悬臂梁在均布荷载下的应力状况

悬臂梁在均布荷载下的应力状况
悬臂梁在均布荷载下的应力状况

悬臂梁在均布荷载下的应力状况

摘要:悬臂梁在现实生活中很常见,对于悬臂梁的分析采用弹性力学里的应力边界条件和平微分方程和相容方程进行求解计算分析,再结合材料力学的知识进行分析,深入系统的了解悬臂梁的手里特点。

关键词:静定梁、悬臂梁、弹性力学、材料力学、受力特点

现实生活中的房屋建筑中,存在很多的悬臂梁结构,身边的例子很多,例如

体育场的看台,城市里房屋的阳台,农村房屋中很多都有屋檐,而其都是靠悬臂梁的支撑才能结合上面的附属物件构成。现在我们就对悬臂梁的应力情况分别采用弹性力学和材料力学的相关知识进行分析

如图所示梁受荷载作用,求解其应力

1、弹性力学求解

解:本题是按应力求解的。

基本公式

x C xy h q C y C y h

q y y x h

q xy y x 123213332362)46(+=+--=--

=τσσ 1、在应力法中,应力分量在单连体中必须满足:

y ql x ???

? ??-20222qh ql l 202qh q o h /2 h /2 (l >>h ,δ=1)

(1)平衡微分方程;00=+??+??=+??+??y xy y x yx x f x

y f y x τστσ (2)相容方程 ()

02=+?y x σσ;

(3)应力边界条件(在σs s =上)。

将应力分量代入平衡微分方程和相容方程,两者都能满足。

2、校核边界条件

(1)在主要边界上

04602123=???? ??+?=±=C h h q x h y xy ,即时,τ,由此得 h

q C 231-= q C h C h h q q h y y -=++???

? ??--=-=2133282,2即-时,σ,由此得 22q C -

= 0==y h

h y σ时,,将C 1、C 2代入后满足。 将C 1、C 2代入式(a ),得到应力公式:

()

???

? ??-=???? ??+--=--=14232232123222

23223h y h qx h y h y q y x h

qy xy y x τσσ (b ) (2)再将式(b )代入次要边界条件

00==xy x τ时,

33

4h y q x =σ,其主矢量为 0)

(02

2==-?dy x h h x σ

而主矩为20

)(22

20qh ydy h h x x =?-=σ x =l 时,,其主矢量为; (2分)

)46(323y y l h

q x --=σql dy h h x xy -=?-=220)(τ)14(2322-=h

y h ql xy τ,其

主矢量为0, (1分) 而主矩为)202()(222

2qh ql ydy l

x h h x --==-?σ 由此可见,在次要边界上的积分条件均能满足。因此,式(b )是图示问题之解。

2、材料力学求解:

受力图形可如下图分析:矩形梁

C ` X F

M s F C

取截面C-C 进行研究,对其左半边部分进行受力分析

由静力平衡方程

对于C 截面 ∑∑∑===0M 0F 0

F C

Y X

即 Fx=0

02

120qh 0

F q 22S =+-=+M qx x y ql x

x 202qh q o h /2 h /2 (l >>h ,δ=1)

则可得 20

21F 0

F 2

2S X qh qx M qx -=-==

又l 》h ,可按纯弯曲计算其S F 力

20

21M 623623)4(6

)4(2)4

(253612

)20qx 21I My 2

233232*22

211*3232

2Z X qh qx y bh qx bh qx y bh F bh F y h bh

F y h I F b I S F I y h b bdy y S bh qy bh

qx bh y qh S S S Z S Z Z S h y Z -=+-=-=-?=-=?=-==-=-==?则可得(σ

弹性力学解与材料力学解比较:

弹性力学是从平微分方程、边界条件、相容方程出发求解、材料力学是从静力平衡方程平衡方程进行求解,,弹性力学方法较材料力学方法更具有合理性。利用材料力学方法对悬臂梁应力求解,与弹性力学进行比较,可以得出以下结论:

