光弹实验报告

光弹实验报告
光弹实验报告

光弹性应力测试

实验报告

指导教师:王美芹

学院:

班级:

学号:

姓名:

一、实验内容与目的

1.了解光弹性试验的基本原理和方法,认识偏光弹性仪;

2.观察模型受力时的条形图案,认识等差线和等倾线,了解主应力差和条纹值得测量;3.利用图像处理软件,对等倾线和等差线条纹进行处理。

二、实验设备与仪器

1.由环氧树脂或聚碳酸酯制作的试件模型一套;

2.偏光弹性仪及加载装置。

三、实验原理

光弹性实验主要原理是根据光的这一特性:光在各项同性材料中不发生双折射,而在各向异性的材料中发生双折射,且光学主轴与应力主轴重合。模型材料在受力前为各向同性材料,受力后部分区域变成各向异性,然后再根据光的干涉条件可知,在正交平面偏振场中,当光程差为波长整数倍时(等差线)或者模型应力主轴与偏振轴重合时(等倾线)光的强度为零,相应地显示出来的条纹为暗条纹,而在平行平面偏振场中,根据干涉条件可知,在正交平面偏振场中的暗纹条件恰好为平行平面偏振场亮纹的条件。然而,等倾线和等差线在一个图像上显示,难免会使图像不清晰,为了改进实验,我们在实验中把平面偏振场改为圆偏振场,这样就可以得到清晰的等倾线,它与平面偏振场的区别是在装置的模型两侧分别加了一个四分之一波片,当然了,也可以通过快速旋转正交偏振轴,快到应力模型上不同度数等倾线的取代过程用肉眼分辨不出来来消除等倾线的影响。

应力模型所使用的仪器为偏光弹性仪,由光源(包括单色光源和白光光源)、一对偏振镜、一对四分之一波片以及透镜和屏幕等组成,其装置简图1。

图1 光弹性仪装置简图

S —光源 L —透镜 P —起偏镜 M —四分之一波片

A —检偏镜 O —试件 I —屏幕 光弹性实验中最基本的装置是平面偏振光装置,它主要由光源和一对偏振镜组成,靠近光源的一块称为起偏镜,另一块称为检偏镜。当两偏振镜轴正交时开成暗场,通常调整一偏振镜轴为竖直方向,另一为水平方向。当两偏振镜轴互相平行时,则呈亮场。M 是四分之一波片,若把四分之一波片的快慢轴调整到与偏振片的偏振轴成45o的位置,就可以得到圆偏振光场。

(1)平面光弹性的应力—光学定律

光弹性模型使用特殊材料制成的,在力的作用下呈现出双折射现象。如把受力模型处于偏振光场中,便可以看到这个双折射现像。设光弹性模型为平面应力状态,当平面偏振光垂直入射受力模型平面时,只要不超过材料弹性极限,其双折射性质遵循下列两条规律:

1)光波垂直通过平面受力模型时,它只沿这点的两个主应力方向分解并振动,且只在乎应力平面内通过。

2)两光波在两主应力平面内通过的速度不等,因其折射率发生了改变,其变化量与主应力大小呈线性关系。

光程差: )(h 21σσδ-=C 【C 为两应力光学系数的差值;h 为模型厚度】 (1) 相对光程差: )(h

N 21σσλ

λδ-==

C 令:Cd

λ

σ=

0 ; 可变化为如下形式:

d f

n

=21-σσ (2)

常数0σ称为模型条纹值,f 称为材料条纹值;f 约为12.5kN/m 级。

S

L

L P M O

A L

M I

(2)受力模型在平面偏振光场中的光弹效应

将一个平面受力模型置于平面偏振光场中,入射光矢量E 将通过偏振片、模型双折射片和分析片。光波强度变为I :

α

?

2s i n 2

s i n

22

2A I =

A 为常数,α为模型内主应力方向与偏振轴的夹角,?为模型双折射片产生的滞后量。当光程差为光波波长λ的整数倍时,即

D =N λ N=0,1,2, (3)

产生消光干涉,呈现暗场,同时满足光程差为同一整数倍波长的诸点,形成黑线,称为等差线,由式(1)、(2)、(3)可得到

12Nf

h s s -=

(4)

其中

f C l

=

称为材料条纹值。由此可知,等差线上各点的主应力差相同,对应于不同

的N 值则有0级、1级、2级……等差线。

此外,在模型内凡主应力方向与偏振镜轴重合的点,亦形成一暗黑干涉条纹,称为

等倾线,等倾线上各点的主应力方向相同,由等倾线可以确定各点的主应力方向。当二偏振镜轴分别为垂直水平放置时,对应的为零度等倾线。

(3)受力模型在圆偏振场中的光弹效应

在平面偏光仪的基础上再加使用两块四分之一波片,放置时使其快慢轴相互垂直,Q 的快轴与x 轴成45o,O 与x 轴承-45o放置。 得:2

sin

2

2

?

