嵌入式实验报告_电机转动控制实验

嵌入式实验报告_电机转动控制实验
嵌入式实验报告_电机转动控制实验

贵州大学实验报告

学院:专业:班级:

姓名学号实验组实验时间05.06 指导教师余佩嘉成绩实验项目名称电机转动控制实验

实验目的

1.熟悉 ARM 本身自带的六路即三对 PWM,掌握相应寄存器的配置。

2.编程实现 ARM 系统的 PWM 输出和 I/O 输出,前者用于控制直流电机,后者用于控制步进电机。

3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。

4.掌握带有 PWM 和 I/O 的 CPU 编程实现其相应功能的主要方法。

实验原理1.直流电机

1)直流电动机的 PWM 电路原理

晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图 6-1 所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制 (PWM)变速控制。在 PWM 变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。

构成 PWM 的功率转换电路或者采用"H"桥式驱动,或者采用 "T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

2)直流电动机的 PWM 等效电路

如图 7-2-a 所示:是一个直流电动机的 PWM 控制电路的等效电路。在这个等效电路

中,传送到负载 (电动机)上的功率值决定于开关频率、导通角度及负载电感的大小。开关频率的大小主要和所用功率器件的种类有关,对于双极结型晶体管(GTR),一般为lkHz 至 5kHz,小功率时(100W,5A 以下)可以取高些,这决定于晶体管的特性。对于绝缘栅双极晶体管(IGBT),一般为5kHz至l2kHz;对于场效应晶体管(MOSFET),频率可高达2OkHz。另外,开关频率还和电动机电感有关,电感小的应该取得高些。

当接通电源时,电动机两端加上电压 UP,电动机储能,电流增加,当电源中断时,电枢电感所储的能量通过续流二极管 VD 继续流动,而储藏的能量呈下降的趋势。除功率值以外,电枢电流的脉动量也与电动机的转速无关,仅与开关周期、正向导通时

间及电机的电磁时间常数有关。

3)直流电动机 PWM 电路举例

图 6-3 为直流电动机 PWM 电路的一个例子。它属于"H"桥式双极模式 PWM 电路。

电路主要由四部分组成,即三角波形成电路、脉宽调制电路、信号延迟及信号分配电路和功率电路。电路中各点波形如图 6-4 所示。其中信号延迟电路是为了防止"共态直通"而设置的。一般延迟时间调整在(10~30)ps 之内,根据晶体管特性而定。其原理简单叙述如下:

功率电路主要由四个功率晶体管和四个续流二极管组成。四个功率晶体管分为两组,V1 与V4、V2 与 V3 分别为一组,同一组的晶体管同时导通,同时关断。基极的驱动信号Ub1 = Ub2,Ub3=Ub4。其工作过程为:

·在 t1’—t2 期间, Ub1> 0 与 Ub4 > 0,V1 与 V4 导通,V2 与 V3 截止,电枢电流沿回路l 流通。

·在 t2— T+ t1’期间,Ub1< 0 与 Ub4 < 0,V1 与 V4 截止, Ub2 > 0 与 U b 3> 0 但此时由于电枢电感储藏着能量,将维持电流在原来的方向上流动,此时电流沿回路2 流通;经过跨接于 V2 与 V3 上的续流二极管 VD4、VD5。受二极管正向压降的限制,V2 与 V3 不能导通。·T+ t1’之后,重复前面的过程。

·反向运转时,具有相似的过程。

4)开发平台中直流电机驱动的实现

开发板中的直流电机的驱动部分如图 7-3 所示;由于 S3C2410X 芯片自带 PWM 定时器,所以控制部分省去了三角波产生电路、脉冲调制电路和 PWM 信号延迟及信号分配电路,取而代之的是 S3C2410X 芯片的定时器 0、1 组成的双极性 PWM 发生器。

PWM 发生器用到的寄存器主要有以下几个:

(1)TCFG0

时钟输入频率=PCLK/(prescaler value+1)/(divider value)。

prescaler value 有 TCFG0 决定;divider value 由 TCFG1 决定。参考:无 DMA 模式,divider value=2。本系统中 PCLK=50.7MHz (2)TCON

2.步进电机

1)步进电机概述

步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相方波脉冲驱动,用途很广。使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。

2)步进电机的种类

目前常用的步进电机有三类:

1、反应式步进电动机(VR)。它的结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。

2、永磁式步进电动机(PM)。它的出力大,动态性能好;但步距角一般比较大。

3、混合步进电动机(HB)。它综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。

3)步进电机的工作原理

现以反应式三相步进电机为例说明其工作原理。定子铁心上有六个形状相同的大齿,相邻两个大齿之间的夹角为 60 度。每个大齿上都套有一个线圈,径向相对的两个线圈串联起来成为一相绕组。各个大齿的内表面上又有若干个均匀分布的小齿。转子是一个圆柱形铁心,外表面上圆周方向均匀的布满了小齿。转子小齿的齿距是和定子相同的。设计时应使转子齿数能被二整除。但一相绕组通电,而转子可自由旋转时,该相两个大齿下的各个小齿将吸引相近转子小齿使电动机转动到转子小齿与该相定子小齿对齐的位置,而其它两相的各个大齿下的小齿必定和转子的小齿分别错开正负 1/3 的齿距,形成“齿错位”,从而形成电磁引力使电动机连续的转动下去。和反应式步进电动机不同,永磁式步进电动机的绕组电流要求正,反向流动,故驱动电路一般要做成双极性驱动。混合式步进电动机的绕组电流也要求正,反向流动,故驱动电路通常也要做成双极性。4)开发板中步进电机控制的实现