一、 弹性力学和材料力学所得的答案略有差异,弯矩数值相反,这是由于他

们之间的正负方向假定不同造成的,所以说他们的玩具应力结果实质上是一样的。

二、 弹性力学求解的答案更加精确,更贴近悬臂梁的实际受力状况。 参考文献:

[1]徐芝纶,弹性力学简明教程,高等教育出版社

[2]孙训方,材料力学,高等教育出版社。

ansys分布载荷作用下的悬臂梁应力计算

ansys 分布载荷作用下的悬臂梁应力计算 分析模型如图1-1 所示, 梁的横截面为矩形 宽х高 = 1х 2 m 2 . 受到分布载荷作用。材料的弹性模量200GPa, 泊松比0.3。习题文件名: Cantilever beam 。 注意:用实体单元离散,长度单位m, 力的单位 N ,对应应力单位 Pa ,按照平面应力处理。 1.1 进入ANSYS 程序 →ANSYSED 10.0 → input Initial jobname: Cantilever beam →OK 1.2设置计算类型 Main Menu: Preferences →select Structural → OK 1.3选择单元类型 Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182 →OK (back to Element Types window) → Options →select K 1: Reduced integration → K3: Plane Stress →OK→Close (the Element Type window) 1.4定义材料参数 Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:200e9,PRXY:0.3→ OK 1.5生成几何模型 生成特征点 Main Menu: Preprocessor →Modeling →Create →Key points →In Active CS →依次输入四个点的坐标(每次输入后按Apply,最后按OK):input:1(0,0,0), 2(10,0,0), 3(10,2,0), 4(0,2,0) →OK 生成面 Main Menu: Preprocessor → Modeling → Create → Areas → Arbitrary → Through KPS →依次 连接四个特征点,1 → 2 → 3 → 4 → OK 注意:上面两步也可简化为: Main Menu: Preprocessor → Modeling → Create →Areas → Rectangle → By two corners → WP X, WP Y 均输入0, Width 输入10, Height 输入 2 → OK 1.6 网格划分 =0

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

悬臂梁在均布载荷下的挠曲线方程

3.1解:(1)由材料力学中的悬臂梁在均布载荷下的挠曲线方程()2 24qx v x EI =-()2246x lx l -+ 得此题所求的悬臂梁的最大挠度为44 ()0.1258ql ql v l EI EI =-=- (2)常用的两个悬臂梁的许可位移函数(满足()BC u ): 11,3,5,()(1cos )2m m m x v x c l π== -∑ ∞ … 2342123()v x c x c x c x =+++… (3)基于Galerkin 加权残值法的求解 位移边界条件 0():|0x BC u v == 0'|0x v == 力边界条件 ():''|0x l BC p M EIv ==-= "'|0x l Q EIv ==-= 当选挠度v 为自变函数的试函数式,相应的加权残值法Galerkin 方程为()() () 400 01,2,l n EIv p dx n φ-==?…,N ① 其中n φ为试函数()()1 N n n n v x c x φ== ∑中的基底函数,()40EIv p -为控制方程。 从力边界条件BC(p)入手,寻找Galerken 加权残值法的试函数,设221sin 2d v x dx l π? ?=- ??? ② 它满足x l =处的弯矩和剪力为零的条件,即''|0,'''|0x l x l v v ====。 把②式积分两次,可得222()sin 22x l x v x c Ax B l ππ????=+++?? ??????? 调整两个积分常数A 和B ,使它们满足0x =处的位移边界条件BC(u),有2/,0A l B π=-=,则得到Galerkin 加 权残值法的试函数为()2222()sin 22x l l x v x c x c x l πφππ????=-+=?? ?????? ? ③ 代入①,取N=1,有22 20022sin sin 02222l x x l l x EIc p x dx l l l ππππ π???????? --+=???? ? ?????????????? 可解出223 00118 60.469 342p l p l c EI EI πππ -+==-,代回③式得x l =处的最大挠度为4202124|0.1262x l p l v cl EI ππ=??=-+= ???,它比用挠度方程大0.8%。 ^ ^ 该问题两端的边界 ^ ^ ^ ^ ^ ^ ^ ^

