调节阀常见故障和维修

调节阀常见故障和维修
调节阀常见故障和维修

调节阀常见故障和维修

调节阀直接控制介质,又是自动控制的终端元件,因此除了阀本身发生的故障外,所有控制仪表发生的故障或误操作,都集中表现在调节阀上。

调节阀常见故障表:

故障 产生原因 检查方法

阀没有动作 1.气源故障,供气管严重漏气。 2.输入信号消失。 3.定位器,转换器故障。 4.薄膜破裂,弹簧断裂。 5.阀杆,阀芯卡死等。 首先检查上游仪表,

从信号-转换器-定位器。

查气源压力,供气量。

执行机构中是否漏气。

最后查阀。

阀动作迟缓 1.气源压力低。 2.膜片,活塞环漏气。 3.填料太紧,阀杆变形。 4.定位器响应性能差。 查气源,定位器性能。

膜片,活塞环是否漏气。 检查填料压盖。

最后检查阀芯,阀杆。

阀不能全关 1.输入信号有问题。

2.操作气压不足或弹簧力不足。

3.定位器调试时未到全行程。

4.工况压差大于设计压差。

5.阀座,阀芯上有杂物。

与上面一样查信号,气源。 查工况的介质压差。 核对弹簧压力范围。 校验定位器。 阀关闭时泄漏大 1.执行机构推力小,或弹簧力

不足。 2.阀芯,阀座损坏。 3.阀座松动,垫片冲坏。

4.阀座,阀芯之间有杂物。

调整执行机构, 拆开检查。 阀振动 1.定位器调整不好。 2.阀开度太小,流向不对。 3.填料太紧。 4.阀芯与导套间隙太大。 5.附近有振动源。 首先查定位器是否振荡。 查流向,开度; 调整填料。 如开度太小,间隙太大,待大修时调换阀型号或口径。 查支撑和避震结构。

填料泄漏 1.填料未压紧。 2.填料材质与介质不匹配。 3.阀杆变形毛糙。 4.填料压盖变形。

压紧填料。 核查填料材质。 拆开阀查阀杆,压盖。 阀体垫片渗漏 1.拧紧力矩不足。 2.垫片损坏。 3.密封面损坏,螺孔中漏。 加大预紧力。 拆开检查垫片,密封面和双头螺柱的螺孔。

调节阀的维修通常分两类: 预防性维修和故障维修

1、预防性维修

包括安装时采取的预防性措施、巡回检查时采取的预防性措施和临时性维修。也称计划性维修,指在出现故障之前的予防性措施,也可理解为安装前的予防和日常性维护保养。主要包括两个部分:

1)安装前要注意的问题

清洗:调节阀在安装之前应进行清洗,同时对管道进行冲洗,清除遗留的垃圾、焊渣等杂物,避免垃圾拤住阀芯、防止高速垃圾打坏阀或其他设备。

避免安装应力:安装调节阀时,经常碰到二片管道法兰之间不同轴,严重歪斜;有时二法兰距离与阀的端面距相差太多;用撬棒硬拉、硬弯管道,勉强把阀装上去,这样阀将长期承受应力,引起不同程度的变形。

固定好支撑:大口径的阀自重很大,如41000套筒阀,8″Class600重510kg,Class1500的阀重895kg,这样的阀在其下面要用支撑物垫着,不要让它悬挂在管道上。对于水平安装的阀,阀体与执行机构的连接处一般都要加支撑架,避免阀承受扭矩和弯矩。

避免振动:阀与压缩机、泵浦等动力机械靠得太近,将受到强迫振动,可能引起共振,所以两者之间要用避振设施。压差较大的阀,高速的流体冲击阀芯也会引起振动,因此选用时就要注意限止阀进口流速,同时使用合适的结构型式。阀进口段要有相当长的直管段,一般为阀口径的10倍,避免弯头的乱流冲击阀内件。

2)当阀投入使用后应注意的日常维护

保证气源干净,电源可靠:调节阀产品的国家标准对气源、电源有明確的规定。对电动阀要严格按电压、相数,交流直流、接地等要求供电,接线可靠。气源必须干燥、清洁,不含油、水、灰尘和其它腐蚀性物质,防止执行机构和定位器中橡胶膜片的加速老化,避免定位器内恒节流孔被堵死。为气动阀或阀门定位器供气用的空气过滤减压器应正確使用,及时排去滤下的油水、污垢,定期清洗过滤元件。

定期检查和加油:调节阀使用后要定期检查,重点是动作是否平稳。推杆与阀杆的连接是否松动、填料和阀体垫片处有无渗漏。常见的现象是填料处有渗漏,及时拧紧填料螺母,如用注油器,则定期加油。

在有酸雾或腐蚀性气体的场所,暴露在外的阀杆用塑料管或橡胶波纹管保护,若发现保护套破裂,及时调换。

在特别恶劣的环境增加适当的防护措施:调节阀虽然是钢铁构成,但在烈日暴晒、飞砂走石、风雪交加等恶劣环境里也很快损坏,这些情况往往事先没有想到,在使用后增加简易的防护设施,遮阳挡雨、隔离风砂可延长阀的使用寿命。

2、故障维修

当阀出现故障、调节阀的性能不能满足自控要求时进行的修理。调节阀一旦安全性能出了问题,或不能正常操作,无法满足自动控制系统的要求,那就说明出了故障,必须修理。化工厂、电站的周期性大修也归入这类维修。

整机清洗:管线卸压、降温后,拆下阀门必须清洗。一般介质用水或水蒸汽吹扫,浸泡。对酸、碱、放射性、或其它有毒有害有腐蚀性的介质用特殊工艺进行处理,避免影响人体健康、防止污染环境。

拆卸阀门:先把执行机构与阀门拆开,拆开之前挂好标签,在连接处做好标记。然后把上阀盖从阀体上拆下来,在中法兰的连接处也要做好标记。在阀体中

取出阀芯-阀杆部件、套筒,阀体垫片、双头螺柱;拧下阀座、阀座垫片(如果有的话)。从上阀盖中取出填料法兰、压盖、钩出填料,衬垫等;拆下后首先清洗干净,重点检查以下几种零件:阀体,内壁受损情况;阀芯、阀座,节流面损坏程度,决定可否修复;阀杆,与阀芯連接的螺纹有否松动,阀杆是否弯曲、变形、磨损;填料,是否变形、老化,一般不会重复使用;阀体垫片、阀座垫片,一般不会重复使用。