A I =

其只包含两波的相位差所引起的等差线条纹。

四、实验步骤

纯弯梁实验(测定材料条纹值f) 1、将仪器部置成双正交偏振光场。 2、测量模型尺寸H ,h 并划线。

3、调整加载杠杆使之平衡,根据划线位置将按图2所示安装成纯弯受力形式。

图2 纯弯曲梁模型及加载装置

图3 纯弯曲梁等差线示意图

开启白光光源,对模型施加少许载荷,调整成像系统,使在屏幕上成适宜大上和清晰的

映像,并观察条纹的对称性,若不对称,则调整加载装置直到对称为止。

4、逐级加载,观察等差线的生成和变化特点,找到零级条纹位置及条纹变化规律,用

钉压法判断边界应力符号。 5、在屏幕上用描图纸描绘模型边界线及等差线条纹图示标明级数,记下载荷P 。

五、实验结果及数据处理

1) 已知: P=300N , h=8.32mm ,H=25.16mm ,2

7

.60-110a =

=24.65mm ;

纯弯曲梁理论应力值:z I My =σ,12

3

hH I z =;

得:3

6hH

Pay

=

σ(P 为载荷,h 为梁厚度,H 为梁高度,a 为支座之间的距离)

2) 由

d f n

21-=σσ, 对纯弯曲梁2σ=0;

P '

a a L

H

h

模型

2

H '02

H σ'

11

22

3

344

H H '

所以:d

f n

1=σ,(0f =12.5KN/m , d=8.32mm ) 3) 等差线图与模型上等差线长度之比为:1:1.948。测得:等差线条纹总宽度为48.1mm , 各级条纹距中性层的距离为9.1mm ,8.8mm ,17.2mm ,18.9mm ,

条纹级数(n ) -2 -1 0 1 2 实验值(Mpa) -2.956 -1.564 0 1.513 3.248 距中性面的距离(mm) 8.83 4.67 0 4.52 9.70 理论值(Mpa) -3.005 -1.502 0 1.502 3.005 相对误差 1.6%

4.1%

0.7%

8.1%

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

光的反射实验报告14.11.3

《光的反射》实验报告 一、光的反射现象 光射到物体表面上时,会有一部分光被物体表面反射回来,这种现象,就叫做光的反射。 二、光的反射定律 1、几个名词:法线:经过入射点O并垂直于反射面的直线ON叫做法线。 2、光的反射遵循什么规律呢?(角大小怎样?光线位置在哪?可对称等等。) 实验器材:激光笔装置盒、配有镜子的白色卡纸、铅笔、量角器(如上图) 学生活动一: 1.探究目的:探究三线是否在同一平面。 做法:再将白色卡纸一半伸出盒外,让法线与底座盒子一边重合,再次贴着MN线竖直放上镜子,选择600入射光线,观察到反射光线后,再将伸出部分纸片向下按,看看纸上能否再次看到反射光线。再将纸片折回再观察。 总结:入射光线、反射光线、法线在平面内。(“几个”or“同一个”) 学生活动二: 1.探究目的:探究两角大小关系以及三线位置关系。 转动卡纸与镜子,让光分别从300 、400、600入射到镜面同一入射点O,在白卡纸上观察反射后光线位置,并画出反射光线所在位置,探究两光线与法线夹角关系,注意观察入射光线的方向改变时,反射光线的方向怎样改变。(至少做3次)将数据记入下表中: 总结:(1)反射角入射角 (2)入射光线、反射光线位居法线。(“同侧”or“两侧”) 综合分析探究活动一、二,总结光的反射规律。 ①三线共面②两线分居法线两侧③两角相等 学生活动三:举起镜子,观察后面的同学,后面同学能否从镜子中也看到你? 1.探究目的:探究光路是否可逆? 学生动手:在原卡纸上找到一条反射光线,让激光反过来沿这条反射光线入射,再次观察射出的光线位置,比较与之前光路有什么特点。(此次反射光线与原先入射光线重合)小结:反射时光路是的。 学生活动四:镜面反射和漫反射 画出下列光线的反射光线:(先过O点作与镜面垂直的法线,再量出入射角,在另一侧量出等大的反射角,画出反射光线。)