本开发板中使用的步进电机为四相步进电机。转子小齿数为 64。系统中采用四路 I/O 进行并行控制,ARM 控制器直接发出多相脉冲信号,在通过功率放大后,进入步进电机的各相绕组。这样就不再需要脉冲分配器。脉冲分配器的功能可以由纯软件的方法实现。

四相步距电机的控制方法有四相单四拍,四相单、双八拍和四相双四拍三种控制方式。步距角的计算公式为:

其中:m 为相数,控制方法是四相单四拍和四相双四拍时 C 为 1,控制方

法是四相单、双八拍时 C 为 2,Zk 为转子小齿数。本系统中采用的是四相单、双八拍控制方法,所以步距角为 360°/512。但步进电机经过一个 1/8 的减速器引出,实际的步距角应为 360°/512/8。开发平台中使用 EXI/O 的高四位控制四相步进电机的四个相。按照四相单、双八拍控制方法,电机正转时的控制顺序为 A→AB→B→BC→C→CD →D→DA。EXI/O 的高四位的值参见表 7-6。

反转时,只要将控制信号按相反的顺序给出即可。

可以通过宏 SETEXIOBITMASK(bit,mask)(EXIO.h)来设置扩展 I/O 口,其中 mask 参数为 0xf0。

实验仪器硬件:ARM嵌入式开发平台、PC机Pentium100以上、用于ARM920T的JTAG仿真器、

模拟电压信号源。

软件:PC机操作系统Win2000或WinXP、ARM ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序。

实验步骤1.新建工程,将“Exp4 电机转动控制实验”中的文件添加到工程。2.编写直流电机初始化数(MotorCtrl.c)

3.控制直流电机4.控制步进电机

实验内容

学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习 ARM 知识,掌握 PWM 的生成方法,同时也要掌握 I/O 的控制方法。

1.编程实现 ARM 芯片的一对 PWM 输出用于控制直流电机的转动,通过 A/D 旋钮控制其正反转及转速。

2.编程实现 ARM 的四路 I/O 通道实现环形脉冲分配用于控制步进电机的转动,通过A/D 旋钮转角控制步进电机的转角。

3.通过超级终端来控制直流电机与步进电机的切换。

实验数据

实验总结

基本达到实验的要求,熟悉 ARM 本身自带的六路即三对 PWM,掌握相应寄存器的配置。学会编程实现 ARM 系统的 PWM 输出和 I/O 输出,了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,掌握带有 PWM 和 I/O 的 CPU 编程实现其相应功能的主要方法。对今后嵌入式开发的学习打下一定的基础。

见签名:年月日注:各学院可根据教学需要对以上栏目进行增减。表格内容可根据内容扩充。

步进电机的控制实验报告

步进电机的控制实验报告 一、实验目的 1.学习步进电机的工作原理。 2.了解步进电机的驱动电路。 3.学会用单片机控制步进电机。 二、实验器件 1.T IVA C 系列芯片,电机模块和LCD显示模块。 2.电脑以及CCS开发软件。 三、实验内容 设计一个简单的程序驱动步进电机并控制转速,通过LCD板上的滚轮装置可以调节步进电机的转速。 四、实验原理 双极性四线步进电机:一般双极性四线步进电机线序是 A B A/ B/, 其中A 与A/是一个线圈,B和B/是一个线圈,一般这种驱动需要的是H桥电路。 H双极性四线步进电机驱动相序: 1.单相四拍通电驱动时序 正转: A/ B A B/ 反转: B/ A B A/ 2.双相通电四拍驱动时序 正转:A/B AB AB/ A/B/ 反转:A/B/ AB/ AB A/B 3.半步八拍驱动时序 正转:A/ A/B B AB A AB/ B/ A/B/ 反转:A/B/ B/ AB/ A AB B A/B A/