拆卸执行机构:把气动膜头四周的螺栓拆去,取出膜片、弹簧-推杆部件,取出支架中的O形环等。清洗干净,仔细检查。(膜片,检查有否老化、裂纹、网布脱胶;弹簧,检查表面锈蚀程度、有无裂纹、有无变形;O形环,是否老化,磨损、断裂;推杆有无变形,锈蚀;如活塞式执行机构,检查缸内壁有无磨损,拉毛,活塞环和导向件是否老化和磨损,活塞及活塞杆是否变形,磨损重新组装:上述检查后,零件经修复、调换即可重新装配。然后再把二个部件连接成整机。在装配时,应注意添加润滑脂。配用的阀门定位器,空气过滤减压器等辅助仪表经修理、测试合格后安装在原位。

性能测试:组装的调节阀按出厂项目进行测试检验,如气密性、密封性、耐压强度、泄漏量、基本误差、回差、死区、额定行程、始终点偏差。在特殊需要的场合加做额定流量、流量特性试验。

常用的备件,在事故维修之前,通常准备以下易损件:阀体部件,填料、阀体垫片、阀座垫片、双头螺柱、安全销等;气动执行机构部件,O形橡胶环、活塞环、膜盖用螺栓;按执行机构同规格数量的一定百分比,准备膜片、弹簧。

其它易损件:如阀芯、阀座、阀杆、套筒、填料法兰等,因其价格较贵,一般事先不备好,待拆开检查后决定需要调换的,向原生产厂购买。

调节阀的常见故障及解决办法

在自动化程度较高的化工控制系统,调节阀作为自动调节系统的终端执行装置,接受控制信号实现对化工流程的调节。它的动作灵敏度直接关系着调节系统的质量,据现场实际统计大约有75%左右的故障出自调节阀。因此,在日常维护中总结分析影响调节阀安全运行的因素及其对策显得尤为重要。 1、卡堵 调节阀经常出现的问题是卡堵,常出现在新投入运行的系统和大修投运初期,由于管道内焊渣、铁锈等在节流口和导向部位造成堵塞从而使介质流通不畅,或调节阀检修中填料过紧,造成摩擦力增大,导致小信号不动作、大信号动作过头的现象。 此类故障处理办法:可迅速开、关副线或调节阀,让赃物从副线或调节阀处被介质冲跑。另外还可以用管钳夹紧阀杆,在外加信号压力的情况下,正反用力旋动阀杆,让阀芯闪过卡处。若不能解决问题,可增加气源压力、增加驱动功率反复上下移动几次,即可解决问题。如果还是不能动作,则需要对控制阀做解体处理,当然,这一工作需要很强的专业技能,一定要在懂行的人员或专家协助下完成,否则后果更为严重。 2、泄漏 调节阀泄漏一般有调节阀内漏、填料泄漏和阀芯、阀座变形引起的泄漏几种情况,下面分别加以分析。2.1 阀内漏 阀杆长短不适,气开阀阀杆太长,阀杆向上的(或向下)距离不够,造成阀芯和阀座之间有空隙,不能充分接触,导致不严而内漏。同样气关阀阀杆太短,也可导致阀芯和阀座之间有空隙,不能充分接触,导致关不严而内漏。解决方法:应缩短(或延长)调节阀阀杆使调节阀长度合适,使其不再内漏。 2.2 填料泄漏 填料装入填料函以后,经压盖对其施加轴向压力。由于填料的塑性变形,使其产生径向力,并与阀杆紧密接触,但这种接触并非十分均匀,有些部位接触的松,有些部位接触的较紧,甚至有些部位根本没有接触上。调节阀在使用过程中,阀杆同填料之间存在着相对运动,这个运动叫轴向运动。在使用过程中,随着高温、高压和渗透性强的流体介质的影响,调节阀填料函也是发生泄漏现象较多的部位。造成填料泄漏的主要原因是界面泄漏,对于纺织填料还会出现渗漏(压力介质沿着填料纤维之间的微小缝隙向外泄漏)。阀杆与填料间的界面泄漏是由于填料接触压力的逐渐衰减,填料自身老化等原因引起的,这时压力介质就会沿着填料与阀杆之间的接触间隙向外泄漏。 出现此类问题时的解决对策:为了使填料装入方便,在填料函顶端倒角,在填料函底部放置耐冲蚀的间隙较小的金属保护环,注意该保护环与填料的接触面不能为斜面,以防止填料被介质压力推出。填料函与填料接触部分的表面要精加工,以提高表面光洁度,减小填料磨损。填料选用柔性石墨,因为它的气密性好、摩擦力小,长期使用变化小,磨损的烧损小,易于维修,且压盖螺栓重新拧紧后摩擦力不发生变化,耐压性和耐热性良好,不受内部介质的侵蚀,与阀杆和填料函内部接触的金属不发生点蚀或腐蚀。这样,有效地保护了阀杆填料函的密封,保证了填料密封的可靠性,使用寿命也有很大地提高。 2.3 阀芯、阀座变形泄漏 阀芯、阀座泄漏的主要原因是由于调节阀生产过程中的铸造或锻造缺陷可导致腐蚀的加强。而腐蚀介质的通过,流体介质的冲刷也会造成调节阀的泄漏。腐蚀主要以侵蚀或气蚀的形式存在。当腐蚀性介质在通过调节阀时,便会产生对阀芯、阀座材料的侵蚀和冲击,使阀芯、阀座成椭圆形或其他形状,随着时间的推移,导致阀芯、阀座不匹配,存在间隙,关不严而发生泄漏。 解决方案为:关键把好阀芯、阀座的材质选型关。选择耐腐蚀的材料,对存在麻点、沙眼等缺陷的产品要坚决剔除。若阀芯、阀座变形不太严重,可用细砂纸研磨,消除痕迹,提高密封光洁度,以提高密封性能。若损坏严重,则应重新更换新阀。 3、振荡 调节阀的弹簧刚度不足,调节阀输出信号不稳定而急剧变动易引起调节阀振荡。还有所选阀的频率与系统频率相同或管道、基座剧烈振动,使调节阀随之振动。选型不当,调节阀工作在小开度存在着剧烈的流阻、流速、压力的变化,当超过阀的刚度,稳定性变差,严重时产生振荡。 解决对策:由于产生振荡的原因是多方面的,要具体问题具体分析。对振动轻微的,可增加刚度来消除,