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

悬臂梁结构设计

骨干杯 斜拉式悬臂梁设计报告 一、题目 设计域如图,固定端和整个结构宽度不限制,允许在在固定端开孔;材料体积用量≤35ml; 载荷为圆形(直径D=15 mm)均布载荷,方向为垂直向下;

二、设计概述 根据大赛题目的要求,为达到悬臂梁承重最大的目的,在保证材料体积用量在规定范围内,我们采取了简单而又稳定的楔形结构,设计思路来源于生活中常见的斜拉桥。 三、设计方案 ① 斜撑式 设计思路来源于常见的支撑结构 ② 斜拉式 设计来源于斜拉桥经过讨论,与计算分析,最终确定选择斜拉式,并用CAD绘制了初步工程图

CATIA绘制出四种结构三维图

应力校核 ABAQUS分析对比分析多种结构

S, MiSeS (Avg: 75%) ÷1.215e+08 + 1.114e+08 + 1.012e+08 +9.111e+07 +8.099e+07 +7.087e+07 +6.074e+07 +5.062θ+07 +4.050e+07 +3.0388+07 +2.026e+07 + 1.014e÷07 + 1.519e+04 ÷1.112e+08 + 1.019e+08 ÷9.269e÷07 +8.344e -t07 +7.418e÷07 +6.493e+07 +5.568e+07 +4.643θ+07 +3.717e+07 +2.792e+07 + 1.867e+07 +9.418e+06 + 1.654e+05 ODB: n7.odb AbaqUS/Standard 6.13-1 Mon OCt 12 20:56:42 GMT+08:OO 2015 Step: SteP-I InCrement 1: SteP Time ■ 1.000 Primary Var: S, MiSeS ∩αfnrmpri ?∕ΛΓ? I I ∏pf∩rn∩Λtinn Q ΓΛI P PΛctnr ?亠A 9QP P -∩1 S, MiSeS (Avg: 75%) Z PrImary Var: S, MlSeS DefOrmed Var: U DefOrmatlOn SCale Factor: +6.60Ie-OI S B Z

悬臂梁应变测量

悬臂梁应变测量 摘要:在航空、机械及材料研究领域中,零件的强度是一个很重要问题。研究强度问题的途径之一便是实验应力分析。本课程设计便是利用实验应力分析中的电测法来测定弹性元件等强度悬臂梁在力的作用下产生的应变。具体方法是通过在悬臂梁上粘贴三个应变片,它们均分布在悬臂梁的上表面上,其中一应变片位于纵向轴的中心线上,其余两个应变片分别位于轴中心线的两侧等距离处,且靠近变动端;然后通过增减砝码的个数改变所加的力,利用数字万用表记录、读取数据。为了减小实验误差,本实验采用多次测量求平均值的方法,并对实验数据利用Excel进行了拟合,作出了应变片的电阻变化值与载荷之间的关系图,再根据有关公式,最终得出在弹性限度内悬臂梁的应变与它所受到的外力大小成线性关系。 关键词:电测法;应变片;悬臂梁;数字万用表