DRV8833驱动芯片: DRV8833为玩具、打印机及其他机电一体化应用提供了一款双通道桥式电机驱动器解决方案。该器件具有两个H 桥驱动器,并能够驱动两个直流(DC)电刷电机、一个双极性步进电机、螺线管或其他电感性负载。每个H桥的输出驱动器模块由N沟道功率MOSFET组成,这些MOSFET被配置成一个H桥,以驱动电机绕组。每个H桥都包括用于调节或限制绕组电流的电路。借助正确的PCB设计,DRV8833的每个H桥能够连续提供高达1.5-ARMS(或DC)的驱动电流(在25℃和采用一个5VVM电源时)。每个H桥可支持高达2A的峰值电流。在较低的VM电压条件下,电流供应能力略有下降。该器件提供了利用一个故障输出引脚实现的内部关断功能,用于:过流保护、短路保护、欠压闭锁和过热。另外,还提供了一种低功耗睡眠模式。 DRV8833内置于16引脚HTSSOP封装或采用PowerPAD?的QFN封装(绿色环保:RoHS和无Sb/Br)。 图1 H桥电路真值表 设计思路:使用单相四拍通电驱动时序驱动步进电机。用单片机生成四个占空比为25%相位逐个延迟90度的PWM信号,按照特定顺序输入到驱动芯片的AIN1、AIN2、BIN1、BIN2引脚。通过调节LCD模块上的滚轮来调节PWM信号的周期从而控制步进电机的转速。调节的频率范围是25HZ-50HZ。步进电机的转速信息通过传感器采样送到单片机,信息处理后送到LCD显示模块显示。 实验主程序: int main(void) { uint32_t pui32ADC0Value[1]; // 保存ADC采样值 int speed = 0; uint32_t cur_Period, old_Period = 0; // 根据滚轮ADC转换值换算出当前的时间周期值 // 系统时钟设置 SysCtlClockSet(SYSCTL_SYSDIV_64 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); // 初始化滚轮 Init_ADCWheel();

实验三PLC步进电机控制实验

实验三 PLC步进电机控制实验 一、实验目的 1、掌握步进电机工作原理; 2、用PLC构成五相步进电机控制系统。 二、实验要求 1、通过实验,加深并验证学过的理论知识,掌握实验的基本方法和实验原理; 2、正确使用仪器设备; 3、认真观察仪器设备的运动方式,独立编写控制程序并进行操作。 4、学生在实验过程中,应学会独立思考,应用所学专业理论知识分析和解决实验中遇到的具体问题; 三、实验原理 步进电机工作原理 步进电机按工作原理可分为电磁式、磁阻式、永磁式、混合式四类。其中混合式步进电机从定子或转子的导磁体来看,它如反应式步进电机,所不同的是它的转子上置有磁钢,反应式转子则无磁钢。从它的磁路内含有永久磁钢这一点来说,又可以说它是永磁式,但因其结构不同,使其作用原理及性能方面,都与永磁式步进电机有明显区别。它好像是反应式和永磁式的结合,所以常称为混合式。混合式步进电机具有驱动电流小,效率高,过载能力强、控制精度高等特点,是目前市面上应用最为广泛的一种步进电机。 四、实验所用仪器 1、三菱FX1N-60MR一台; 2、计算机一台; 五、实验步骤和方法 1、熟悉编程环境,输入所编制的程序; 2、接通实验箱电源、串口通讯线; 3、将程序下载至PLC并运行。 六、实验注意事项 经指导教师检查同意后,方可接通电源进行实验操作。 七、实验预习要求 1、预习PLC编程环境,上机前预先将控制程序编制完成; 2、预习步进电机工作原理。 八、实验报告要求 实验报告的主要内容 1、实验目的 2、实验所用仪器 3、实验原理方法简要说明 4、程序清单。

实验报告册样式

实验步骤: 1、熟悉编程环境,编制程序;

DDSZ-1型电机及电气技术实验指南(doc 13页)(正式版)

DDSZ-1型电机及电气技术实验指导书 1 认识实验 一、实验目的 1、学习电机实验的基本要求与安全操作注意事项。 2、认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3、熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机转向与调速的方法。 二、预习要点 1、如何正确选择使用仪器仪表。特别是电压表电流表的量程。 2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产生什么严重后果? 3、直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果? 4、直流电动机调速及改变转向的方法。 三、实验项目 1、了解DD01电源控制屏中的电枢电源、励磁电源、校正直流测功机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。 2、用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3、直流他励电动机的起动、调速及改变转向。 四、实验设备及控制屏上挂件排列顺序 1 2、控制屏上挂件排列顺序 D31、D42、D51、D31、D44

五、实验说明及操作步骤 1、由实验指导人员介绍DDSZ-1型电机及电气技术实验装置各面板布置及使用方法, 讲解电机实验的基本要求,安全操作和注意事项。 2、用伏安法测电枢的直流电阻 图2-1 测电枢绕组直流电阻接线图 (1)按图2-1接线,电阻R 用D44上1800Ω和180Ω串联共1980Ω阻值并调至最大。A 表选用D31上的直流安培表。开关S 选用D51挂箱上的双刀双掷开关。 (2)经检查无误后接通电枢电源,并调至220V 。调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。将电机转子分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表2-1中。 (3)增大R 使电流分别达到0.15A 和0.1A ,用同样方法测取六组数据列于表2-1中。 取三次测量的平均值作为实际冷态电阻值 表中: )(3 13323133a a a a R R R R ++= (4)计算基准工作温度时的电枢电阻 由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值。冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω)。 R a ——电枢绕组的实际冷态电阻。(Ω)。 θref ——基准工作温度,对于E 级绝缘为75 ℃。 )(311312111a a a a R R R R ++=)(312322212a a a a R R R R ++=) (1321a a a a R R R R ++=a ref a aref R R θ θ++=235235

嵌入式电机转动控制实验..