气动调节阀检修规程讲课稿

1 目的 为了加强调节阀的维护保养和检修质量,使调节阀能长寿命、稳定实现调节 作用,特制定本规程。 2适用范围 适用于公司中用于生产过程自动控制的由气动薄膜执行机构和阀体组成的气 动调节阀,包括一般的单座阀、双座阀、套筒阀等的维护、保养、检修。 3 调节阀的概念 调节阀是自控系统中的终端现场调节仪表。它安装在工艺管道上,调节被调 介质的流量、压力,按设定要求控制工艺参数。调节阀直接接触高温、高压、深 冷、强腐蚀、高粘度、易结晶结焦、有毒等工艺流体介质,因而是最容易被腐蚀、冲蚀、气蚀、老化、损坏的仪表,往往给生产过程的控制造成困难。因此,必须 充分重视调节阀的运行维护和检修工作。 4 运行维护 4.1 调节阀运行 4.1.1 调节阀在投入运行前需做系统联校。 4.1.2 调节阀在工作时,前后的切断阀应全开,旁路阀(副线阀)应全关。整个 管路系统中的其他阀门应尽量开大,通常调节阀应在正常使用范围(20%—80%)内工作。 4.1.3 使用带手轮的调节阀应注意手轮位置指示标记。 4.1.4 调节阀在运行过程中严禁调整阀杆和压缩弹簧的位置。 4.2 日常巡检

4.2.1 巡检时应检查各调节阀的气源压力是否正常、气路(仪表空气管经过滤减 压阀、阀门定位器至气缸各部件、各管线)的紧固件是否松动、仪表空气是否有 泄漏。 4.2.2 巡检时应检查填料函及法兰连接处是否有工艺介质泄漏,压兰及阀杆连接件是否紧固,阀杆是否有严重的摩擦划痕或变形。 4.2.3 巡检时需检查仪表线路的防护情况,仪表进线口密封是否良好。 4.2.4 巡检时应检查阀杆运动是否平稳,行程与输出信号是否基本对应,阀门各 部件有无锈蚀,重点是阀杆、紧固件、气缸等。 4.3 专项检查 4.3.1 专项检查指不是日常巡检必须进行,但随季节变化或需周期性进行的检 查,比如仪表空气带水情况,阀门定位器防雨情况等。 4.3.2 仪表空气带水检查 4.3.2.1 在夏季雨水较多和冬季结冰时段,需择机进行仪表空气带水情况检查, 因为在夏季,空气湿度大,仪表空气带水会顺空气过滤减压阀、阀门定位器能到达气缸膜室,腐蚀弹簧、损伤膜片;冬季空气凝点低,仪表空气带水会堵塞气路,造成阀门失效。 4.3.2.2 在检查仪表空气带水时,可在仪表空气管路末端进行排污(有些地方设 末端排污球阀),观察带水情况。如果没有排污阀,需征得工艺操作人员同意(填写《检修工作票》),按调节阀检修处理, 将仪表管路从气源球阀后拆开,观察带水情况。检查结束后与工艺人员交代清楚,填写操作票的完成情况。 4.3.3 防雨检查

电动阀门电装(电动执行机构)故障分析与维修

阀门电动执行器故障判断及维修 扬州贝尔阀门控制有限公司上海湖泉阀门有限公司技术部廖雄电话: 故障报修故障分析技术咨询请来电 .过力矩故障 1.普通户外型过力矩故障现象为通电后电源指示灯和故障灯 亮,开关不运行; 2.智能型过力矩故障现象为通电后频显过力矩故障,开关不运行; 以上排除故障方法为手动开关阀门,打开外盖回动过力矩触电,故障随之解除(智能型还得现场远程切换后频显才恢复正常)。 二.跳闸故障 1.送电跳闸:故障现象为松不上电,短路,排除方法为检测 线路是否短路,设备是否进水; 2.开关运行跳闸:故障现象为通电正常,阀开阀关运行跳闸,排除方法为:首先查看电流保护开关大小,如因电流保护开关小而导致更换电流保护开关即可排除故障;其次检测电机绕组电阻值,电阻值趋近于0说明电机烧坏,更换电机,故 障排除;最后如果执行器电压是220V的以上两项都正常,那用万用表测电容两边的电阻发现有一个开路,将其更换后故障排除。

.正反转故障出现反转故障表现为控制阀开实际发关运行,反之一样(普通户外型表现为只能开或者只能关,而起开关不会停止)故障排除方法为仍以调换两颗电机线即可; 备注:普通开关型如出现开关运行时一会儿正转一会儿反转现象故障并且执行机构运行噪音大,故障表现为输入电机电源缺项。 四.智能型显示故障 1.指示灯故障 1.1..故障现象:给电动执行器通电后发现电源指示灯不亮, 伺放板无反馈,给信号不动作。 故障判断和检修过程: 因电源指示灯不亮,首先检查保险管是否开路,经检查保险管完好,综合故障现象,可以推断故障有可能发生在伺放板的电源部分,接着检查电源指示灯,用万用表检测发现指示灯开路,更换指示灯故障排除。 1.2.故障现象:电动执行器的执行机构通电后,给信号开可以,关不动作。故障判断和检修过程:先仔细检查反馈线路,确认反馈信号无故障,给开信号时开指示灯亮,说明开正常,给关信号时关指示灯不亮,说明关可控硅部分有问题,首先检查关指示灯,用万用表检测发现关指示灯开路,将其更换后故障排除。 2.电阻电容

调节阀常见故障处理方法

调节阀常见故障处理方法 1)清洗法 管路中的焊渣、铁锈、渣子等在节流口、导向部位、下阀盖平衡孔内造成堵塞或卡住使阀芯曲面、导向面产生拉伤和划痕、密封面上产生压痕等。这经常发生于新投运系统和大修后投运初期。这是最常见的故障。遇此情况,必须卸开进行清洗,除掉渣物,如密封面受到损伤还应研磨;同时将底塞打开,以冲掉从平衡孔掉入下阀盖内的渣物,并对管路进行冲洗。投运前,让调节阀全开,介质流动一段时间后再纳入正常运行。 2)外接冲刷法 对一些易沉淀、含有固体颗粒的介质采用普通阀调节时,经常在节流口、导向处堵塞,可在下阀盖底塞处外接冲刷气体和蒸汽。当阀产生堵塞或卡住时,打开外接的气体或蒸气阀门,即可在不动调节阀的情况下完成冲洗工作,使阀正常运行。 3)安装管道过滤器法 对小口径的调节阀,尤其是超小流量调节阀,其节流间隙特小,介质中不能有一点点渣物。遇此情况堵塞,最好在阀前管道上安装一个过滤器,以保证介质顺利通过。带定位器使用的调节阀,定位器工作不正常,其气路节流口堵塞是最常见的故障。因此,带定位器工作时,必须处理好气源,通常采用的办法是在定位器前气源管线上安装空气过滤减压阀。 4)增大节流间隙法 如介质中的固体颗粒或管道中被冲刷掉的焊渣和锈物等因过不了节流口造成堵塞、卡住等故障,可改用节流间隙大的节流件—节流面积为开窗、开口类的阀芯、套筒,因其节流面积集中而不是圆周分布的,故障就能很容易地被排除。如果是单、双座阀就可将柱塞形阀芯改为“V”形口的阀芯,或改成套筒阀等。例如某化工厂有一台双座阀经常卡住,推荐改用套筒阀后,问题马上得到解决。 5)介质冲刷法 利用介质自身的冲刷能量,冲刷和带走易沉淀、易堵塞的东西,从而提高阀的防堵功能。常见的方法有:①改作流闭型使用;②采用流线型阀体;③将节流口置于冲刷最厉害处,采用此法要注意提高节流件材料的耐冲蚀能力。 6)直通改为角形法 直通为倒S流动,流路复杂,上、下容腔死区多,为介质的沉淀提供了地方。角形连接,介质犹如流过90弯头,冲刷性能好,死区小,易设计成流线形。因此,使用直通的调节阀产生轻微堵塞时可改成角形阀使℃用。 密封性能差的解决方法(5种方法) 1)研磨法 细的研磨,消除痕迹,减小或消除密封间隙,提高密封面的光洁度,以提高密封性能。 2)利用不平衡力增加密封比压法 执行机构对阀芯产生的密封压力一定,不平衡力对阀芯产生顶开趋势时,阀芯的密封力为两力相减,反之,对阀芯产生压闭趋势,阀芯的密封力为两力相加,这样就大大地增加了密封比压,密封效果可以比前者提高5~10倍以上.一般dg≥20的单密封类阀为前一种情况,通常为流开型,若认为密封效果不满意时,改为流闭型,密封性能将成倍增加.尤其是两位型的切断调节阀,一般均应按流闭型使用。 3)提高执行机构密封力法 提高执行机构对阀芯的密封力,也是保证阀关闭,增加密封比压,提高密封性能的常见方法。常用的方法有: ①移动弹簧工作范围施工、安装要点 1)、安装位置、高度、进出口方向必须符合设计要求,连接应牢固紧密。