光全息照相实验报告

实验报告实验三十四全息照相 物理学院1300061311 二下 6 组 03 号 2015.4.15 一. 实验目的 1?了解全息照相的基本原理; 2?学习全息照相的实验技术,拍摄合格的全息图; 3 ?了解摄影暗室技术. 二. 实验仪器 光学平台,He-Ne 激光器及电源,快门及定时曝光器,扩束透镜,反射镜和 分束器,光功率计,全息底片,被摄物体,显微镜,暗室技术使用的设备. 三. 实验原理 全息照相中所记录和重现的是物光波前的振幅和相位,即全部信息,这是全 息照相名称的山来?但是,感光乳胶和一切光敬元件都是“相位盲S 不能直接记 录相位?必须借助于一束相干参考光,通过拍摄物光和参考光的干涉条纹,间接 记录下物光的振幅和相位?直接观察拍好的全息图,看不到像?只有照明光按一定 方向照在全息图上,通过全息图的衍射,才能重现物光波前,使我们看到物的立 体像?故全息照相包括波前的全息记录和重现两部分内容。下面是透射式全息照 相原理。 1?全息记录 如果将物光和参考光的干涉条纹用感光底片记录下来,那就记录了底片所在位 置物光波前的振幅和相位 物光一点发出的球面波波前: 〃0(如刃=人(忑y )exp [诫)(兀y )] 参考光波前: 则底片上总复振幅: 光强分布: Ig) = UU 感光底片在曝光后经显影和定影等暗室技术处理,成为全息图?适当控制曝光 量及显影条件,可以使全息图的振幅透过率:与曝光量E (正比于光强1)成线性关 系,即 心,刃=山一例(九y ) ? 2兀 匕(兀 y) = A r exp[/ — ysina] Ug y) = U Q (x.y)+U r (x, y)

光通信技术实验报告

光通信技术实验报告 实验一光通讯系统WDM系统设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.使用OptiSystem模拟仿真WDM系统的各项性能参数,并进行分析。 实验原理 光波分复用系统简介 光波分复用是指将两种或多种各自携带有大量信息的不同波长的光载波信号,在发射端经复用器汇合,并将其耦合到同一根光纤中进行传输,在接收端通过解复用器对各种波长的光载波信号进行分离,然后由光接收机做进一步的处理,使原信号复原,这种复用技术不仅适用于单模或多模光纤通信系统,同时也适用于单向或双向传输。 波分复用系统的工作波长可以从0.8μm到1.7μm,由此可见,它可以适用于所有低衰减、低色散窗口,这样可以充分利用现有的光纤通信线路,提高通信能力,满足急剧增长的业务需求。 WDM光通信结构组成 1)滤波器:在WDM系统中进行信道选择,只让特定波长的光通过,并组织其他光波长 通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中,为了选择所需的波长,一般都需依赖于其前端的可调谐滤波器。要求其有宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 2)复用器/解复用器(MUX/DEMUX):将多个光波长信号耦合到一路信道中,或使混合 的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易,其结构基本是相同的。实际上即是一种波长路由器,使某个波长从指定的输入端口到一个指定的输出端口。 实验软件介绍 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的

探究光的反射定律实验报告

2014-2015学年第一学期八年级物理分组实验 探究光的反射规律的实验报告 班级姓名 实验目的:探究光的反射规律 试验器材:平面镜1个。激光笔1个,带刻度光盘的光屏1个,水槽一个,支架1对,夹子1个。 实验步骤: 1、按要求组装器材。 2、用激光笔射出一束激光,用笔记下入射光线和反射光线的位置,并在刻度光盘上读出入射角和反射角的度数,记录在表格中。 3、重复实验两次。 4、将光屏向前或向后折,观察反射光线。 5、整理器材。 实验记录: 次数入射角i 反射角r 1 2 3 实验结论: 1、在反射现象中,在同一平面内; 2、居法线两侧; 3、——————————————。