《嵌入式系统设计与实例开发》(2011-2012学年第2学期) 实 验 报 告 实验五电机转动控制实验----c语言实现方法

电机转动控制实验—C语言实现方法 一、实验目的 1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。 2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。 3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。 4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。 二、实验内容 学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。 1.编程实现ARM芯片的一对PWM输出用于控制直流电机的转动,通过A/D旋钮控制其正反转及转速。 2.编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动,通过A/D 旋钮转角控制步进电机的转角。 3.通过超级终端来控制直流电机与步进电机的切换。 三、预备知识 1、用ARM SDT 2.5或ADS1.2集成开发环境,编写和调试程序的基本过程。 2、ARM应用程序的框架结构。 3、会使用Source Insight 3 编辑C语言源程序。 4、掌握通过ARM自带的A/D转换器的使用。 5、了解直流电机的基本原理。 6、了解步进电机的基本原理,掌握环形脉冲分配的方法。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 2.51或ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理 1.直流电机 1)直流电动机的PWM电路原理 晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图2-22所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制 (PWM)变速控制。在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。 构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用 "T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

【实验报告】单轴电机运动控制实验报告范文

单轴电机运动控制实验报告范文 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL―11组件3.MCL―18组件4.双踪示波器5.万用表 四.实验方法 1.速度调节器(ASR)的调试 按图1-5接线,DZS(零速封锁器)的扭子开关扳向“解除”。 (1)调整输出正、负限幅值“5”、“6”端接可调电容,使ASR调节器为PI 调节器,加入一定的输入电压(由MCL―18的给定提供,以下同),调整正、负限幅电位器RP1、RP2,使输出正负值等于5V。 (2)测定输入输出特性将反馈网络中的电容短接(“5”、“6”端短接),使ASR调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画 图1-5 速度调节器和电流调节器的调试接线图

出曲线。 (3)观察PI特性 拆除“5”、“6”端短接线,突加给定电压(0.1V),用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 2.电流调节器(ACR)的调试按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变数值。 一.实验目的 1.了解双闭环不可逆直流调速系统的原理,组成及各主要单元部件的原理。2.熟悉电力电子及教学实验台主控制屏的结构及调试方法。3.熟悉MCL-18,MCL-33的结构及调试方法

电机传动与控制实验指导书

实验一步进电机基本原理实验 一、实验目的 1、了解步进电动机的基本结构和工作原理。 2、掌握步进电机驱动程序的设计方法。 二、实验原理 步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和 制动的执行元件。其功能是将电脉冲转换为相应的角位移或直线位移。步进电动机的运 转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一 个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。步进电机旋转的角度由 输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。 当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点, 转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转 的原因。 四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如 表1,表2和表3 表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表 表3 四相八拍脉冲分配表 如步进电动机每一相均停止通电,则电机处于自由状态;若某一相一直通直流电时,

则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电动机可以实现停车时转子定位。这就是步进电动机的自锁功能。当步进电机处于自锁时,若用手旋转它,感觉很难转动。 三、实验步骤: 1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。 2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。 启动硬件设备。 3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷 工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。 没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。 4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验 目录中选择“步进电机基本原理”实验,并启动该实验。 5.点击该实验脚本中的“开关”按钮,向运动控制卡下载实验程序。 6.本实验中先做步进电机的驱动实验:选择运行方式为“连续驱动”,依次选 择步进电机的工作方式为:四相单四拍、四相双四拍、四相八拍;方向可以是任意的;脉冲间隔参数可用5~10ms。点“电机驱动”按钮,驱动电机工作。观察电机的工作情况。(对于四相八拍的工作方式,脉冲间隔最小可以到2ms)终止电机运行请在运行方式中选择“停止保持”或“停止不保持”。 7.步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电 机驱动”按钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带轮,可以感到转动比较困难。 8.步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。 每点击一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于本实验台步距角为1.8o。 除了可以使用DRLink平台下的实验脚本进行本实验外,还可以使用C-51的C语言程序进行本实验。本运动控制平台在内部使用了DRMC-A型运动控制卡,其CPU是ADUC842,关于ADUC842的硬件的详细信息,请参考我们提供的pdf 文档。在DRMC-A型运动控制台,步进电机的端口地址:0x8000,用低4位表示电机的4相,1表示发送脉冲,0表示空。根据步进电机的工作方式的脉冲分配表(表1~3),逐步向端口的低4位写入0和1就可以了。具体的程序请参考StepMotor1.c~StepMotor5.c。在生成执行代码后,按运动控制台的“PRG”+“RST”按钮后,使用Windows Serial Downloader将执行程序下载到单片机内。

