行列式的定义及其性质证明

行列式的定义及其性质证明
行列式的定义及其性质证明

行列式的定义及其性质证明

摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。

关键词:行列式;定义;性质;代数余子式;逆序数

1基本定理与性质的证明

引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。

证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。

定理1n阶行列式也可定义为

证明由定义1和引理即可证得。

性质1行列式与它的转置行列式相等(由定理1即可证得)。

(根据性质1知对行成立的性质对列也成立)

性质2行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

证明利用定理1和代数余子式的定义即可证得。

性质3如果行列式中有两行(两列)元素对应相等,则此行列式等于零。

证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知

又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即

(mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

2行对应元素相等,根据二阶行列式的定义可知D i=0,所以M i+s=0,因此D=0,证毕。

性质4行列式的某行(列)的每个元素与另一行(或列)的对应元素的代数余子式乘积之和为零。

证明设D1= 有性质2可知

=0

性质5行列式的某一行(列)中所有元素都乘以同一数K,等于用数K乘以此行列式。

证明设D= 的第行的所有元素都乘以数K,得

行列式A,根据定理1,

A=

证毕。

性质6行列式中如果有两行(列)对应元素成比例,则此行列式等于零。

证明利用性质5和性质3即可证得。

性质7行列式的某一列(行)的元素都是2数之和,设

D=,则D等于下列2

个行列式之和:

证明由定理1知:

=D1+D2,证毕。

性质8把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式值不变。

由性质5可知=0,所以D′

=D,证毕。

性质9互换行列式的两行(列),行列式变号。

证明由性质8、性质7,根据性质3可证。

2结论

n阶行列式的性质1、2、5、7只运用定理1证明,化繁为简。以往教材,性质3和性质9必有一个性质用逆序数的有关概念来证,非常抽象,本文改进了行列式的定义后,性质3运用性质2证得,性质9运用性质3、7、8证得,化难为易;同时,也提升了我们学习的逻辑思维能力、推理能力、创新能力。充分体现了非数学专业的大学数学除了具有为专业课提供使用工具的功能,还应该有训练科学思维,激发学生创新热情的素质教育的功能。

参考文献:

[1]齐成辉。求解行列式的方法和技巧[J]。陕西师范大学学报:自然科学版,2003,31(1):27-30。

[2]王朝旺。行列式的归纳定义极其性质的证明[J]。北京联合大学学报,2005(3):12-15。

[3]程伟健。一个行列式的计算与推广[J]。高等数学研究,2005(1):61-65。

[4]马菊侠。关于Hadamard矩阵Kronecker积的构造和正规性[J]。陕西师范大学学报:自然科学版,2003,31(4):23-27。

[5]倪淑琪。论行列式的计算方法[J]。安庆师范学院学报:自然科学版,2001,7(4):33-37。

行列式的性质

行列式的性质 基本性质 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。 性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。 性质5 若行列式的某一行(列)的元素都是两数之和,例如第j 列的元素都是两数之和 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备. 设 111212122212 n n n n nn a a a a a a D a a a = , 112111222212n n T n n nn a a a a a a D a a a = 称行列式T D 为D 的转置行列式.T D 可以看成是D 的元素沿着主对角线旋转180所得,亦可看成是将D 的所有行(列)按序写成所有列(行)所得(即所谓行列互换). 性质1. 1 行列式的值与其转置行列式的值相等,即 111212122212 n n n n nn a a a a a a a a a 112111222212n n n n nn a a a a a a a a a = . 证明 将等式两端的行列式分别记作D 和T D ,对行列式的阶数用数学归纳法. 当2n =时,可以直接计算出T D D =成立,假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义 1111121211n n D a A a A a A =++ +,

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

行列式计算证明题

1-513 113 4 112 3 1?设 2 2… 2.计算元素为a” = |i —j 1 的n阶行列式 01A n -1 1 A冋一] 1^1 = 1 TH 0 A n ?3 —2 由最后一和起,每行减刖一行1-1 A c -1 解.IvJ n - J 1 M - 2 A 0 lw J_ 1 1 A-1 1 A A 粕一 1 0-2 A A -1 每列力口錦鬥列M O0 A A =1-1严严0??1) M M 0-2 00A0-1 X] +1Xj 2A D x= x2 + 1+ 2A总+麗 A A A A 3.计算n阶行列式心+1召+ 2A (n 2) 是| A|中元素a ij的代数余子式 : -5 1 3 1-60 : 1 3 4 1 02 : 123 1 0 1 解.A41 + A42 + A3 + A44[ 1 1 1 0 0-6 计算Al l + Al2 + A43 + Al4 =, 其中A j 1,2, 3, 4) 十1严 2