气动系统常见故障

气动系统常见故障 1.气动系统维护的要点 (1)保证供给洁净的压缩空气压缩空气中通常都含有水分、油分和粉尘等杂质。水分会使管道、阀和气缸腐蚀;油分会使橡胶、塑料和密封材料变质;粉尘造成阀体动作失灵。选用合适的过滤器,可以清除压缩空气中的杂质,使用过滤器时应及时排除积存的液体,否则当积存液体接近挡水板时,气流仍可将积存物卷起。 (2)保证空气中含有适量的润滑油大多数气动执行元件和控制元件都要求适度的润滑。如果润滑不良将会发生以下故障:①由于摩擦阻力增大而造成气缸推力不足,阀心动作失灵;②由于密封材料的磨损而造成空气泄漏:③由于生锈造成元件的损伤及动作失灵。润滑的方法一般采用油雾器进行喷雾润滑,油雾器一般安装在过滤器和减压阀之后。油雾器的供油量一般不宜过多,通常每10m3的自由空气供lmL的油量(即40~50滴油)。检查润滑是否良好的一个方法是:找一张清洁的白纸放在换向阀的排气口附近,如果阀在工作三至四个循环后,白纸上只有很轻的斑点时,则表明润滑是良好的。 (3)保持气动系统的密封性漏气不仅增加了能量的消耗,也会导致供气压力的下降,甚至造成气动元件工作失常。严重的漏气在气动系统停止运行时,由漏气引起的响声很容易发现;轻微的漏气则利用仪表,或用涂抹肥皂水的办法进行检查。 (4)保证气动元件中运动零件的灵敏性从空气压缩机排出的压缩空气,包含有粒度为0.01-0.08μm的压缩机油微粒,在排气温度为120-220oC的高温下,这些油粒会迅速氧化,氧化后油粒颜色变深,粘性增大,并逐步由液态固化成油泥。这种μm级以下的颗粒,一般过滤器无法滤除。当它们进入到换向阀后便附着在阀心上,使阀的灵敏度逐步降低,甚至出现动作失灵。为了清除油泥,保证灵敏度,可在气动系统的过滤器之后,安装油雾分离器,将油泥分离出来。此外,定期清洗阀也可以保证阀的灵敏度。 (5)保证气动装臵具有合适的工作压力和运动速度调节工作压力时,压力表应当工作可靠,读数准确。减压阀与节流阀调节好后,必须紧固调压阀盖或锁紧螺母,防止松动。 2.气动系统的点检与定检 (1)管路系统点检主要内容是对冷凝水和润滑油的管理。冷凝水的排放,一般应当在气动装臵运行之前进行。但是当夜间温度低于0℃时,为防止冷凝水冻结,