引言 研究强度问题可以有两种途径,即理论分析和实验应力分析。实验应力分析是用实验方法来分析和确定受力构件的应力、应变状态的一门科学,通过实验应力分析可以检验和提高设计质量、工程结构的安全性和可靠性,并且可以达到减少材料消耗、降低生产成本和节约能源的要求。实验应力分析的方法很多,有电测法、光测法、机械测量方法等。本实验主要是利用电测法。电测法有电阻、电容、电感测试等多种方法,其中以电阻应变测量方法应用较为普遍。电阻应变测量方法是用电阻应变片测定构件表面的应变,再根据应变--应力关系确定构件表面应力状态。工程中常用此方法来测量模型或实物表面不同点的应力,它具有较高的灵敏度和精度。由于输出的是电信号,易于实现测量数字化和自动化,并可进行遥测。电阻应变测量可以在高温、高压、高速旋转、强磁场、液下等特殊条件下进行,此外还可以对动态应力进行测量。由于电阻应变片具有体积小、质量轻、价格便宜等优点,且电阻应变测试方法具有实时性、现场性,因此它已成为实验应力分析中应用最广的一种方法。它的主要缺点就是,一个电阻应变片只能测量构件表面一个点在某一个方向的应变,不能进行全域性的测量]1[。 本实验为悬臂梁的应变测量,所谓的悬臂梁,即一端固定,另一端可以动的弹性元件。应变是描述一点处变形程度的力学量,它是由载荷、温度、湿度等因素引起的物体局部的相对变形,主要有线应变和切应变两类。电阻应变片是一种将机械构件上应变的变化转换为电阻变化的传感元件。 本实验使用的方法为电测法,通过逐级加减载荷改变悬臂梁所受的力,使之发生不同的形变,用电阻应变片作为传感器,将微小的形变这个非电学量转换成电学量电阻的变化来测量悬臂梁的主应变。在该实验中电阻的变化量是通过数字万用表直接读数处理得到的,之后通过应力与应变之间的关系得出悬臂梁所受的正应力,利用Excel制作出拟合曲线进行分析。本实验主要目的在于了解悬臂梁、电阻应变片的结构及工作原理,掌握数字万用表测电阻的方法及原理,理解灵敏度对测量结果的影响,最终利用数

悬臂梁的弯矩计算方法可参考材料力学

悬臂梁的弯矩计算方法可参考材料力学。你没有说清楚悬臂梁上作用的是什么样的荷载形式,所以没有办法直接给答案,给你下以几种,让你参考吧 (一)、受端部集中荷载作用时 其悬臂梁上的弯矩值是Px,其中P是端部集中力,x是从端部到另一端的距离。(二)、受均布荷载作用时 其悬臂梁上的弯矩值是qx2/2,其中q是均布线荷载,x是从端部到另一端的距离。 设为均布荷载下。悬臂梁悬臂净长L。 计算悬臂梁自重及其担负楼板面积的自重计g KN/m;(包括上下粉刷重) 计算悬臂梁担负楼板面积上的活荷载q KN/m;(楼面活荷载标准值查荷载规范GB50009-2001) 承载能力极限计算的荷载基本组合值为1.2g+1.4q=Q1 正常使用极限计算的荷载标准组合值为g+q=Q2 支座截面的弯矩=1/2Q×L^2。 (计算两种极限状态的弯矩分别代入Q1或Q2值)同问已知弯矩、板混凝土强度、钢筋型号,如何求板配筋??例如弯矩21.1KN/m,H=150mm,C25混凝土,二级钢求As 2011-11-01 11:18 提问者:影子伯爵之羽|浏览次数:808次 我来帮他解答 您还可以输入9999 个字 推荐答案 2011-11-01 14:02 二、设计依据 《混凝土结构设计规范》GB50010-2002 三、计算信息 1. 几何参数 截面类型: 矩形 截面宽度: b=1000mm 截面高度: h=150mm 2. 材料信息 混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 钢筋种类: HRB335fy=300N/mm2 最小配筋率: ρmin=0.200% 纵筋合力点至近边距离: as=15mm 3. 受力信息 M=21.100kN*m

悬臂梁的受力分析

悬臂梁的受力分析 实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。 实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析 如下图所示悬臂梁,其端部的抗弯刚度为 3 3EI l ,在其端部施加力F ,可得到其端部挠度为:3 3Fl EI ,设其是半径为0.05米,长为1米,弹性 模量11 210E =?圆截面钢梁,则其可求出理论挠度值3 4 43Fl ER ωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表: 2有限元软件(ansys )计算: (1)有限元模型如下图:

模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F 计算得到端部的挠度如下表所示, 得到梁端部在收到力为100kN时Y方向的位移云图: 将理论计算结果与ansys分析结果比较如下表:

通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。 通过本次试验,让我对力学知识及力学知识的应用有了更进一步的了解,对今后的学习应该有一定的指导意义。 附:ansys命令流 /TITLE,liangfenxi /PREP7 !* ET,1,BEAM188 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2e11 MPDATA,PRXY,1,,0.3 SECTYPE, 1, BEAM, CSOLID, q, 0