解.当<■ >; Xj + 2 A 丑+用 1 齐+ 2 A 巧+肚 D n 二 % + 2 A : 冷亠2 A 巧+ w A A A A 上 A A A 心+2 A 忌+用 + -. 每+ 2 A 珂 Xj + 3 A 耳i 十挖 工! 2 +3 A 盖i + 曲 % 心十? A 兀2 +超 总2 ^ + 3 A 工2 + 用 M M M M M M M M M M % 珀+3 A + 珀2 兀+ 3 A 心+用 1咼 x : + 3 A 卞1十 肚 1 2 + 3 A 简十抡 1 x 2 屯十H A x 2 + w 1 2 z 2 +3 A x 2 + ?s M M M M M M M M M M + 1為 心+孑 A 码* + 1 2 4+3 A 心+冲 1可 ?十3 A H ]十 圧 1 r a 亏+3 A Jt 3 + W M M M M M 1 0 心+了 A 可十1 画十2 4.设a , b , c 是互异的实数,证明: 1 A 咼十肚 1 A 工2十肚 M M M M M 1 A X, +w 1 7] 3 A 雄i 十耳 1 x 2 3 A 心+血 M M M M M 1 x # 3 A 兀 j * 冲

行列式的定义及其性质证明

行列式的定义及其性质证明 摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。 关键词:行列式;定义;性质;代数余子式;逆序数 1 基本定理与性质的证明 引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。 证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。 定理1 n阶行列式也可定义为 证明由定义1和引理即可证得。 性质1 行列式与它的转置行列式相等(由定理1即可证得)。 (根据性质1知对行成立的性质对列也成立) 性质2 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。 证明利用定理1和代数余子式的定义即可证得。 性质3 如果行列式中有两行(两列)元素对应相等,则此行列式等于零。 证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知 又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即 (mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

工程数学教案12行列式的性质与计算

教案头 教学详案 一、回顾导入(20分钟) ——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、行列式的性质 定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T D 。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。性质5 若行列式的某一列(行)的元素都是两数之和。 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。二、行列式按行(列)展开 定义 在n 阶行列式中,把元素 ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =。定理 行 列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。 推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠+++=,2211 。 行列式的代数余子式的重要性质: ???≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ???≠===∑=;,0, ,1j i j i D D A a ij n k jk ik 当当δ

范德蒙行列式的历史回顾与应用

范德蒙行列式的历史回顾与应用 摘要:行列式是高等代数的重要内容之一,它是线性方程组、矩阵、向量空间和线性变 换的基础。n 级范德蒙行列式是著名的行列式,它有广泛的应用,证明过程是行列式定理及数学归纳法的综合应用。本文将通过对n 级范德蒙行列式的历史发展进程与范德蒙行列式和类似范德蒙行列式的计算方法, 讨论它的各种位置变化规律, 介绍如何将类似范德蒙行列转换构造为标准的范德蒙行列式,并通过行列式的性质及定理,行列式的乘法规则,和行列式的加边法,来计算此类行列式,由此让人们能较为深入地了解到范德蒙行列式的魅力所在,同时也提高了分析、归纳与总结相关内容的能力,掌握解决此类问题的方法与技巧。 关键词:行列式,范德蒙行列式,行列式的性质,乘法规则,加边法,拉普拉斯定理, 子式,代数余子式,克莱姆法则,重根,充要条件,线性方程组。 1 .引言 行列式 11312 1 1223222 13 2 1 1111----=n n n n n n n a a a a a a a a a a a a d 称为n 级的范德蒙行列式。(见文献[1]) 我们来证明,对任意的n (n ≥2),n 级范德蒙行列式等于n a a a ,,,21 这n 个数的所有可能的差j i a a -(1≤j <i ≤n )的乘积,即 ∏≤<≤-n i j j i a a 1)(。 我们可以将范德蒙行列式或类似范德蒙行列式的行列式,用行列式的性质、乘法规则、加边法,计算出结果。 2.1.预备知识