气动阀门常见故障分析及优化

气动阀门常见故障分析及优化 发表时间:2017-11-13T11:54:56.863Z 来源:《基层建设》2017年第24期作者:马斌王爱伟崔沛[导读] 摘要:气动蝶阀结构简单,在热轧生产线中有着广泛的应用。该文以邯宝2250mm热轧生产线为背景,从其气动蝶阀的常见故障入手,分析了气动蝶阀的故障原因并提出了优化措施,并在现场实践应用中取得了良好的实用效果,收到了很好的经济效益。 河钢邯钢邯宝热轧厂河北邯郸 056003 摘要:气动蝶阀结构简单,在热轧生产线中有着广泛的应用。该文以邯宝2250mm热轧生产线为背景,从其气动蝶阀的常见故障入手,分析了气动蝶阀的故障原因并提出了优化措施,并在现场实践应用中取得了良好的实用效果,收到了很好的经济效益。 关键词:气动蝶阀;故障分析;优化 前言 邯宝2250mm热轧生产线于2008年8月投产,该生产线是由德国西马克公司设计的一条具有国际先进水平的常规热连轧生产线,汇集了加热炉数字化燃烧、精轧机组多手段板形控制和大功率交直变频传动等先进技术,具有生产工艺先进、轧机控制手段齐全等特点。因气动蝶阀具有:1、小巧轻便,容易拆装及维修;2、结构简单、紧凑,操作扭矩小,90°回转开启迅速。3、蝶阀处于完全开启位置时,蝶板厚度是介质流经阀体时唯一的阻力,因此通过该阀门所产生的压力降很小,具有较好的流量控制特性。所以2250大量采用气动蝶阀进行水冷控制,进而控制板带温度。 1 气动蝶阀常见故障分析 投产以来,由于气动蝶阀数量大、动作频繁,故障多样,根据现场故障原因分析,总结归纳了下面几种气动蝶阀故障类型及原因:介质原因。这种原因包括气源压力过低;气源杂质致使过滤器滤芯堵塞;气源进水。 电磁阀故障。这种原因包括电磁阀进入杂质卡阻;电磁阀信号接头漏气;电磁阀阀芯窜气;电磁阀插头进水、虚接;电磁阀线圈损坏。 气动执行器故障。这种原因包括执行器进入杂质,拉伤缸壁;气缸润滑不良;执行器活塞环磨损;传动机构卡涩;机件出现故障,如梅花套碎裂。 阀体故障。这种原因包括轴与轴衬的摩擦系数增大;V 型环与轴之间摩擦阻力增大;软密封件与翻板接触面变大,表面粘有灰尘、污物,阻力变大;软密封与翻板之间卡入异物;翻板销轴脱出。 气动蝶阀无反馈信号。如果气动蝶阀没有反馈信号,要用万用表检查每个接点是否有电压。要检查线路是否正确,检查信号线是否损坏,检查信号线是否接好。 (6)气动蝶阀的阀门开度不正确。该故障一般分析可直接定位在阀门定位器故障,应先其进行重新标定检查。气动蝶阀定位器有零位和量程两个调节按钮。在调节阀阀位不正确的情况下,先调节定位器的零位调节按钮,把调节阀的零位调好;再调节定位器的量程调节按钮,把调节阀的 100%的位置调节好;再调节调节阀的量程调节按钮,调节调节阀的 25%、50%、75%的位置。通过五点的调节,来确定阀门的线性。 (7)气动蝶阀动作不稳定。气源压力不稳定。原因:减压阀故障导致信号压力不稳定;调节器输出不稳定。气源压力稳定,信号压力也稳定,但调节阀的动作仍不稳定。原因:定位器输出震荡;输出管、线漏气;执行机构刚性太小;阀杆运动中摩擦阻力大,与相接触部位有阻滞现象。 2 气动蝶阀应用的优化 1)针对气源故障,优化气源设计采用经干燥器、过滤器、油雾器处理后的干净空气或氮气。避免气源中的杂质进入电磁阀和气动执行器,也可以避免输送介质泄漏进气动元件,反向污染气源。 2)针对电磁阀故障,对电磁阀进行防水、防潮处理,插头及其与线圈结合处除原有设计密封外,采用防水胶布和绝缘胶布进行防护,可以大幅降低电磁阀的事故率。 3)通过油雾器对电磁阀及气动执行器进行润滑补油,避免阀门的卡阻。 4)将阀体中的销轴连接改为方形卡槽式连接,避免因销轴脱落造成的阀门故障。 5)对电磁阀进行点检定修制,对电磁阀排气口处出现漏气情况及时排查电磁阀故障和气动执行器故障,及时进行更换。 6)对阀体密封及易损机件进行定期更换,更换周期为2年。 7)针对阀体漏水窜入执行器,对执行器、电磁阀、气源造成污染的情况,设计了气动执行器防护装置。该防护装置,整体呈平面法兰式结构,安装于阀体与气动执行器之间中心开有与阀体中轴直径相匹配且贯通两侧平面的中轴孔,两侧平面开有与阀体法兰螺栓孔相匹配的装配孔;一侧平面沿径向开有径向贯穿的导流槽,该侧平面中心开有外径大于阀体密封套直径的导流环,导流环外径大于导流槽宽度;该防护装置可将泄漏的输送介质通过导流环和导流槽排出,实现输送介质与气动执行器能源介质的有效隔离,杜绝输送介质对气动执行器的腐蚀和对能源介质的污染,延长了气动执行器的使用寿命,大幅降低了备件和维护成本,保证了生产安全正常进行;该防护装置结构简单、组装方便、经济耐用,可广泛应用于各类气动阀门的执行器防护领域。 3 应用改进效果 气动蝶阀及气动调节阀在热轧生产线中有着广泛的应用,对于热轧生产线系统的安全可靠运行具有重大的意义,因此对这种阀门的调试和常见故障总结分析是具有普遍而重大的意义的。经过上述的气动蝶阀应用改进后,气动蝶阀的事故率降低了80%左右,实现了良好的实用稳定性,其中气动阀门执行器防护装置实现输送介质与气动执行器能源介质的有效隔离,彻底杜绝输送介质对气动执行器的腐蚀和对能源介质的污染,延长了气动执行器的使用寿命,同时,当发现有输送介质外泄时,也可及时对阀体进行维修或更换,保证正常安全生产,可广泛应用于各类气动阀门的执行器防护领域。 参考文献 [1]张鲁斌,李静,吴志欣.气动调节阀故障原因分析[J].化学工程与装备,2010(1):87-89. [2]日新.主编.工业专用阀门精品手册[M].机械工业出版社,2000.

调节阀故障原因及处理方法

调节阀故障原因及处理方法 1 、前言 在自动化程度较高的工业控制系统,特点是正迅速发展的用计算机优化控制,将使生产取得最大效益。调节阀在控制流体流量的工作过程中,作为自动调节系统的终端执行装置,接受控制操作信号,按控制规律实现对流量的调节。它的动作灵敏与否,直接关系着调节系统的质量。据现场实际工作统计,调节系统有70% 左右的故障出自调节阀。因此,保证调节阀可*、准确运行,一直是一个很重要的问题。 2 、调节阀的故障形式及原因 2.1 卡堵 调节阀经常出现的问题是卡堵,常发生于新投运系统和大修后投运初期,由于管道中的焊渣、铁锈、渣子等在节流口、导向部位、下阀盖平衡孔内造成堵塞,使被测介质流通不畅,或填料装填过实,致使摩擦力增大,造成信号小时动作不了,信号大时一旦动作又过头的现象。 2.2 泄漏 2.2.1 阀杆长短不合适泄漏 (1 )风开阀,如图1 、图 2 ,当调节阀膜头接收入信号为0.02MPa 或0.02MPa 以下时,如果阀杆太长,阀杆向上(或向下)移动距离不够,造成阀芯和阀座之间的间隙,而不能充分接触,导致调节阀关 不严而内漏。 (2 )风关阀,如图 3 、图 4 ,当调节阀信号为0.1MPa 或0.1MPa 以上时,如果阀杆太短,阀芯向下(或向上)移动距离不够,造成阀芯和阀座之间有间隙,而不能充分接触,导致调节阀关不严而内漏。 2.2.2 填料泄漏 填料装入填料函以后,经压盖对其施加轴向压力。由于填料的塑性,使其产生径向力,并与阀杆紧密接触,但这种接触并不是非常均匀的。有些部位接触的紧,有些部位接触的松,还有些部位没有接触上。调节阀在使用过程中,阀杆同填料之间存在着相对运动,这个运动叫轴向运动。在使用过程中,随着高温、高压和渗透性强的流体介质的影响,调节阀填料函也是发生泄漏现象较多的部位。造成填料泄漏的主要原因是界面泄漏,对于纺织填料还会出现渗漏(压力介质沿着填料纤维之间的微小缝隙向外泄漏)。阀杆与填料间的界面泄漏是由于填料接触压力的逐渐减弱,填料自身老化等原因引起的,这时压力介质就会沿着填料 与阀杆之间的接触间隙向外泄漏。 发送图片到手机,此主题相关图片如下: 图1 图2 2.2.3 阀芯、阀座变形泄漏