2014-2015学年第一学期八年级物理分组实验 探究平面镜成像特点的实验报告 班级姓名 【实验目的】探究平面镜成像特点 【实验器材】两支完全一样的蜡烛、一块玻璃板、一个光屏、火柴、刻度尺 【实验步骤】 1、将玻璃板垂直置于桌面,在玻璃板的一侧立一支点燃的蜡烛,透过玻璃板观察其另一侧面的蜡烛的像。 2、将光屏放在像的位置,不透过玻璃板,直接观察光屏上有无像。 3、将相同的未点燃的蜡烛放在像的位置,观察像与蜡烛的大小关系。 4、移到蜡烛的位置,观察其像的大小有无变化。 5、量出蜡烛和像到玻璃板的距离。 【实验数据】 像与物的大小关系物体与玻璃 的距离(cm) 像与玻璃的 距离(cm) 物像连线与 镜面的关系 实像或虚像 位置1 位置2 位置3 【实验结论】 平面镜成像特点: 1.像和物大小, 2.像到镜面的距离和物到镜面的距离 3.像和物的连线与镜面 4.平面镜所成像是像

Welcome !!! 欢迎您的下载,资料仅供参考!

LED调光实验报告

LED调光实验报告 高亮度发光二极管(LED)在各种领域应用普及,并要求LED具备有调光功能。在现在的几种调光技术中,从简单的可变电阻负载到复杂的脉冲宽度调制(PWM)开关,每一种方法均有其利弊。PWM调光的效率最高,电流控制也最精准。本文以LED驱动器LM3405为例,论述LED在调光时的特性,例如亮度与正向电流的关系、波长的变化(色移)和控制器的工作周期限制等。 由于LED的功率低于1 W,所以可用任何类型的电压源(开关器、晶体管)和串串联电阻建构一个电流源。对于少数光线输出端电流的改变而造成亮度和颜色的变化,人的肉眼是不容易察觉出来。不过,一旦将多个LED串联,该稳压器便必需担当电流源的角色。这是因为LED的正向电压VF会随正向电流IF变化,图1是LED波长随着正向电流IF变化图,而该变化对于每个LED都不相同的,即使是同一批产品也有区别。在较大的电流下,光线的强度变化通常约为20%。而 LED制造商一般都会采用较大的VF范围来增加亮度和颜色,因此上述情况尤其突出。然而,除了电流外,正向电压还会受到温度影响。假如只采用镇流电阻器,则光源的颜色和亮度变化很大,而唯一可确保色温稳定的方法是稳定前正向电流IF。 大部分设计人员只习惯为LED设计稳压器,但在设计电流调节器方面显然有不同的要求。电压输出必须要配合固定的输出电流。虽

然在大多数应用中, LED驱动器的输出电流可容许误差±10%,而直流电流的输出纹波更可高达20%,一旦纹波超出20%,人的肉眼便会察觉到亮度的变化,假如输出纹波进一步增加到40%,肉眼就无法承受。 一般而言,电流调节器的设计都需使用比较大的电感以使电感电流IL的变化少于20%。这里可采用LM3405,即使电感由于1.6 MHz 的高开关频率而变得较小,仍可发挥很好的效用。LM3405性能参数如下: 控制方法: 封装:电流模式 TSOT-6 最大输入电压: 15V 应用:工业照明 1A 1~22uF 4.7~10uH 驱动电流:输出电容:电感: 3、脉冲宽度调制调光技术

光弹性实验报告

光弹性实验报告 一、 实验目的 1. 了解光弹性仪各部分的名称和作用,掌握光弹性仪的使用方 法。 2. 观察光弹性模型受力后在偏振光场中的光学效应。 3. 掌握平面偏正光场和圆偏振光场的形成原理, 和调整镜片(起 偏镜、 检偏镜、1/4波片)的方法。 4. 通过圆盘对径受压测量材料条纹级数 f ,并通过实验求出两 端受压方片中心截面上的应力。 5. 用理论公式计算出方片中心截面上的应力,并与实验得出的 数据相 比对,判断实验数据的准确性。 二、 实验原理和方法 首先引入偏振光的概念,如光波在垂直于传播方向的平面内只在 某一个 方向上振动,且光波沿传播方向上所有点的振动均在同一个平 面内,则此种光波称为平面偏振光。 双折射:当光波入射到各向异性的晶体如方解石、云母等时,一 般会分 解为两束折射光线,这种现象称为双折射。 从一块双折射晶体上,平行于其光轴方向切出一片薄片,将一束 平面偏 振光垂直入射到这薄片上,光波即被分解为两束振动方向互相 垂直的平面偏振光,其中一束比另一束较快地通过晶体。于是,射出 薄片时,两束光波产生了一个相位差。这两束振动方向互相垂直的平 面偏振光,其传播方向一致,频率相等,而振幅可以改变。设这两束 平面偏振光为: u 1 a 〔sin ( t ) ( 1) u 2 a 2sin ( t ) (2) 式中 a i a 2 —振幅 —两束光波的相位差 将上述两方程(1)(2)合并,消去时间t ,即得到光路上一点的 合成光矢量末端的运动轨迹方程式,此方程式在一般的情况下是一个 椭圆方程,如果31 a 2 a , -,则方程式成为圆的方程: 2 U 2 u f a 2 (3) 光路上任一点合成光矢量末端轨迹符合此方程的偏振光称为圆 偏振光,