性质1 行列互换,行列式不变,即 nn n n n n nn n n n n a a a a a a a a a a a a a a a a a a 212 221212111212222111211= 。 在行列式中行与列的地位是对称的,因之凡是有关行的性质,对列也同样成立。 性质2 nn n n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 21 21 112112 1 2111211=。 这就是说,一行的公因子可以提出去,或者说以一数乘行列式的一行就相当于用这个数乘此行列式。 性质3 nn n n n n nn n n n n nn n n n n n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a 2 12 1 11211212 1112112 1 221111211+=+++。 这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外与原来行列式的对应的行一样。 性质4 如果行列式中有两行相同,那么行列式为零。所谓相同就是说两行的对应元素都相等。 性质5 如果行列式中两行成比例,那么行列式为零。 性质6 把一行的倍数加到另一行,行列式不变。

线性代数之行列式的性质与计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

范德蒙行列式论文

范德蒙行列式的推广及应用 目录 一、摘要 二、引言 三、第一章 1、定义…………………………………………………………… 2、定义的证明……………………………………………………… 3、推广定义及证明………………………………………… 4、性质…………………………………………………………………… 第二章 1、范德蒙行列式在行列式计算中的应用…………………………………… 2、范德蒙行列式在微积分计算中的应用………………………………… 3、范德蒙行列式在向量空间计算中的应用………………………… 4、范德蒙行列式在线性空间计算中的应用…………………………… 第三章 1、范德蒙行列式在多项式插值中的应用……………………………… 2、利用编程计算范德蒙行列式……………………………………………… 第四章 结论………………………………………………………………… 参考文献……………………………………………………………

摘要 ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………(略) 关键词:………………(略) 引言 ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………(略) 英文 ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………(略)

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100 200 100 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n n n a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质T A A =,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

范德蒙行列式的证明及其应用

范德蒙德行列式的证明及其应用 摘要:介绍了n阶范德蒙行列式的定义,用递推法和拉普拉斯定理两种方法证明了范德蒙行列式,辅以实例研究了它在高等代数中的一些应用.向量空间理论用来解决线性问题;在线性变换理论、多项式理论和微积分理论中,主要用它构造线性方程组,进而应用克拉默法则或相关定理判断根的情况;在行列式计算中,主要运用范德蒙行列式的结论简化n阶行列式的计算过程.探究范德蒙行列式的历史及相关应用,为更进一步钻研其相关性质与应用奠定了良好的基础. 关键词:范德蒙德行列式;向量空间;线性变换;应用 1引言 行列式本身有着长远的历史发展过程.它的理论最早可追溯到十七世纪末, 在十九世纪末,其理论体系已基本形成. 1683年,定义行列式概念的是日本数学家关孝和.同一年,德国数学家莱布 尼茨首先开始使用指标数的系数集合来表示有三个未知数的三个一次方程组的 系数.他这种解决方程组的思维方式为行列式理论的深入研究工作打下了坚实地 基础.1771年,范德蒙创造性的在深入研究行列式理论的基础上,尝试解线性方 程组.他这种勇于创新、敢于探索的精神为大家所认可,被公认为行列式的奠基人. 他以现在被大家所熟悉的拉格朗日著作中的相关知识为理论基础,进行了反复的 钻研,为后来研究群的概念奠定了良好的基础.第一个阐述行列式的数学家便是 范德蒙.他运用自己的聪明才智、活跃的思维、批判的科研态度给出了现代代数 书中二阶子式及余子式的定义,经过推理,演绎这一系列严谨的过程,完善了行列 式的概念,并给出了行列式的数学符号记录.1772年,皮埃尔-西蒙.拉普拉斯在 范德蒙著作和自身灵感的启示下,思维方法发生了变化,得出了子类型的概念.自 此起,人们对行列式展开了单独的研究. 人们为了深入了解行列式理论的本质特征,在19世纪展开了更深层次的研究.柯西积极吸收前人的劳动成果的同时,首次给出了行列式的系统理论.包括双 重组标记法、行列式的乘法定理等.1832年至1833年,问卡尔.雅可给出了一个 特殊的行列式的计算结果.基于此,1839年,卡塔兰发现了Jacobian行列式. 范德蒙行列式整齐、完美的结构形式让我们体验到数学之美.简单探索它的 应用,感悟数学的魅力.如果我们能够深入探索范德蒙行列式并灵活运用它,未来 将更广泛的应用在数学各个领域. 2范德蒙行列式的定义及证明 2.1定义