怠速控制阀的故障与排除

怠速控制阀的故障与排除 姓名:詹剑鹏 班级:06汽车运用技术一班学号:06124084 指导教师:林文光(老师)

目录 摘要 (1) 前言................................. 错误!未定义书签。正文................................. 错误!未定义书签。 (一)故障现象 (1) (二)故障原因分析诊断 (1) 2-1.进气系统 (2) 2-2. 燃油系统 (2) 2-3. 点火系统 (2) 2-4. 机械结构 (3) (三)故障诊断与排除 (4) 3-1检查各线接头 (4) 3-2检查快怠速感温阀 (4) 3-3检查高压线及分电器 (4) 3-4检查真空管路 (4) (四)EGR的结构及工作原理 (5) 结论 (6) 结束语 (6) 致谢: (7)

摘要 本文主要介绍一辆1994款的本田雅阁轿车,冷车怠速一切正常,但车主反映,此车行驶一段时间后,例如在路上等红灯停车,会发生怠速不稳,甚至会发生熄火现象。通过故障诊断与合理的分析,并结合一定的实际经验利用车间的工艺把故障排除。 关键词:怠速不稳 EGR阀故障诊断故障排除分析 前言 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。我们作为汽车维修的一线人员,除了要认真学好汽车基本构造等一般理论知识,更要对某一款,或某几款车做到精益求精,举一反三,真真正正排除故障,给汽车行业的发展做出贡献。 正文 (一)故障现象 一辆94款发动机为F22B2的雅阁轿车,在冷车过程中没有不正常现象,热车时怠速不稳。 利用自诊断系统读取故障码,电控系统没有故障存储。我们等该车发动机冷却,再着火,发现过程中突然出现了发动机怠速在800~1200r/min之间波动的现象。该车冷机起动时,发动机转速为1200r/min,属于冷机怠速,此时发动机运转平稳,但发动机大约运转5min后,发动机转速忽高忽低,发动机转速表在800~1200r/min之间有规律地波动,但是仪表板报上的发动机故障指示灯不亮。 (二)故障原因分析诊断 我们知道,如图1所示,该发动机电控系统是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机始终工作在最佳状态。

气动调节阀的故障分析与解决方案

气动调节阀的故障分析与解决方案 随着自动化技术地飞速发展,调节阀用于控制各种介质流量和压力,在稳定生产、优化控制等方面起着举足轻重的作用。从调节阀的结构、执行器的形式、流量特性、维护等多方面进行综合比较,针对不同工况对调节阀进行相应分析和应用,真正发挥调节阀在自动化控制中“执行单元”的作用,为管道输送介质、达到控制指标和科学管理提供有力保障。本文重点对气动调节阀的使用、故障现象和原因分析加以介绍。 调节阀是石油化工行业用来调节各种介质流量和压力的装置,它的工作正常与否直接关系整个装置的生产能否正常。生产现场的工作环境常处于高温高压、潮湿、粉尘、振动、易燃易爆等恶劣条件,故障率较高,气动调节阀在惠州炼化运行一部使用最为广泛,所以保证其使用正常是十分重要的。 1调节阀简介 根据国际电工委员会IEC对调节阀(国外称CONTROLVALVE控制阀)的定义:调节阀是由执行机构和阀体部件两部分组成,即调节阀=执行机构+阀体部件执行机构是调节阀的推动装置,它按信号压力的大小产生相应的推力,使推杆产生相应的位移,从而带动调节阀的阀芯动作;阀体部件是调节阀的调节部分,它直接与介质接触,通过执行机构推杆的位移,改变调节阀的节流面积,达到调节的目的。 2调节阀常见故障现象及原因分析

2.1 气源故障 1)现场气源未开。 2)气源含水,天气寒冷结冰。 3)净化风停止供应。 4)气源总管泄露或风线堵塞导致风压过低,调节阀不能全开或全关,甚至不动作。 5)空气过滤减压器长时间使用,脏物太多,减压阀下黑色旋钮打开漏风,使输出风压小于规定的压力,导致调节阀不能全开全关,甚至不动作。 6)现场风线漏风,接头松动,导致风压不足,调节阀不能全开全关,甚至不动作。 7)过滤减压阀故障,导致风压不稳,造成调节阀振荡。 2.2 线路故障 1)电源线接线端松动、脱落、短路、断路,电路板灰尘积得太多导致接触不良,信号波动,调节阀产生振动。 2)大雨或台风过后,设备进水受潮使接线短路,造成调节阀不能全开或全关。 3)极性接反会导致调节阀不动作。

混凝土搅拌站气动系统的常见故障(正式版)

文件编号:TP-AR-L2730 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 混凝土搅拌站气动系统 的常见故障(正式版)

混凝土搅拌站气动系统的常见故障 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.气源故障 气源的常见故障:空压机故障,减压阀故障,管 路故障,压缩空气处理组件故障等。 (1)空压机故障有:止逆阀损坏,活塞环磨损 严重,进气阀片损坏和空气过滤器堵塞等。 若要判断止逆阀是否损坏,只需在空压机自动停 机十几秒后,将电源关掉,用手盘动大胶带轮,如果

能较轻松地转动一周,则表明止逆阀未损坏;反之,止逆阀已损坏;另外,也可从自动压力开关下面的排气口的排气情况来进行判断,一般在空压机自动停机后应在十几秒左右后就停止排气,如果一直在排气直至空压机再次启动时才停止,则说明止逆阀已损坏,须更换。 当空压机的压力上升缓慢并伴有串油现象时,表明空压机的活塞环已严重磨损,应及时更换。 当进气阀片损坏或空气过滤器堵塞时,也会使空压机的压力上升缓慢(但没有串油现象)。检查时,可将手掌放至空气过滤器的进气口上,如果有热气向外顶,则说明进气阀处已损坏,须更换;如果吸力较小,一般是空气过滤器较脏所致,应清洗或更换过滤