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

郑州大学实验力学报告

实验力学实验报告(郑州大学力学实验中心编制) 院系:力学与工程科学学院 专业:安全工程 年级:2012 班级: 1 姓名:周备堂 学号:20120690145 成绩:评阅老师:

目录 实验 1 应变计横向效应系数测定 实验 2 应变计灵敏系数测定和机械滞后 实验 3 薄壁圆管内力测定 实验 4 应变计的粘贴 实验 5 动态应变信号数据采集 实验 6 光弹性实验 实验7 实验8 实验9 实验10 实验11 实验12 ……… 1

实验 1 应变计横向效应系数测定 实验目的: 用等强度梁测定BX120-5AA、BZ120-5AA应变计横向效应系数H 实验设备: 等强度梁、应变计砝码 小组名单:周备堂朱全力陈恒啸 实验日期:2014年10月29 日 实验原理: 1、应变计的横向效应系数用来表征应变计横向效应的大小,定义为用同一单向应变分别作用于同一应变计的栅宽与栅长方向,前者与后者所得电阻变化率之比(百分数表示)称为应变计的横向效应系数,用H表示,即: H= ΔR h/R ΔR l/R ζ表示栅丝单位长度的电阻值,K L与Kt分别表示长度和宽度丝材的应变灵敏度,则经过推导可到: H= Bζt K t nLζL K L 2、如图粘贴应变计,则可推出: εd1= 1 1-μ0H (εL+HεB)εd2= 1 1-μ0H (εB+HεL) εL= 1-μ0H 1-H2(εd1-Hεd2)εB= 1-μ0H 1-H2(εd2-Hεd1) H= ε2+μ0ε1 ε1+μ0ε2 (本实验中μ0=0.3,R=120Ω,K=2.00) 原始记录: 纸基应变片分级加载三次实验所得数据如下表: 2

光学实验报告

建筑物理 ——光学实验报告 实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测 实验小组成员: 指导老师: 日星期二3月12年2013日期: 实验一、材料的光反射比和光透射比测量

一、实验目的与要求 室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。 通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法 光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。下面是间接测量法。 1.实验原理 (1)用照度计测量: P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,根据光反射比的定义:光反射比即: φφP=P/因为测量时将使用同一照度计,其受光面积相等, 且,所以对于定向反射的表面,我们可以用上述代入式,整理后得: P=EE P/对于均匀扩散材料也可以近似的用上述式。 可知只要测出材料表面入射光照度E和材料反射光照度Ep,即可计算出其反射比。 (2)用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度E和亮度L后按下式计算 πL/EP= 2;被测表面的亮度,cd/m式中:L---E—被测表面的照度,lx 。 2.测量内容 要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(POWER)开关拨至“ON”,检查电池,如果仪器显示窗出现“BATT”字样,则需要换电池; ②将光接收器盖取下,将其光敏表面放在待测处,再将量程(RANGE)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。有的照度计为自动量程,直接读取照度计数字即为测量结果。 ③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度E;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读;ρ,即可计算出光反射比Ep取反射照度值 ④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。

光纤耦合实验报告

篇一:光纤测量实验报告 光纤测量实验报告 课程名称:光纤测量 实验名称: 耦合器光功率分配比的测量 学院:电子信息工程学院专业:通信与信息系统班级:研1305班 姓名:韩文国 学号:13120011 实验日期:2014年4月22日指导老师:宁提纲、李晶 耦合器光功率分配比的测量 一、实验目的: 1. 理解光纤耦合器的工作原理; 2. 掌握光纤耦合器的用途和使用方法; 3. 掌握光功率计的使用方法。 二、实验装置:ld激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,tl-510型光功率计,光纤跳线若干。 1. ld激光器 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。电注入式半导体激光器,一般是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。本实验用的ld激光器中心频率是1550nm。 2. 光功率计 光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 3. 耦合器 光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。光纤耦合器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使其介入光链路从而对系统造成的影响减到最小。对于波导式光纤耦合器,一般是一种具有y型分支的元件,由一根光纤输入的光信号可用它加以等分。 在本实验中所用的1 ×2耦合器光功率分配比理论值为1:9,而2 ×2耦合器光功率分配比理论值为1:1。 三、实验内容: 测量耦合器两输出端的功率,计算功率分配比。 四、实验原理: 2 ×2 光纤耦合器亦称x型光纤耦合器,它是一种应用最为广泛的定向耦合器件。该种耦合器主要依靠倏逝场的作用实现耦合,使两根光纤纤芯相互靠近,可以实现光功率的有效耦合。