《电力机车电机》实验指导书

《电力机车电机》实验指导书 实验一直流电机认识实验 一.实验目的 1.学习电机实验的基本要求与安全操作注意事项。 2.认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3.熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机方向与调速的方法。 二.预习要点 1.如何正确选择使用仪器仪表。特别是电压表、电流表的量程。 2.直流他励电动机起动时,为什么在电枢回路中需要串联起动变阻器?不连接会产生什么严重后果? 3.直流电动机起动时,励磁回路连接的磁场变阻器应调至什么位置?为什么?若励磁回路断开造成失磁时,会产生什么严重后果? 4.直流电动机调速及改变转向的方法。 三.实验项目 1.了解MEL系列电机系统教学实验台中的直流稳压电源、涡流测功机、变阻器、多量程直流电压表、电流表、毫安表及直流电动机的使用方法。 2.用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3.直流他励电动机的起动,调速及改变转向。 四.实验设备及仪器 1.MEL系列电机系统教学实验台主控制屏(MEL-I、MEL-IIA、B) 2.电机导轨及测功机、转速转矩测量(MEL-13)或电机导轨及校正直流发电机 3.直流并励电动机M03 4.220V直流可调稳压电源(位于实验台主控制屏的下部) 5.电机起动箱(MEL-09)。 6.直流电压、毫安、安培表(MEL-06)。 五.实验说明及操作步骤 1.由实验指导人员讲解电机实验的基本要求,实验台各面板的布置及使用方法,注意事项。 2.在控制屏上按次序悬挂MEL-13、MEL-09组件,并检查MEL-13和涡流测功机的连接。 3.直流仪表、转速表和变阻器的选择。 直流仪表、转速表量程是根据电机的额定值和实验中可能达到的最大值来选择,变阻器根据实验要求来选用,并按电流的大小选择串联,并联或串并联的接法。 (1)电压量程的选择

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术实验指导书武夷学院机电工程学院

目录 第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1) 1-1 控制屏介绍及操作说明 (1) 1-2 DJK01电源控制屏 (1) 1-3 各挂件功能介绍 (4) 第二章电力电子及电机控制实验的基本要求和安全操作说明 (80) 1-1 实验的特点和要求 (81) 1-2 实验前的准备 (82) 1-3 实验实施 (83) 1-4 实验总结 (85) 1-5 实验安全操作规程 (87) 第三章电力电子技术实验 (89) 实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 (89) 实验二锯齿波同步移相触发电路实验 (95) 实验三单相桥式半控整流电路实验 (100) 实验四直流斩波电路原理实验 (108) 实验五单相交流调压电路实验 (116) 实验六三相半波可控整流电路实验 (124) 1

第一章DJDK-1 型电力电子技术及电机控制实验装置简介 1-1 控制屏介绍及操作说明 一、特点 (1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。 (2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW 左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备, 1

电机实验报告

步进电机控制报告 目录 引言 0 一系统技术指标 (1) 二总体方案 (1) 2.1 任务分析 (1) 2.2 总体方案 (1) 三硬件电路设计 (2) 3.1 单片机控制单元 (2) 3.2 nokia5110液晶显示单元 (3) 3.3 电机的选择 (4) 3.3.1 反应式步进电机(VR) (4) 3.3.2 永磁式步进电机(PM) (4) 3.3.3 混合式步进电机(HB) (4) 3.3.4 电机确定 (5) 3.4 驱动电路方案选择 (5) 3.4.1 单电压功率驱动 (5) 3.4.2 双电压驱动功率驱动 (6) 3.4.3 高低压功率驱动 (6) 3.4.4 斩波恒流功率驱动 (7) 3.4.5 集成功率驱动 (8)

3.4.6 驱动电路方案确定 (9) 3.5 键盘电路 (9) 四软件设计 (11) 五测试结果 (13) 六误差分析 (13) 七操作规范 (13)

引言 本系统是基于MSP430的步进电机控制系统,能够实现精密工作台位移、速度(满足电机的加、减速特性)、方向、定位的控制。用MSP430F449作为控制单元,通过矩阵键盘实现对步进电机转动开始与结束、转动方向、转动速度的控制。并且将步进电机的转动方向,转动速度,以及位移动态显示在LCD液晶显示屏上。硬件主要包括单片机系统、电机驱动电路、矩阵键盘、LCD显示等。

一系统技术指标 系统为开环伺服系统,执行元件为步进电动机,传动机构为丝杠螺母副。工作台脉冲当量:δ=0.01 mm /脉冲;最大运动速度=1.2m/min;定位精度=±0.01 mm;空载启动时间=25ms。 二总体方案 2.1 任务分析 本系统要求脉冲当量为δ=0.01 mm /脉冲,而工作台丝杠螺母副导程4mm,即电机转动一周需要400个脉冲,所以电机的步距选择0.9度;最大速度要求为1.2m/min(20mm/s),所以单片机输出的脉冲频率最大为2000Hz;空载启动时间为25ms,所以电机的启动频率为40Hz。 2.2 总体方案 根据系统要求,经过分析,可对MSP430F449单片机编程,实现按键控制和nokia5110液晶屏显示。由于MSP430F449的I/O的电压是3.3V,不符合L298驱动芯片的输入电压要求,固通过光耦隔离芯片TLP521-4,将I/0的3.3V 电压提升至5V,然后接进L298来控制电机的定位,加减速,正反转来实现精确系统总体框图如图1所示:

实验步进电机控制实验

实验步进电机控制实验 一、实验目的 掌握步进电机的工作原理和控制方法 二、实验设备 1、EL-MUT-III型单片机实验箱 2、8051CPU模块 3、电机综合模块 三、实验内容 单片机通过244设置步进电机运行的步数和方向,并显示在数码管上,同时驱动电机按照设定的步数和方向转动,同时在数码管上显示电机的实际转动步数。 四、实验原理 步进电机工作原理见模块说明书,控制电路如下图: 五、实验步骤 1、实验连线: P1口的P1.0---P1.3分别接模块上的A、B、C、D。 CS244接CS0,244的输入IN0--IN7接平推开关KK1--KK8的输入K1--K8。 P1.7接单脉冲输出P-。 2、运行Keil C运行环境,打开Step4文件夹下的Step4.uv2,检查工程的Debug 参数设置是否正确,然后全速运行,数码管的左两位显示设定的步数(16进制),可以通过改变平推开关kk1—kk7的状态设定不同的运行步数,改变kk8的状态可改变电机的转动方向,在数码管上当数值位的小数点位点亮时,表示为逆时针方向,否则为顺时针方向。完成设置后,按动单脉冲开关Pules,电机按照设定的方向和步数开始转动,同时在数码管的右侧显示电机的转动步数,当达到设定值时,电机停止转动。

3、观察步进电机的运动与设定值是否一致。 六、实验结果 输入运行步数N,电机运行N步后停止,且方向与设定方向一致。 七、程序框图

实验直流电机调压调速实验 一、实验目的 掌握直流电机测速和调速的工作原理 二、实验设备 1、EL-MUT-III型单片机实验箱 2、8051CPU模块 3、电机综合模块 三、实验内容 电机每转一周,SIGNAL端产生一如图所示的脉冲,通过用INT0检测该脉冲的高电平,并从P10输出输出一8253的GATA信号来控制8253计数器的启停。 通过8253的计数值计算转速,转速值经主机箱RS232串口送至PC机,在PC机上进行PID计算,计算结果通过串口送给CPU,经D/A转换成电压,控制电机转速。 四、实验原理

电机及电气技术实验指导书修改(DDSZ-1型)(1)

Tianhuang Teaching Apparatuses 天煌教仪 电机系列实验 DDSZ-1型 电机及电气技术实验装置Motor And Electric Technique Experimental Equipment 实验指导书 天煌教仪

DDSZ-1型电机及电气技术实验装置受试电机铭牌数据一览表

DDSZ-1型电机及电气技术实验装置交流及直流电源操作说明 实验中开启及关闭电源都在控制屏上操作。开启三相交流电源的步骤为: 1)开启电源前。要检查控制屏下面“直流电机电源”的“电枢电源”开关(右下角)及“励磁电源”开关(左下角)都须在“关”断的位置。控制屏左侧端面上安装的调压器旋钮必须在零位,即必须将它向逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“关”按钮指示灯亮,表示实验装置的进线接到电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“开”按钮,“开”按钮指示灯亮,表示三相交流调压电源输出插孔U、V、W及N上已接电。实验电路所需的不同大小的交流电压,都可适当旋转调压器旋钮用导线从这三相四线制插孔中取得。输出线电压为0-450V(可调)并可由控制屏上方的三只交流电压表指示。当电压表下面左边的“指示切换”开关拨向“三相电网电压”时,它指示三相电网进线的线电压;当“指示切换”开关拨向“三相调压电压”时,它指示三相四线制插孔U、V、W和N输出端的线电压。 4)实验中如果需要改接线路,必须按下“关”按钮以切断交流电源,保证实验操作安全。实验完毕,还需关断“电源总开关”,并将控制屏左侧端面上安装的调压器旋钮调回到零位。将“直流电机电源”的“电枢电源”开关及“励磁电源”开关拨回到“关”断位置。 开启直流电机电源的操作: 1)直流电源是由交流电源变换而来,开启“直流电机电源”,必须先完成开启交流电源,即开启“电源总开关”并按下“开”按钮。 2)在此之后,接通“励磁电源”开关,可获得约为220V、0.5A不可调的直流电压输出。接通“电枢电源”开关,可获得40~230V、3A可调节的直流电压输出。励磁电源电压及电枢电源电压都可由控制屏下方的1只直流电压表指示。

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

3.4电机转动控制实验

3.4 电机转动控制实验 一、实验目的 1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。 2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。 3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。 4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。 二、实验内容 学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。 1.通过超级终端来控制直流电机与步进电机的切换。 三、预备知识 1、用ARM ADS1.2集成开发环境,编写和调试程序的基本过程。 2、ARM应用程序的框架结构。 3、会使用Source Insight 3 编辑C语言源程序。 4、掌握通过ARM自带的A/D转换器的使用。 5、了解直流电机的基本原理。 6、了解步进电机的基本原理,掌握环形脉冲分配的方法。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM920T的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统Win2000或WinXP、ARM ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序