气动调节阀检修过程注意事项、工作原理和校验18页

气动调节阀控制部件检修注意事项、工作原理和校验 前言 本讲义主要介绍气动调节阀控制部件检修过程中注意事项、主要部件的工作原理和阀门定位器的校验方法。重点介绍了力平衡式E/P工作原理、力平衡式定位器工作原理、智能定位器工作原理、减压阀工作原理、气动继动器(流量放大器)的工作原理、锁气器工作原理、控制阀的三断保护原理和实际运用、介绍了FISHER 3582定位器和西门子智能定位器调整及气动执行机构常见故障及产生的原因。 本讲义用于仪控专业气动执行机构调整及工作负责人的理论培训,整个培训约需40小时。 由于本人水平所限,讲义中不免有谬误之处,欢迎广大同仁批评指正,同时欢迎补充未完整的内容,以利提高培训质量。 编者 2012-1-30 目录 第一章检修注意事项(以FISHER 3582定位器为例) 第一节开工前的检查和准备工作 第二节拆前记录注意事项 第三节控制部件回装注意事项 第四节校前检查、阀门校验注意事项 第二章气动调节阀仪控部件工作原理 第一节气动调节阀介绍 第二节气动执行机构及其控制装置功能 第三节气动执行机构控制装置工作原理 第三章气动执行机构的调整 第一节校验前的准备工作 第二节气动调节阀的调整和检验 第四章气动执行机构常见故障及产生的原因 第一节调节阀不动作 第二节调节阀的动作不稳定 第三节调节阀振荡

第四节调节阀的动作迟钝 第五节调节阀的泄漏量增大 第一章检修注意事项(以FISHER 3582定位器为例) 第一节开工前的检查和准备工作 开工前,需对检修文件包的工作内容进行检查,熟悉检修工序,不明白或有异议的内容要同文件准备人员进行沟通,并核实备品备件的到货情况。 到检修现场熟悉检修设备和作业环境,检查是否存在高空作业、照明不足及作业区是否需要铺垫,做到心中有数,及早准备。 开工前工准备好工器具,核实是否需要专用工具和专用仪器,专用仪器不要同其他工具混放在一起,注意检查标准仪器的有效期和精度是否符合要求。 工作票领取后,开好工前会,明确监护人,验证安全措施(如停气、停电、联锁保护解除、气源和电源有检修负责人自理等);为防止走出间隔,要进行设备“三一致”检查核对,即工作票上的设备名称(设备编码)、检修文件包上的设备名称(设备编码)和就地需检修设备上的设备名称(设备编码)相一致。联系QC将文件包签点释放,准许开工。 作业区的布置,有条件时可用黄-黑警示带或警示围栏根据现场具体情况围成适当的作业区,工具和仪器的摆放要整齐。根据仪控专业的检修特点,因点多面广,建议工具和仪器摆放在1.5平方米以上的塑料布上,便于收拾转移工作点。在花格栅上作业时,铺垫面积要适当增大,阀门作业区下方也必须铺垫和围堵,防止工具和设备部件坠落。照明不足时要考虑辅助照明。高空作业时,设备下方要用安全网围兜,安全网设置要规范。 第二节拆前记录注意事项 一、设备拆前值检查 拆前要对阀门的性能进行检查,记录阀门的启动电流(气压)、阀门的关闭电流(气压)、阀门行程、全行程开时间、全行程关时间快开、快关时间)。拆前记录若有QC签点,需提前通知QC到场。 若机械检修阀门,需仪控拆除阀门控制部件,仪控工作负责人需和机械工作负责人沟通,确定拆除范围。 二、做好拆前记录。 1、做好现场管线记录,以保证能正确回装。 2、做好定位器初始位置记录,如正反作用、底板安装孔、摆臂位置。 3、做好拆线记录,如EP、阀位反馈线电缆编号和颜色等。 三、检查损坏设备 检查供气隔离阀、气源压力表、电磁阀、限位开关有无损坏,若有则通知QC,填

调节阀的故障保位

调节阀的故障保位 前言:为满足现代化生产装置对自控系统提出的安全控制、精细控制的高性能要求,结合工作实践中的工程实例,对特殊控制要求的控制系统的执行机构调节阀的故障形式:断电、断气、断信号进行三断保位,以保障整个装置生产的稳定性和连续性,减少不必要的停产和相应的经济损失。就化工生产中常见的气动调节阀门,分别从调节阀的断电、断气、断信号三个方面阐述了各自保位的工作原理、相应的硬件配置及工作原理,并列举调节阀的故障保位方案进行佐证 1 控制阀保位的必要性 不同工艺系统的控制需求决定了执行机构不同的失效安全工作模式。失效安全模式的选择原则首先是安全生产,其次是连续性。 在工程实践中,当遇到自控系统的气源、电源及输出信号故障时,不同的场合对阀门的状态有不同的要求,这些要求往往是出于安全和尽量减少故障损失方面的考虑,另外在安全的情况下,尽量保持装置生产的连续性也是需要考虑的一个重要方面。这就要求自控系统采取一些必要的安全保护措施。例如:在用蒸汽对罐内的物料进行加热时,如果遇到气、电故障,应将蒸汽的入口阀门关闭,切断蒸汽,即故障关(Fail to close),以防罐内物料过热结焦;再如在水冷却物料系统中,遇故障时,则希望冷却水不要被切断,此时要求水入口调节阀故障开(Fail to open);而有些特殊的场合则希望故障出现时,阀位保持在原来的位置不变,以保持流体的稳定流量,如高温高分子中间聚合物的夹套管的蒸汽温度控制阀,一旦故障,全开会导致主管道内物料的结焦,全关则可能会导致熔体输送管线内的高分子聚合物冷却凝结,堵塞管线,此种情况下故障阀门需要保位(Fail to lock),以确保物料输入的稳定连续性。这就要求控制阀在设计中实现故障时安全的三断(断气、断电、断信号)保护措施。工程中常见的三种安全失效模式如图1所示。

怠速控制阀检修

怠速控制阀检修 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

实验四怠速控制阀检修 一、实验目的: 1.掌握怠速控制系统的工作原理。 2.掌握怠速控制阀的种类及工作原理。 3.掌握怠速控制阀的检修方法及常用工具的使用方法。 二、实验设备及器材 丰田8A发动机台架1台,几种常用怠速控制阀,万用表2块及导线若干。 三、实验原理 怠速控制系统主要有传感器、ECU和执行元件三部分组成。控制怠速进气量的基本类型有节气门直动式和旁通空气式。节气门直动式通过执行元件改变节气门的最小开度来控制怠速进气量。旁通空气怠速控制系统中,设有旁通空气道,由执行元件控制流经怠速空气道的空气量。旁通空气式怠速控制系统按执行元件不同分:步进电机型、旋转电磁阀型、占空比型和开关型等。 1.步进电机型 步进电机型怠速控制阀主要有转子和定子组成,丝杠机构将步进电机的旋转运动转变为阀杆的直线运动,使阀芯作轴向移动,改变阀芯与阀座之间的间隙,从而改变怠速空气道的流通截面,控制发动机怠速工况下的进气量。