微弱光实验报告

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 实验名称___________________________ 课程名称_____________________ 课程号 _______ 学院(系)_________________ 专业___________________________ 班级________________ 学生姓名_____________ 学号_____________ 实验地点___________ 实验日期__________ 微弱光实验 一、实验目的 1、了解不同探测器对微弱光探测处理的原理及方法 2、了解低噪声放大器的内部原理及应用原则 二、实验内容 1、普通光电二极管测量微弱光原理实验 2、雪崩光电二极管测量微弱光原理实验 3、光电倍增管测量微弱光原理实验 4、低噪声放大器应用实验 三、实验仪器 1、微弱光测试实验仪1台 2、光源组件1套 3、光电二极管组件1套 4、APD光电二极管组件1套 5、光电倍增管组件1套 6、衰减片组件系统1套 7、连接线若干 8电源线1根 四、注意事项 1、连接电路时,保证电路未通电。 2、光源极性不要接反。 3、不要用强光持续照射光电倍增管,特别是在高压下,否则容易使倍增管老化 五、实验操作

GDOU-B-11-112 广东海洋大学学生实验报告书(学生用表) 实验名称 __________________________ 课程名称 _____________________ 课程号 _______ 学院(系) _________________ 专业 ___________________________ 班级 ________________ 学生姓名 ____________ 学号 _____________ 实验地点 ___________ 实验日期 __________ 1、低噪声放大器应用实验 一个光电探测系统是由光学变换、光电探测器和后续电路处理系统组成,一般光电 探测器需连结多级放大器,我们称第一级放大器为前置放大器,对于一个由 n 个放大器 级连成的放大系统,其噪声特性可由弗里斯(Friis )公式表达: 式中NF 为系统的总噪声系数;F l 为第一级放大器的噪声系数;F n 为第n 级放大器 的噪声系数;k p 为第一级功率增益,k p n 为第n 级功率增益。 由上式可以看出,多级放大器噪声系数的大小,主要取决于第一级放大器的噪声系 数。为了使多级放大器的噪声系数减小应尽量减小第一级的噪声系数,同时提高第一级 的功率增益 k p i ,这是指导我们设计低噪声放大器的一个重要原则。此外,还需考虑放大 器的频率特性,动 态范围,信号源阻抗等要求。所以具体电路因系统不同而异。从低噪 声要求出发应考虑如下几点: 1) 选择内部噪声低,信号源电阻合适的管子 前置放大器可由晶体管、结型场效应 管、绝缘栅场效应管和集成电路组成。晶体管适合于信号源电阻在几十欧姆至一兆欧姆 范围内;结型场效应管适合于较高的源电阻;绝缘栅场效应管可工作于更高的信号源电 阻情况,但因其1/ f 噪声较大,所以用得较少,只有在高阻状态才用。 2) 应选择优质电阻、电容 低噪声放大器除了放大管自身噪声低以外, 还需要电阻、 电容的噪声也很低,因电阻自身都存在固有的热噪声,热噪声电压的均方值为 / =4k TR f ( 5.1.2 ) 式中,k 为玻耳兹曼常数(1.38 X 10-23/J/K ) ; R 为电阻阻值;T 为电阻的绝对温 度;「讦为测量系统的通频带宽度。除此以外,电阻还产生与电阻品质有关的电流噪声 (也 称过剩噪声)。电流噪声的均方电压为 (5.1.3 ) 成绩 _______________ 指导教师 _________________________ 日期 __________________ 页,共 F3-1 … & -1 k p 1 k p 2 k p 1 k p 2 k p n (5.1.1) k k k,

关于光的反射实验报告单模板文档2篇

关于光的反射实验报告单模板文档2篇 About light reflection experiment report sheet template document

关于光的反射实验报告单模板文档2篇小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:探究光的反射定律实验报告文档 2、篇章2:八年级物理实验:光的反射实验报告文档篇章1:探究光的反射定律实验报告文档 《探究光的反射定律》实验报告 实验目的:探究光的反射定律 试验器材:平面镜1个。激光笔1个,带刻度光盘的光屏1个,水槽一个,支架1对,夹子1个。 1、按要求组装器材。

