;深冷分离;乙烯生产

Abstract Abstract:In the production of ethylene , energy consumption of demethanizing system is rather remarkable, about accupying the separate system of 50% entirely , establish one energy consumption lower , little invest , the simple flow of demethanizing system is equal to importance. At first, compared to several kinds of separation methods in this design, then choose mature technology , operate stability , and produce product quality, which is separation by deep refrigeration. According to energy consumption, in separation by deep refrigeration include three kinds, but it is the lowest energy consumption of sequential process. After process established, according to the product of output and the request of process requirements, demethanizing system of process flow going on corresponding calculation, and confirm the operation condition of every part, then calculate anyone which are separate equipment, process and dimension. And do the process flow diagram and the main drawing. Keywords:Ethylene; Demethanizer; Separation by deep refrigeration ; Ethylene producing.

乙烯裂解炉的几种节能措施

乙烯裂解炉的几种节能措施 裂解炉是乙烯装置的能耗大户,其能耗占装置总能耗的50%-60%。降低裂解炉的能耗是降低乙烯生产成本的重要途径之一。随着能源价格的不断上涨,国内外相关部门均加强了裂解炉节能措施的研究。裂解炉的能耗在很大程度上取决于裂解炉系统本身的设计和操作水平,近年来,裂解炉技术向高温、短停留时间、大型化和长运转周期方向发展。通过改善裂解选择性、提高裂解炉热效率、改善高温裂解气热量回收、延长运转周期和实施新型节能技术等措施,可使裂解炉能耗显著下降。 1 改善裂解选择性 对相同的裂解原料而言,在相同工艺设计的装置中,乙烯收率提高1%,则乙烯生产能耗大约相应降低1%。因此,改善裂解选择性,提高乙烯收率是决定乙烯装置能耗的最基本因素。通过裂解选择性的改善,不仅达到节能的效果,而且相应减少裂解原料消耗,在降低生产成本方面起到十分明显的作用。 (1)采用新型裂解炉。新型裂解炉均采用高温-短停留时间与低烃分压的设计。20世纪70年代,大多数裂解炉的停留时间在0.4s左右,相应石脑油裂解温度控制在800-810℃,轻柴油裂解温度控制在780-790℃。近年来,新型裂解炉的停留时间缩短到0。2s左右,并且出现低于0.1s 的毫秒裂解技术,相应石脑油裂解温度提高到840℃以上,毫秒炉达890℃;轻柴油裂解温度提高到820℃以上,毫秒炉达870℃。由于停留时间大幅度缩短,毫秒炉裂解产品的乙烯收率大幅度提高。对丁烷和馏分油而言,与0.3-0.4s停留时间的裂解过程相比,毫秒炉裂解过程可使乙烯收率提高10%-15%。 (2)选择优质的裂解原料。在相同工艺技术水平的前提下,乙烯收率主要取决于裂解原料的性质,不同裂解原料,其综合能耗相差较大。裂解原料的选择在很大程度上决定乙烯生产的能耗水平。通过适当调整裂解原料配置结构,优化炼油加工方案,增加优质乙烯原料如正构烷烃含量高的石脑油等供应,改善原料结构和整体品质,在提高乙烯收率的同时,达到节能降耗的目标。 (3)优化工艺操作条件。通过优化裂解炉工艺操作条件,不仅能使原料消耗大幅度降低,也能够使乙烯生产能耗明显下降。不同的裂解原料对应于不同的炉型具有不同的最佳土艺操作条件。对于一定性质的裂解原料与特定的炉型来说,在满足目标运转周期和产品收率的前提下,都有其最适宜的裂解温度、进料量与汽烃比。如果裂解原料性质与原设计差别不大,裂解炉最优化的工艺操作条件可以参照设计值。反之,则需要利用SPYR软件或裂解试验装置对原料重新评价,以确定最佳的工艺操作条件。 2 延长裂解炉运行周期 (1)优化原料结构与工艺条件。裂解原料组成与性质是影响裂解炉运行周期的重要因素。一般含氢量高、低芳烃含量的原料具有良好的裂解性能,是裂解炉长周期运行的必要条件。对不饱和烃含量较高的原料进行加氢处理,是提高油品质量的有效途径。当裂解原料一定时,工艺条件是影响裂解炉运行周期的主要因素。低烃分压、短停留时间和低裂解温度有利于延长裂解炉运行周期。但考虑到