悬臂梁在均布荷载下的应力状况

悬臂梁在均布荷载下的应力状况 摘要:悬臂梁在现实生活中很常见,对于悬臂梁的分析采用弹性力学里的应力边界条件和平微分方程和相容方程进行求解计算分析,再结合材料力学的知识进行分析,深入系统的了解悬臂梁的手里特点。 关键词:静定梁、悬臂梁、弹性力学、材料力学、受力特点 现实生活中的房屋建筑中,存在很多的悬臂梁结构,身边的例子很多,例如 体育场的看台,城市里房屋的阳台,农村房屋中很多都有屋檐,而其都是靠悬臂梁的支撑才能结合上面的附属物件构成。现在我们就对悬臂梁的应力情况分别采用弹性力学和材料力学的相关知识进行分析 如图所示梁受荷载作用,求解其应力 1、弹性力学求解 解:本题是按应力求解的。 基本公式 x C xy h q C y C y h q y y x h q xy y x 123213332362)46(+=+--=-- =τσσ 1、在应力法中,应力分量在单连体中必须满足: y ql x ??? ? ??-20222qh ql l 202qh q o h /2 h /2 (l >>h ,δ=1)

(1)平衡微分方程;00=+??+??=+??+??y xy y x yx x f x y f y x τστσ (2)相容方程 () 02=+?y x σσ; (3)应力边界条件(在σs s =上)。 将应力分量代入平衡微分方程和相容方程,两者都能满足。 2、校核边界条件 (1)在主要边界上 04602123=???? ??+?=±=C h h q x h y xy ,即时,τ,由此得 h q C 231-= q C h C h h q q h y y -=++??? ? ??--=-=2133282,2即-时,σ,由此得 22q C - = 0==y h h y σ时,,将C 1、C 2代入后满足。 将C 1、C 2代入式(a ),得到应力公式: () ??? ? ??-=???? ??+--=--=14232232123222 23223h y h qx h y h y q y x h qy xy y x τσσ (b ) (2)再将式(b )代入次要边界条件 00==xy x τ时, 33 4h y q x =σ,其主矢量为 0) (02 2==-?dy x h h x σ 而主矩为20 )(22 20qh ydy h h x x =?-=σ x =l 时,,其主矢量为; (2分) )46(323y y l h q x --=σql dy h h x xy -=?-=220)(τ)14(2322-=h y h ql xy τ,其

三角形悬臂梁应力分析备课讲稿

三角形悬臂梁应力分 析

三角形悬臂梁应力分析 摘要:在有限元分析软件ANSYS12.0平台上建立三角形悬臂梁的力学模型, 添加约束和载荷,计算出应力分布,并与理论计算值相比较。 ⒈ 引言 目前,ANSYS 软件具有其强大的功能已经被广泛的应用于机械,化工,土 木,交通等各个领域。应用ANSYS 分析,可以大大减少人力物力的投入,而且可 靠性高,对于三角形悬臂梁分析其应力和变形情况,分析方法和结论可作为这 类设计的参考。 ⒉ 计算模型 Ⅰ问题描述 【三角形悬臂梁忽略重力作用,∠BAC=α,AB 边上作用均布载荷q ,求应 力的解析表达,计算出BC 边上的应力值并与ANSYS 计算值比较,绘出应力曲线 图】 选取应力函数: Ansys 计算参数值:AB=1000mm ,α=30°,厚度t=20mm 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+- Ⅱ解析解 根据弹塑性平面问题的极坐标解答,利用以下公式推导:

222 222211111()r r r r r r r r r r r θθ??σθ?σ???τθθθ ??=+???=?????=-=-????? 以及 2222cos sin 2sin cos sin cos 2sin cos x r r y r r θθθθσσθσθτθθ σσθσθτθθ=+-=++ 已知 2222[()sin cos cos tan ]C r r r ?θθθθα=?-+-, 故有以下式子成立: 22222222222[2()2sin cos 2cos tan ][2()2sin cos 2cos tan ][cos 2sin 2tan ][2sin 22cos 2tan ]C r r r r C r C r r r C r r ?αθθθθα?αθθθθα?θθαθ ?θθαθ ?=-+-??=-+-??=-++??=-+? 所以, 22222222211[2()sin 22cos tan 2cos 2tan ][2()sin 22cos tan ]111()[1cos 2sin 2tan ]r r C r r r C r C r r r r r θθ??σαθθθαθαθ ?σαθθθα???τθθαθθθ ??=+=---+???==-+-?????=-=-=--????? 因此, 222222222224cos sin 2sin cos [2()2sin 2cos 2cos tan 2cos cos 2tan sin 2cos 2sin 2tan ]sin cos 2sin cos [2()2cos sin 2cos 2sin 2tan 2tan sin cos 3tan cos ]x r r y r r C C θθθθσσθσθτθθ αθθθθαθθαθθθασσθσθτθθ αθθθθθααθθαθ=+-=---+++=++=-+-++- 由边界0()/y y q t σ==-,即当0θ=时,/y q t σ=-;带入y σ的表达式中可 得:

悬臂梁变形及应力分析

基于ANSYS 10.0 对悬臂梁的强度及变形分析 姓名:刘吉龙 班级:机制0803班 学号:200802070516

对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。 一、问题描述 长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。试将分析结果与理论解进行比较,说明有限元分析的误差。(理论解:最大轴向位移δ=0.1238 mm)。 二、建立有限元模型: 定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量 E=7.071×104 Mpa,泊松比μ=0.3。 三、有限元模型图: 建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。最后生成该悬臂梁的模型图,示图如下:

整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。网格划分之后的模型图为: 四、加载并求解: 根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:

应变片课程设计悬臂梁的应力测试

题目:应变片课程设计 悬臂梁的应力测试 一、力学篇应变实验课程设计细则 ------------------- 2 二、实验器材 ------------------------------------- 3 三、实验预想步骤 --------------------------------- 3 四、实验操作步 ----------------------------------- 4 五、实验数据及分析 ------------------------------- 8 六、电阻应变片的选择 ----------------------------- 8 七、电阻应变片的粘贴工艺 ------------------------ 18

八、实验心得 ------------------------------------ 20 前言 应变式传感器可以用来检测:位移压力力矩应变温度湿度光强辐射热加速度液体流量等物理参数。目前是国内外应用量最为广泛的一种传感器,它在世界上占各类传感器80%以上。 本次课程设计根据实验室条件和应变式传感器的特点,从应变片粘贴工艺要求设计机械结构测点布置应变片电源电路应变片补偿电路检测误差分析构建圆筒偏载试验等为题,使学生从简单受力结构分析入手,运用计算机模拟软件确定测点布置,结合动手具体粘贴应变片,对应变片实测数据校准整定;从而完成一个完整的测试工作。 一、任务设计与要求 1 应用力学知识(理论力学材料力学),运用软件ansys分析简支梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 2 应用力学知识(理论力学材料力学),运用软件ansys分析悬臂

第二个问题的实作范例1——悬臂梁应力分析——操作指导

第二个问题的实作范例1——悬臂梁受均布压力载荷的弯曲问题 1.问题描述与解析解 有一个如图0所示的悬臂梁(截面为10mm*10mm的矩形,长度100mm),受均布压力载荷10N/m2。试求出该悬臂梁的最大应力和最大挠度。 (它的解析解已经解完了,在图0的下面,挠度7.5e- 6mm,应力0.003MPa,即3000Pa。)