2、用激光笔射出一束激光,用笔记下入射光线和反射光线的位置,并在刻度光盘上读出入射角和反射角的度数,记录在表格中。 4、将光屏向前或向后折,观察反射光线。 1、在反射现象中,————————————都在同一平面内; 2、————————————分居法线两侧; 3、——————————————。 篇章2:八年级物理实验:光的反射实验报告文档【按住Ctrl键点此返回目录】 一、实验名称:探究光的反射规律 通过实验探究光反射时的规律,能用光反射规律解释一些简单的现象。 画有角度的可折叠的白色硬纸板、平面镜、两个光源、铅笔、直尺等。 四、实验步骤 1、把一个平面镜放在水平桌面上,再把一张硬纸板竖直地立在平面镜上,纸板上的直线ON垂直于镜面。

光的偏振实验报告-精选.doc

光的偏振 实验仪器: 光具座、半导体激光器、偏振片、1/4 波片、激光功率计。 实验原理: 自然光经过偏振器后会变成线偏振光。偏振片既可作为起偏器使用,亦可作为检偏器使用。 马吕斯定律:马吕斯指出:强度为I0 的线偏振光,透过检偏片后,透射光的强度(不考 2 。( 是入射线偏振光的光振动方向和偏振片偏振化方向之间的夹角。) 虑吸收)为I=I0cos 当光法向入射透过1/4 波片时,寻常光(o 光)和非常光( e 光)之间的位相差等于π /2 或其奇数倍。当线偏振光垂直入射1/4 波片,并且光的偏振和云母的光轴面成θ角,出射后成椭圆偏振光。特别当θ=45°时,出射光为圆偏振光。 实验1、2 光路图: 实验 5 光路图: 实验步骤: 1.半导体激光器的偏振特性: 转动起偏器,观察其后的接受白屏,记录器功率最大值和最小值,以及对应的角度,求出半导体激光的偏振度。 2。光的偏振特性——验证马吕斯定律: 利用现有仪器,记录角度变化与对应功率值,做出角度与功率关系曲线,并与理论值进行比较。 5.波片的性质及利用: 将1/4 波片至于已消光的起偏器与检偏器间,转动1/4 波片观察已消光位置,确定1/4 波片光轴方向,改变1/4 波片的光轴方向与起偏器的偏振方向的夹角,对应每个夹角检偏器 转动一周,观察输出光的光强变化并加以解释。

实验数据: 实验一: 实验二: 实验五: 数据处理: 实验一: 计算得半导体激光的偏振度约为 故半导体激光器产生的激光接近于全偏振光。实验二: 绘得实际与理论功率值如下:

实际功率值 20mW 3 2.5 2 1.5 1 0.5 ° 0 100 200 300 400 理论值 20mW 3 2.5 2 1.5 1 0.5 ° 0 100 200 300 400 20mW 3 2.5 2 功率值(20mW ) 1.5 理论值(20mW )1 0.5 ° 0 100 200 300 400 进行重叠发现二者的图线几乎完全重合,马吕斯定律得到验证。 实验五:见“实验数据”中的表格

光通信实验报告

光通信实验报告 实验一:测量光纤耦合效率 【实验简介】: 光线主要用于通信、光纤传感、图像传送以及光能传递等方面。由于光纤制造技术的不断进步,光线内部的损耗越来越小,因此在实际应用中提高光源与光纤之间的耦合效率是提高系统传输效率的重要技术之一。 【实验目的】: 1.了解光纤特性,种类 2.掌握光纤耦合的基本技巧及提高耦合效率的手段 3.熟悉常用的耦合方法 【实验装置示意图】: 【实验数据】: 光纤输出光功率:0.78mW 光纤输入光功率:1.9mW 耦合效率为:0.78/1.9*100%=41.1% 【实验思考总结】 耦合时,因为起始的光强较弱,用探测器检测效果不明显。可以先用目测法,观察输出光斑的亮度。等到达到一定的亮度之后,在接入探测器,观察示数。调节时,首先调节高度,然后调节俯仰角,最后在调节左右对准度与旋转方向。 实验二:测量光纤损耗 【实验目的】: 通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法:插入法(实际测量中很多器件的插损、损耗都使用这种方法)。 【实验原理】: 光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先测量短光纤的输出功率P1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率P2,则光纤的总损耗为