习题1-3 行列式的性质

1、用行列式的性质计算下列行列式: () 134215352152809229092 ; 【分析】可见行列式中1,2两列元素大部分数字是相等的,列差同为1000,易于化为下三角行列式,于是, 【解法一】 3421535215280922909221 c c -34215100028092100012 r r -61230 280921000 下三角6123000。 【解法二】 34215352152809229092 12 r r -6123 6123 2809229092 21 c c -6123 280921000 下三角6123000。 () 2ab ac ae bd cd de bf cf ef ---; 【分析】各行、列都有公因,抽出后再行计算。 【 解 】 ab ac ae bd cd de bf cf ef ---123 a r d r f r ←←← b c e adf b c e b c e ---12 3 b c c c e c ←←←1111 111 1 1 adfbce --- 上三角2(1)2abcdef -?-?4abcdef =。 () 31111111111 1 1 1111 ------; 【分析】将第一行加到以下各行即成为上三角行列式, 【解】 1111111111 1 1 1111 ------213141 r r r r r r +++1111022200220002 上三角3 12 ?8=。 2、把下列行列式化为上三角形行列式,并计算其值:

() 12240 4135 31232 051-----; 【解法一】 224 4 1353 1232 5 1 -----21 c c ?2240 143513230 2 5 1 ------21 r r ?1435 2240 13230 2 5 1 ----- 270=-。 【解法二】 2 240 4 1353 1232 5 1 -----1 2 r ←1120 41352 31232 5 1 -----21 c c ?1120 1435 213230 2 5 1 ------ 上三角221(1)(135)??-?-270=-。 () 21234 234134124123 。 【分析】该行列式属于同行元素之和相等的类型,应将2,3,4列加到第1列: 【解】 1234 234134124123 1234 () c c c c +++10234 103411041210123213141 r r r r r r ---10 234011 3 02 22 111 ------ 3242 2 r r r r -+102 340113004 40 4 --- 上三角2 101(4) ??-160=。 3、设行列式 ij a m =(,1,2,,5)i j =L ,依下列次序对ij a 进行变换后,求其结果: 交换第一行与第五行,再转置,用2乘所有元素,再用(-3)乘以第二列加到第四列,最后用4除第二行各元素。 【解】 ()1交换第一行与第五行,行列式变号,结果为m -; ()2再转置,行列式的值不变,m -;

范德蒙德行列式的证明

范德蒙德(Vandermonde )行列式 ·定义:行列式1 1 3 1 2 1 1 2 23222 1 321...... ... ......... (1) (111) ----=n n n n n n n a a a a a a a a a a a a d 称为n 级范德蒙德(Vandermonde )行列式。 ·性质:对任意的n (n ≥2),n 级范德蒙德行列式等于a 1a 2a 3...a n 这n 个数的所有可能的差 a i -a j (1≤j <i ≤n)的乘积。即 )(...... ... (1) (11111) 1 3 1 2 1 1 2 23222 1 321 j i n i j n n n n n n n a a a a a a a a a a a a a a d -∏==≤<≤---- 范德蒙德行列式为零的充分必要条件是a 1,a 2,...,a n 这n 个数种至少两个相等。 ·证明:(#数学归纳法) (i )当n=2时, 122 11 1a a a a -=,结论成立。 ) (...... ... ...............1 (111) 1 12 1 2 3 2 2 2 1 2 123222 1 1 321 1j i n i j n n n n n n n n a a a a a a a a a a a a a a d -∏==-≤<≤-------- (ii )设对于n-1级范德蒙德行列式结论成立,即

则 || ....................................................).........() ())...()((...... ... ...... ...1...11) )...()(( 0 ... ... ... 0 ...01 (11112113122) 2 3 2 2 32113122 11 2 311 3 2 211 2 12 3 12 32 12 211312j i n i j j i n i j n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a d -∏=-∏?---=---=---------=≤<≤≤<≤---------

范德蒙德行列式的研究与应用

毕业设计(论文)题目范德蒙德行列式的研究与应用 院(系)数理学院 专业班级xxxxxx 学生姓名xxx 学号xxxx 指导教师xxxx 职称xxx 评阅教师xxxx 职称xxxx 2014年5 月30日 注意事项

1.设计(论文)的内容包括: 1)封面(按教务处制定的标准封面格式制作) 2)原创性声明 3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入) 6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢 9)附录(对论文支持必要时) 2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。 3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求: 1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写 2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画 3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上 5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文) 2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订 3)其它 学生毕业设计(论文)原创性声明

本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 毕业设计(论文)作者(签字): 年月日

行列式的性质

教学单元教案设计

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l ΛΛ11 ——b b a b a a l ΛΛ11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 推论

奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 证明 : 由定理1知对换的次数就是排列奇偶性的 变化次数,而标准排列是偶排列(逆序数为0),因此知推论成立 定理2 :n 阶行列式为: .)1(211 21 2322211312 112 1 n p p p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中t 为n p p p Λ21的逆序数. (以4阶行列式为例,对证明过程作以说明) (补充)定理3 n 阶行列式也可定义为 .)1(1 2 121 11 21 2322211312 11n q p q p q p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中n p p p Λ21和 n q q q Λ21是两个n 级排列,t 为行标排列逆序数与列标排列逆序数的和.