图0 悬臂梁的问题描述 2. 用CATIA中的工程分析模块(即CAE模块)求解该问题的思路 1). 启动CATIA,建立一个悬臂梁的3D模型,设置单位,加材料。(这一步已经做完了。) 2). 然后,进入工程分析模块,加固定约束,加均布载荷,求解,查看结果。 3). 分析两次计算,第一次线性单元的边长为6mm,计算精度很低。第二次抛物线单元的边长为3mm, CATAI得到的挠度、应力与解析解基本一致。 3 在CATIA求解该问题的操作指导 1). 启动CATIA,打开xuanbiliang目录下的xuanbiliang.CATPart文件,在该文件中的几何模型中已经加好了材料(钢)。 2). 进入创成式零件有限元分析模块,如图1。之后点击“确定”,如图2。 图1

图2 3). 在零件的有限元模块中选择 工具条中的 按钮,按照如图3所示的方式选择梁的一个端面,点击“确 定”,即可完成悬臂约束的施加。 (该约束限制了空间中的6各自由度。) 图3 4). 选择 工具条中的 按钮,并选择悬臂梁的上表面,在pressure中输入10N_m2,如图4、图5。施加了载荷与约束的悬臂梁如图6。

图4 图5 图6 5). 在特征树的finite element model.1——nodes and elements 下的 上双击,如图7。弹出如图8的对话框,在size中输入6mm的单元边长,点击确定。

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 采用二维模型,3*0.09m。

2 软件知识学习 2.1 软件的使用与介绍 软件介绍: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。 ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型; 分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

ansys实例5悬臂梁在循环加载作用下的弹塑性计算

悬臂梁在循环加载作用下的弹塑性计算摘要:本文介绍了悬臂梁在循环荷载作用下基于Ansys有限元软件进行弹塑性分析的过程,分析了材料为多线性弹性材料的悬臂梁在循环荷载作用下观测点P的水平方向的应力应变历程,并给出了相应的结果。关键词:有限元,弹塑性,悬臂梁,应力应变 Elastoplastic Calculation of Cantilever Beam Under Cyclic Loading Abstract:This article describes the process of a cantilever beam under cyclic loading Ansys finite element software elastoplastic analysis, and analyzes history of the horizontal direction of the observation point P of the cantilever whose material is multi-linear elastic material under cyclic loading stress strain. And gives the corresponding results. Key words: finite element,elastoplastic, cantilever, stress-strain. 1.前言 一个左端固定的悬臂梁见图 1-1(a),厚度为 1cm,在它的右段中点上施加有一个集中力,该集中力为循环载荷见图 1-1(b),悬臂梁的材料为多线性弹性材料,材料的弹性模量为 20000 N/cm2,实验获得的该材料的非线性应力-应变行为见表1-1,分析该悬臂梁在循环载荷作用下的观测点 P 的水平方向上的应力应变历程。 图1-1 一个悬臂梁示意图以及加载历程图 表1-1 材料的应力-应变行为实验数据 为考察悬臂梁根部P点的应力-应变历程,采用2D的计算模型,使用平面单元PLANE42,材料采用多线性弹塑性模型(mkin),进行循环加载过程的分析。 2.建模的要点:

十字相交悬臂梁弯矩及剪力简化计算

龙源期刊网 https://www.360docs.net/doc/ab3316895.html, 十字相交悬臂梁弯矩及剪力简化计算 作者:曹晓斌 来源:《中国建筑科学》2015年第06期 摘要:在工程设计中,会碰到十字相交悬臂梁,这种结构体系受力性能有别于一般的平 面悬臂梁,但也不能将其考虑成两端固支的梁,本文将从结构力学的角度着手,考虑十字相交悬臂梁的变形协调性,分析这类结构在收到集荷载和均布荷载的弯矩与剪力。 关键词:变形协调;十字相交;悬臂梁;剪力;弯矩 Simplified calculation of bending moment and shearing force for the intersecting cantilever beams Cao Xiao-bin Abstract: In structure design, there could be intersecting cantilever beams, the internal force of this structure are different from that of plan cantilever beams, it can not be considered as fixed beams at both ends, take the compatibility deformation into consideration, this paper will analysis the bending moment and shearing force of the structure in this kind. Key words: compatibility deformation; intersecting; cantilever beams; shearing force;bending moment 1.前言 实际工程中,存在十字相交悬臂梁结构,如图1,这类结构由于相互垂直的梁的影响,不能将两根梁简单地考虑为平面内悬臂梁,若相交的两段梁中仅有一根梁上有荷载作用,那么另一根梁就可以对这根梁起到一定的支撑作用,如若两段梁的跨度、受力的大小、受力位置、刚度均不相同,该如何进行受力分析。参照结构力学[1],本文将从两段梁受力,变形协调方面 来分析此类结构受力。 2.理论计算 为方便计算,本文忽略扭矩的影响。AB:惯性矩I1,长度l1。AC:惯性矩为I2,长度 l2。 2.1 受集中荷载作用