A=10lg P1 P2 (dB) 被测光纤的长度为L,则光纤的损耗系数为 α=A L (dB/km)【实验装置示意图】: 【实验数据】: 光纤长度L:6km 波长为1310nm的数据

实验三:测量光纤的数值孔径 【实验简介】: 光纤的数值孔径大小与纤芯折射率、纤芯-包层相对折射率差有关。光纤的数值孔径表示光纤接收入射光的能力。 【实验目的】: 了解测量数值孔径的方法,对远场法有初步了解。 【实验原理】: 远场强度有效数值孔径是通过光纤远场强度分布确定的,它定义为光纤远场辐射图上光强下降到最大值的5%处的半张角的正弦值。 【实验装置示意图】 【实验数据】 光功率最大值为162.5nW,下降到5%时对应的角度为8.5°和-8.3° 【数据处理】 光纤的数值孔径: =0.146 NA=sin8.5°??8.3° 2 实验四:测量光纤的模场直径和折射率分布曲线 【实验目的】: 1.通过近场法测量光纤的折射率分布曲线,对近场法有一定了解 2.通过近场法测量多单模光纤的模场直径,了解了解并掌握近场法测量多模光 纤模场直径的方法 【实验原理】 1.近场法是利用光纤输出端面上的光强度来测量光纤的部分几何参数的典型方

弹塑性力学读书报告

应用弹塑性力学读书报告 刘艳 10076139019 河北工程大学土木工程学院建筑与土木工程专业 摘要:弹塑性力学是研究可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律。它由弹性理论和塑性理论组成。弹性理论研究弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变性固体在塑性阶段的力学问题。弹塑性力学就是研究经过抽象化的可变性固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 关键字:弹塑性力学弹性阶段塑性阶段假设求解方法弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性变形阶段是指当外力小于某一限值(通常称为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,而固体只产生弹性变形的阶段称为弹性阶段。塑性变形阶段是外力一旦超过弹性极限荷载,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,从而这一阶段就称为塑性阶段。弹塑性力学也是连续介质力学的基础和一部分,它包括:弹塑性静力学和弹塑性动力学。

塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。工程上常把脆性和韧性也作为一种概念来讲,它们之间的区别在于固体破坏时的变形大小。若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 在塑性理论中,由于实际固体材料在塑性阶段的应力----应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类:即理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。 在单向应力状态下,强化模型的特征如图0.2所示。强化模型又分为:线性强化弹塑性模型、线性强化刚塑性模型、幂次强化模型。

关于光的反射实验报告单模板(完整版)

报告编号:YT-FS-8650-39 关于光的反射实验报告单 模板(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

关于光的反射实验报告单模板(完整 版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 篇一:探究光的反射定律实验报告 《探究光的反射定律》实验报告 实验目的:探究光的反射定律 试验器材:平面镜1个。激光笔1个,带刻度光盘的光屏1个,水槽一个,支架1对,夹子1个。 实验步骤: 1、按要求组装器材。 2、用激光笔射出一束激光,用笔记下入射光线和反射光线的位置,并在刻度光盘上读出入射角和反射角的度数,记录在表格中。 3、重复实验两次。 4、将光屏向前或向后折,观察反射光线。

5、整理器材。 实验记录: 实验结论: 1、在反射现象中,————————————都在同一平面内; 2、————————————分居法线两侧; 3、——————————————。 篇二:八年级物理实验:光的反射实验报告 一、实验名称:探究光的反射规律 二、实验目点: 通过实验探究光反射时的规律,能用光反射规律解释一些简单的现象。 三、实验器材 画有角度的可折叠的白色硬纸板、平面镜、两个光源、铅笔、直尺等。 四、实验步骤 1、把一个平面镜放在水平桌面上,再把一张硬纸板竖直地立在平面镜上,纸板上的直线ON垂直于镜面。

大学物理光学实验报告材料

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k = 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态, 平行光管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅上 。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 ()

'111[()θθθ=-(右边读数)+'11()θθ-(右边读数)]/4 '222[()θθθ=-(右边读数)+'22()θθ-(右边读数)]/4 六、数据处理 将上表中的1θ、2θ分别代入光栅方程()sin a b k θλ+=计算出6个波长,(1 300 a b mm += ) 1λ= 2λ= 3λ= 4λ= 5λ= 6λ= 计算平均波长:λ= 绝对误差:λ?= (取平均波长与6个波长的差中的最大者) 相对误差:100%E λλ λ ?= ?= 结果表示:()nm λλλ=±?= nm 。 七、思考题

相关文档
最新文档