五、实验原理及说明 1.直流电机 1)直流电动机的PWM电路原理 晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图6-1所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制(PWM)变速控制。在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。 构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用"T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。 图6-1 脉宽调制(PWM)变速原理 2)直流电动机的PWM等效电路 如图7-2-a所示:是一个直流电动机的PWM控制电路的等效电路。在这个等效电路中,传送到负载(电动机)上的功率值决定于开关频率、导通角度及负载电感的大小。 开关频率的大小主要和所用功率器件的种类有关,对于双极结型晶体管(GTR),一般为lkHz至5kHz,小功率时(100W,5A以下)可以取高些,这决定于晶体管的特性。对于绝缘栅双极晶体管(IGBT),一般为5kHz至l2kHz;对于场效应晶体管(MOSFET),频率可高达2OkHz。另外,开关频率还和电动机电感有关,电感小的应该取得高些。 图6-2 a) 等效电路b) PWM电路中电流和电压波讨论当接通电源时,电动机两端加上电压U P,电动机储能,电流增加,当电源中断时,电

电动机正反转实验报告

实验一三相异步电动机的正反转控制线路 一、实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等 三、实验方法 1、接触器联锁正反转控制线路 (1) 按下“关”按钮切断交流电源,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q1,接通220V三相交流电源。 (3) 按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。 (4) 按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。 (5) 再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。 Q1 23 220V

图1 接触器联锁正反转控制线路 3、按钮联锁正反转控制线路 (1)按下“关”按钮切断交流电源。按图2接线。经检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q 1,接通220V 三相交流电源。 (3) 按下SB 1,观察并记录电动机M 的转向、各触点的吸断情况。 (4) 按下SB 3,观察并记录电动机M 的转向、各触点的吸断情况。 (5) 按下SB 2,观察并记录电动机M 的转向、各触点的吸断情况。 Q 1 220V

图2 按钮联锁正反转控制线路 四、分析题 1、接触器和按钮的联锁触点在继电接触控制中起到什么作用? 实验二交流电机变频调速控制系统 一﹑实验目的 1.掌握交流变频调速系统的组成及基本原理; 2.掌握变频器常用控制参数的设定方法; 3. 掌握由变频器控制交流电机多段速度及正反向运转的方法。 二﹑实验设备 1.变频器;2. 交流电机。 三、实验方法 (一)注意事项 参考变频器的端子接线图,完成变频器和交流电机的接线。主要使用端子为R﹑S ﹑T;U﹑V﹑W;PLC﹑FWD﹑REV﹑BX﹑RST﹑X1﹑X2﹑X3﹑X4﹑CM。 变频器电源输入端R﹑S﹑T和电源输出端U﹑V﹑W均AC380V高电压﹑大电流信号,任何操作都必须在关掉总电源以后才能进行。

实验一 三相异步电动机启停控制实验

实验一三相异步电动机启停控制实验 一、实验目的: 1.进一步学习和掌握接触器以及其它控制元器件的结构、工作原理和使用方法; 2.通过三相异步电动机的启、停控制电路的实验,进一步学习和掌握接触器控制电路的结构、工作原理。 二、实验内容及步骤: 图1-1为三相异步电动机的基本启停电路。电路的基本工作原理是:首先合上电源开关QF5 ,再按下“启动”按钮,KM5得电并自锁,主触头闭合,电动机得电运行。按下“停止”按钮,KM5失电,主触头断开,电动机失电停止。 实验步骤: 1.按图1-1完成控制电路的接线; 2.经老师检查认可后才可进行下面操作! 3.合上断路器QF5,观察电动机和接触器的工作状态; 4.按下操作控制面板上“启动”按钮,观察接触器和电动机的工作状态; 5.按下操作控制面板上“停止”按钮,观察接触器和电动机的工作状态。 6.当未合上断路器QF5时,进行4和5步操作,观察结果。 图 1-1 三相异步电动机基本启停控制 三.实验说明及注意事项 1.本实验中,主电路电压为380VAC,请注意安全。 四.实验用仪器工具 三相异步电动机 1台 断路器(QF5) 1个 接触器(KM5) 1个 按钮 2个 实验导线若干 五.实验前的准备 预习实验报告,复习教材的相关章节。 六.实验报告要求 1.记录实验中所用异步电动机的名牌数据; 2.弄清QF5型号和功能; 3.比较实验结果和电路工作原理的一致性;

4.说明6步的实验结果并分析原因。 七.思考题 1.控制回路的控制电压是多少? 2.接触器是交流接触器,还是直流接触器?接触器的工作电压是多少 3.如果将A点的连线改接在B点,电路是否能正常工作?为什么? 4.控制电路是怎样实现短路保护和过载保护的? 5.电动机为什么采用直接启动方法? 实验二三相异步电动机正反转控制实验 一、实验目的: 1.学习和掌握PLC的实际操作和使用方法; 2.学习和掌握利用PLC控制三相异步电动机正反转的方法。 二、实验内容及步骤: 本实验采用PLC对三相异步电动机进行正反转控制,其主电路和控制电路接线图分别为图2-1和图2-2 。图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC 的输入口X2,KM5为正向接触器,KM6反向接触器。继电器KA5、KA6分别接于PLC的输出口Y33、Y34。 其基本工作原理为:合上QF1、QF5, PLC运行。当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 实验步骤: 1.在断电的情况下,学生按图2-1和图2-2接线(为安全起见,控制电路 的PLC外围继电器KA5、KA6以及接触器KM5、KM6输出线路已接好); 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,输入PLC梯形图; 4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC; 5.运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控 制。在PC机上对运行状况进行监控,同时观察继电器KA5、KA6和接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确; 6.记录运行结果。