汽油加氢装置改造过程的HSE管理

管理制度参考范本 汽油加氢装置改造过程的HSE管理B

I时'间H 卜/ / 1 / 7 ..胆■

20xx年4月,石家庄炼油化工股份有限公司100Xl04t/a汽、柴 油加氢精制装置顺利开工、投产。由于该加氢装置已完全满足生产任务,公司决定将原有的60X 104t/a加氢装置改造为催化重汽油选择性 加氢脱硫装置。装置改造成功后,可处理重汽油32X 104t/a ,处理后汽油硫含量将有较大幅度降低,可完全满足欧n质量标准,是一项环保改造项目。为了使整个改造工程安全、如期完成,我们进行了HSE 管理,通过预先运用危险源辨识和风险评价以及环境因素识别,辨识 出改造施工过程中风险度较大的危险源以及重要环境因素,制定相应加氢装置改造工程概况根据工艺的要求,本次改造后的流程基本没有变化,增加一套紧急停车控制系统ESD中控室部分和DCS空制系统 的安全措施,确保了装置改造过程的施工安全。1、32 X 104t/a 汽油利旧不变。原装置的仪表需要更新的,其型号均和过去保持一致。主要设备大部分都利旧,这些设备必须按照《在用压力容器检验规程》的要求进行检验,满足要求后方可使用。因操作条件改变,此次新增一台重汽油产品水冷器(E-305),增上一台原料泵(泵301/3 ),原有的控制阀和手阀控制改为完全自动控制,工艺管线做相应的改动,催化剂进行更换。此工程吊装、动火交叉作业频繁,参与作业人员多,西临正在运行的100X 104t/a 加氢装置,其稳定系统、含硫污水线、汽油线及汽油不合格线、污油线,高低压酸性气线、放空线、循环水线运行的100X 104t/a 加氢装置正在使用,给运行装置的安全生产和施工带来很大的困难。

乙烯生产工艺设计论文

摘要: 关键词: 前言 乙烯的生产主要采用蒸汽裂解法,其产量超过总产量的90%,因而,对其新工艺、新设备的研究、新材料的应用、过程的优化配置等方面倍受关注,不断推出原料适应性强、乙烯收率和热效率高的新型蒸汽裂解炉。目前,石脑油裂解温度已提高到840~860℃,单程小直径炉管裂解温度巳提高到900℃,石脑油裂解单程乙烯收率提高到28%~35%。由于蒸汽裂解法技术已日臻完善,可改进的余地并不大,加上该法反应温度高、所用耐高温合金材料昂贵、耗能高、易结焦、以及原料要求苛刻(轻质原料油),所以近年来,催化工作者将更多的注意力转向用其他新技术生产乙烯的研究,包括催化裂解制乙烯技术、甲烷氧化偶联技术、乙烷氧化脱氢技术、炼厂干气选择氧化技术、天然气经甲醇或二甲醚制低碳烯烃技术等。这些技术的目的在于优化乙烯原料资源配置,从天然气到重油(渣油)各种烃类都得到充分利用,并节能降耗,降低乙烯成本,提高乙烯收率。 催化裂解制乙烯是在高温蒸汽和酸性催化剂存在下,烃类裂解生成乙烯等低碳烯烃的技术。该过程是以自由基反应为主,伴随着碳正离子反应,因而比蒸汽裂解反应温度低。通过对固体酸催化剂的改性,可选择性地裂解生成以乙烯为主的低碳烯烃,收率在50%以上,从而突破传统的催化裂化生产液相产品为主的技术路线。催化裂解制取低碳烯烃的研究始于上世纪60年代,到80年代仅有前苏联半工业化生产试验的报道,以及2000年日本工业化报道。石油化工科学研究院从80年代中期开始了重油催化裂解制丙烯技术,近年来又开始研究重油催化裂解制乙烯技术,也有相当的进展。洛阳石油化工工程公司炼制研究所于80年代末开展了对重油直接催化裂化制乙烯工艺和催化剂的研究工作,现已进入工业化试验阶段。 烃类催化裂解制轻烯烃是一种有吸引力的技术,到目前为止,国内外已发表了许多研究结果和专利,其研究的目标如下: (1)提高烯烃的选择性以减少原料消耗; (2)降低反应温度,降低烯烃生产的能耗; (3)增加裂解反应产品分布的灵活性,不但可提高乙烯收率,亦可增加丙烯收率; (4)提高乙烯装置对原料的适应性,提供能加工重质烃类馏分生产轻烯烃的技术,因为重烃直接用于管式炉热裂解是很困难的。 催化裂解主要致力于催化剂的开发,此类催化剂应具有高活性和选择性以及低的氢转移活性,既要保证比热裂解过程中的乙烯等低级不饱和化合物收率更高,甲烷和

相关文档
最新文档