范德蒙行列式及其应用

目录 摘要及关键词 (1) 一、范德蒙行列式 (1) (一)范德蒙行列式定义 (1) (二)范德蒙行列式的推广 (4) 二、范德蒙行列式的相关应用 (8) (一) 范德蒙行列式在行列式计算中的应用 (8) (二) 范德蒙行列式在微积分中的应用 (14) (三) 范德蒙行列式在多项式理论中的应用 (19) (四) 范德蒙行列式推广的应用 (21) 三、结束语 (22) 四、参考文献 (23)

范德蒙行列式及其应用 摘要:在北大版高等代数的教科书中,行列式是一个重点也是一个难点,它是学习线性方程 组、矩阵、向量空间和线性变换的基础,起着重要作用。而行列式的计算具有一定的规律性和技巧性,同时可以应用在很多领域。本文将通过对n 阶范德蒙行列式的计算、推广及其证明,讨论它在行列式计算,微积分和多项式理论中的相关应用,然后主要研究一些与范德蒙行列式有关的例子,从中掌握行列式计算的某些方法和技巧,这将有助于我们更好的应用范德蒙行列式解决问题。 关键词:范德蒙行列式、行列式 The Determinant of Vandermonde and Its Application Yuping- Xiao (Department of Mathematics Bohai University Jinzhou 121000 China) Abstract: Higher algebra textbook edition in Beijing University,the determinant is not only an important point but also a difficult point,it is a foundation of learning linear equations,matrices, vector space and linear transformation,it plays an important role.And the calculation of determinant has a certain regularity and skills,it can be applied in many areas at the same time. This paper will be through the calculation,expansion and prove of a n band Vandermonde determinant,and discuss the calculation of determinant,the relevant application in the calculus and multinomial theory, then study some examples about the determinant of Vandermonde,and acquire some methods and skills of determinant calculation,This will help us better use the determinant of Vandermonde to solve the problems. Key words: the Vandermonder determinant; determinant 一、范德蒙行列式 (一)范德蒙行列式定义 定义1[1] 关于变元1x ,2 x n x 的n 阶行列式 1 22 221 2 1 1112 111n n n n n n n x x x D x x x x x x ---= (1) 叫做1x ,2x n x 的n 阶范德蒙行列式。 下面我们来证明 对任意的n (2n ≥),n 级范德蒙行列式等于1x ,2 x n x 这n 个数的

几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()123231111001 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000000 n n n a a a a D a a ?? --- ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

范德蒙行列式的应用论文

范德蒙行列式的应用 摘要行列式是线性代数的主要内容之一,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础,有着很重要的作用。而n阶范德蒙行列式是线性代数中著名的行列式,它构造独特、形式优美,更由于它有广泛的应用,因而成为一个著名的行列式。它的证明过程是典型行列式定理及数学归纳法的综合应用。本文将通过对n阶范德蒙行列式的计算, 讨论它的各种位置变化规律, 介绍了如何构造范德蒙行列式进行行列式计算,以及探讨了范德蒙行列式在向量空间理论、线性变换理论以及微积分中的应用。 关键词:行列式;范德蒙行列式;向量空间理论;线性变换理论;微积分

VANDERMONDE DETERMINANT OF APPLICATIONS ABSTRACT The determinant is one of the main contents of linear algebra, which is the follow-up course of linear equations, matrixes, vector spaces and linear transformation of the base, has a very important role. The n-order Vandermonde determinant is the determinant of well-known in linear algebra, which constructs a unique form of beauty, but the more because it has a wide range of applications, and thus become a well-known determinant. It's proof process is typical determinant theorem and comprehensive application of mathematical induction. This article will through the n-order Vandermonde Determinant of calculation and discussing the variation of its various locations, describes how to construct a Vandermonde determinant of the determinant calculation, as well as to explore the Vandermonde determinant of applications in the theory of vector spaces, linear transformation theory and infinitesimal calculus. Key words: linear algebra,Vandermonde determinant,theory of vector spaces,linear transformation theory,infinitesimal calculus.

相关文档
最新文档