悬臂梁的挠度计算公式

悬臂梁的挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 挠度计算公式:Ymax=5ql^4/(384EI)(长l的简支梁在均布荷载q作用下,EI是梁的弯曲刚度) 挠度与荷载大小、构件截面尺寸以及构件的材料物理性能有关。 挠度——弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度,用γ表示。

悬臂梁 弹性力学

《弹性理论及其工程应用》课程三级项目说明书 学生姓名:李志鹏 专业班级: 10级工设一班 指导教师:周庆田 得分:

一、设计任务 使用matlab 软件对端部受集中载荷的悬臂梁进行数值分析 具体内容 1. 对悬臂梁进行应力及位移分析,并以云图形式给出结果。 2. 由图形结果确定梁最易折断部分。 1.首先讨论梁内应力分布。 其边界条件为: (σx )0x ==0; (τxy )h ±=y =0; (σy )h ±=y =0; F= -? +-h h dy xy τ σx = 2 f 2y ???= xy c 1 (a) (f ?为应力函数) 双调和方程为:4 4x f ???+ 2 2 2 4y x f ????+ 4 4y f ???=0 (b ) 通过对(a )、(b )两式积分可得: )(2)(673622 2c y c x c y c x f y +++=??= ?σ (c ) 4322212232 1c x c x c y c y x f xy ----=???-=?τ (d )

2.系数的确定 由上述边界条件及(c )、(d )可得: 07632 ====c c c c ; 2 14 21h c c -= ; I F h F c -=-=3123δ ( 3 3 2h I δ=为截面对中性轴的截面二次矩【惯性矩】) 至此,所有常数均已求出,于是可得应力场: I Fxy x - =σ 0=y σ )(222 y h I F xy --=τ 3.然后讨论梁内位移分布 (1)应用应变位移关系及胡克定律,由应力场方程可得出: )](2[)1(222x y h I F E G x v y u EI Fxy E y v EI Fxy E x u xy xy y y x --+===??+??=-==??-===??ντγννσεσε 通过对上式积分得到位移表达式:

悬臂梁在均布荷载作用下有限元分析

悬臂梁承受集中荷载作用问题的弹塑性分析 何方平邹里 (湘潭大学土木工程与力学学院,湖南湘潭411105) [摘要]本文针对曲杆在水平力作用下的受力性能,结合弹性力学基本方程和塑性力学中Mises屈服条件,得到了弹性阶段应力、位移之间的关系,以及材料发生塑性变形时,处于临界状态点的应力、应变值。同时,利用有限元分析软件ABAQUS,进行了数值模拟,分析结果与理论值吻合较好,证明所建立的有限元模型是合理的。 关键词:悬臂梁;集中荷载 THE ELASTIC-PLASTIC ANALYSIS OF THE CANTILEVER BEAM UNDER concentrated load He Fang-Ping Zhou Li (College of Civil Engineering & Mechanics, XiangTan University, Xiangtan 411105, China) 【Abstract】This article in view of the force performance of CANTILEVER BEAM UNDER concentrated load, combined with elastic mechanics basic equations and the plastic mechanics Mises yield conditions, obtained the elastic stage between stress and displacement, and the relationship between material happen plastic deformation, a critical state points of stress and strain value. At the same time, the finite element analysis software ABAQUS, the numerical simulation and analysis results and a good agreement with the theoretical value, show that the established finite element model is reasonable. Keywords: CANTILEVER BEAM concentrated load

相关文档
最新文档