工作原理:当ECU控制使步进电机的线圈按1-2-3-4顺序依次搭铁时,定子磁场顺时针转动,由于与转子磁场间的相互作用,使转子随定子磁场同步转动。同理,步进电机的线圈按相反顺序通电时,转子随定子磁场同步反转。转子每转一步与定子错开一个爪极的位置,定子有32个爪极,所以步进电机每转一步为1/32圈,步进电机的工作范围为0~125个步进级。如图1所示。 图1 步进电机原理 2.旋转电磁阀型 ECU控制两个线圈的通电或断开,改变两个线圈产生的磁场强度,两线圈产生的磁场与永久磁铁形成的磁场相互作用,即改变控制阀的位置,从而调节怠速空气口的开度,以实现怠速空气量的控制。双金属片制成的卷簧,主要起保护作用。当流过阀体冷却液腔的冷却液温度变化时,双金属片变形,带动挡块转动,从而改变阀轴转动的两个极限位置,以控制怠速控制阀的最大开度和最小开度。 工作原理:ECU控制旋转电磁阀型怠速控制阀工作时,控制阀的开度是通过控制两个线圈的平均通电时间(占空比)来实现的。如图2所示。 图2 旋转电磁阀式控制原理 四、实验内容 1.步进电机怠速控制阀检修方法

调节阀常见故障及处理方法

调节阀常见故障及处理方法 在工业自动化仪表中,调节阀算是笨重的了,加之结构简单,往往不被人们重视。但是,它在工艺管道上,工作条件复杂,一旦出现问题,大家又忙手忙脚。因其笨重,问题难找准,常常费力不讨好,还涉及系统投运、系统完全、调节品质、环境污染等。下面介绍几种调节阀常见故障的处理方法,绝大多数来自作者的工作实践,可供调节阀出现故障分析,处理时参考,这对现场维修人员、技术人员有一定帮助的。 1、提高寿命的方法(8种方法) 1.1 大开度工作延长寿命法 让调节阀一开始就尽量在最大开度上工作,如90%。这样,汽蚀、冲蚀等破坏发生在阀芯头部上。随着阀芯破坏,流量增加,相应阀再关一点,这样不断破坏,逐步关闭,使整个阀芯全部利用,直到阀芯根部及密封面破坏,不能使用为止。同时,大开度工作节流间隙大,冲蚀减弱,这比一开始就让阀在中间开度和小开度上工作提高寿命1~5倍以上。 1.2 减小S增大工作开度提高寿命法 减小S,即增大系统除调节阀外的损失,使分配到阀上的压降降低,为保证流量通过调节阀,必然增大调节阀开度,同时,阀上压降减小,使气蚀、冲蚀也减弱。具体办法有:阀后设孔板节流消耗压降;关闭管路上串联的手动阀,至调节阀获得较理想的工作开度为止。 1.3 缩小口径增大工作开度提高寿命法 通过把阀的口径减小来增大工作开度,具体办法有:①换一台小一档口径的阀,如DN32换成DN25;②阀体不变更,更换小阀座直径的阀芯阀座。 1.4 转移破坏位置提高寿命法 把破坏严重的地方转移到次要位置,以保护阀芯阀座的密封面和节流面。 1.5 增长节流通道提高寿命法 增长节流通道最简单的就是加厚阀座,使阀座孔增长,形成更长的节流通道。一方面可使流闭型节流后的突然扩大延后,起转移破坏位置,使之远离密封面的作用;另一方面,又增加了节流阻力,减小了压力的恢复程度,使汽蚀减弱。有的把阀座孔内设计成台阶式、波浪式,就是为了增加阻力,削弱汽蚀。这种方法在引进装置中的高压阀上和将老的阀加

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

调节阀的常见故障及排除

调节阀的常见故障及排除 调节阀不同于手动阀门,它在使用过程中要处于不断地运动、调节状态,运动部件多,且要承受来自介质不平衡力等各种力量的冲击,难免出现各种预想不到的故障,这些故障可来自执行机构、调节机构,也可能来自连接的附件装置。 一、填料造成的故障 因填料原因造成的故障表现为外泄漏量增大、摩擦力增大及阀杆的跳动。分析如下: 1.填料材质不合适。由于填料材质不合适造成的故障主要是外泄漏量增大及摩擦力增大例如,在高温应用场合,采用聚四氟乙烯填料。故障处理方法是更换填料。 2.填料结构设计不当.o填料腔内,填料和有关附件的位置安装不合适,填料高度不合适故障处理方法是按产品说明书要求安装填料和有关附件。 3.填料安装不合适。例如,石墨填料采用螺旋式安装造成填料压紧力不均匀,中心没有对准等。故障处理方法是按层安装,使压紧力均匀。 4.填料有杂物。填料内的杂物造成阀杆划迹。故障处理方法是对填料进行清洁,除去杂物 5.上阀盖安装不当。上阀盖安装不当使填料受力不均匀。故障处理方法是重新安装上阀盖的垫圈,并对上阀盖固紧螺栓平均地用对角方式压紧o 二、执行机构的气密性造成的故障 执行机构的气密性造成的故障表现为响应时间增大,阀杆动作呆滞。分析如下: 1.气动薄膜执行机构的膜片未压紧。膜片未压紧或受力不均匀造成输入的气信

号外漏,使执行机构对信号变化的响应变得呆滞,响应时间增大。如果安装了阀门定位器,则其影响会减小。故障处理方法是用肥皂水涂刷检查,并消除泄漏点o 2.气动活塞执行机构的活塞密封环磨损。造成调节阀不能快速响应,阀杆动作不灵敏。故障处理方法是更换密封环,并检查汽缸内壁有否磨损。 3.气动薄膜执行机构的膜片破损。表现为阀杆动作不灵敏,可听到气体的泄漏声。故障处理方法是更换膜片,并应检查限位装置或托盘是否有毛刺等o 4.连接管线漏气。造成阀杆动作不灵敏,响应时间增大。故障处理方法是用肥皂水涂刷连接管线,检查泄漏点,并更换或焊接。 三、不平衡力造成的故障 不平衡力造成的故障表现为调节阀动作不稳定,关不严等。故障分析如下: 1.流向不当。调节阀安装不当,造成实际流体流向与调节阀标记流向不一致,使不平衡力变化。例如,流关调节阀被安装为流开。故障处理方法是重新安装。 2.执行机构不匹配。造成推力或推力矩不足,使调节阀动作不到位。故障处理方法是更换执行机构。 四、电动执行机构的故障 电动执行机构的故障除了常见的线路短路或断路外,还有伺服放大器和电动机等故障,常见故障分析如下: 1.各接插件松动或接线断路或短路。造成接触不良,并增大或降低有关线路阻抗。故障处理方法是检查和拨动连接导线,重新插拔和插入各接插件。 2.减速器机械传动部件。检查运转是否正常,齿轮啮合是否良好,故障处理方法是更换或修补残缺的齿轮,添加润滑剂。 3.电源。检查保险丝是否熔断,伺服放大器位置反馈有无冒烟和特殊气味,如

相关文档
最新文档