控制电机实验指导书

安徽工程大学 《控制电机》课程实验指导书 专业:自动化 安徽工程大学电气工程学院 2013年12月

目录 步进电动机使用说明 (2) 实验一步进电动机(2学时) (5) 实验二交流伺服机电动机(2学时) (10)

步进电动机说明 步进电动机又称脉冲电机,是数字控制系统中的一种重要的执行元件,它是将电脉冲信号变换成转角或转速的执行电动机,其角位移量与输入电脉冲数成正比;其转速与电脉冲的频率成正比。在负载能力范围内,这些关系将不受电源电压、负载、环境、温度等因素的影响,还可在很宽的范围内实现调速,快速启动、制动和反转。随着数字技术和电子计算机的发展,使步进电机的控制更加简便、灵活和智能化。现已广泛用于各种数控机床、绘图机、自动化仪表、计算机外设,数、模变换等数字控制系统中作为元件。 一、使用说明 D54步进电机实验装置由步进电机智能控制箱和实验装置两部分构成。 (一)步进电机智能控制箱 本控制箱用以控制步进电机的各种运行方式,它的控制功能是由单片机来实现的。通过键盘的操作和不同的显示方式来确定步进电机的运行状况。 本控制箱可适用于三相、四相、五相步进电动机各种运行方式的控制。 因实验装置仅提供三相反应式步进电动机,故控制箱只提供三相步进电动机的驱动电源,面板上也只装有三相步进电动机的绕组接口。 1、面板示意图(见附录) 2、技术指标 功能:能实现单步运行、连续运行和预置数运行;能实现单拍、双拍及电机的可逆运行。 电脉冲频率:5Hz~1KHz 工作条件:供电电源AC220V±10%,50Hz 环境温度-5℃~40℃ 相对湿度≥80% 重量:6kg 尺寸:390×200×230mm3 3、使用说明 (1)开启电源开关,面板上的三位数字频率计将显示“000”;由六位LED数码管组成的步 进电机运行状态显示器自动进入 “9999→8888→7777→6666→5555→4444→3333→2222→1111→0000”动态自检过程,而 后停显在系统的初态“┤.3”。 (2)控制键盘功能说明 设置键:手动单步运行方式和连续运行各方式的选择。

【电气工程自动化】直流无刷电机-运动控制实验报告

《运动控制系统综合实验》 实验报告 小组成员:

直流无刷电机实验报告 一、实验目的 通过对8257的编程控制,发出可以驱动直流无刷电机的六路PWM 波,实现对电机的控制。 二、实验原理 1.直流无刷电机驱动原理 这部分在PPT里有详细介绍,简单来说就是要根据转子上的三个霍尔传感器的状态发出下一步所需的三相电流。刚开始时我 对这部分原理迟迟不能搞透彻,对着向量图思考了好久,就是不 能把霍尔传感器的状态和所需电流方向对应起来。主要问题是那 个PPT上的向量图没有清楚的思考步骤,导致我把定子的磁场一 直当成转子的看,当然搞不清楚。后来在和身边同学交流后才明 白。然后我按照六步驱动法得到了逆时针转动所需的霍尔状态表, 如图1左,经验证此状态表是可以成功驱动电机的。 搞定逆时针转动后我趁热打铁,把顺时针转动的霍尔状态表也写了出来。但是最开始我想当然的以为把逆时针的状态倒过来 对应霍尔传感器的值电机就会反转,经过试验后证明这种思路是 错误的,电机还是逆时针转动。我想了好久没想明白,只好又从 头推了一遍顺时针转动所需的状态表,如图一右。前后对比我们 发现相同霍尔状态时,正反所需的电流恰好相反,也即相差180°。

再回想推导过程中实际是用下一个状态的电流对应本状态的霍尔 值,我一下豁然开朗。我判断电机在某一位置时允许有60°的误差,逆时针转动时上一个状态加上60°,顺时针转动时则减去60°,所以顺时针逆时针转动正好差了180°。 霍尔传感器的状态和所需电流如下表: 逆时针转动顺时针转动HaHbHc A B C A B C 001 - 0 + + 0 - 101 0 - + 0 + - 100 + - 0 - + 0 110 + 0 - - 0 + 010 0 + - 0 - + 011 - + 0 + - 0 2.相序确定 上述表格中A,B,C其实是我们假定的,与霍尔元件HaHbHc 对应的ABC并不对应,所以我们还要确定一下三相相序。考虑到我们只给三相电机提供A正B负的电流时,电机转子应该停在一个确定的位置,而这个位置对应的霍尔状态值为010。 那么当我们任意通入一正一负的电流时,若霍尔状态值为010,此时正电流即A相,负电流即B相。按此方法即可确定相 序,所用的A正B负程序如下:

相关文档
最新文档