数学归纳法原理(本科论文)

数学归纳法原理(本科论文)
数学归纳法原理(本科论文)

目录

中文摘要

英文摘要

1 引言 (1)

2 数学归纳法原理 (1)

2.1 良序原理 (1)

2.2 数学归纳法 (2)

2.3 第二数学归纳法 (3)

2.4 数学归纳法的有效性 (4)

3 数学归纳法应用举例 (4)

3.1 数学归纳法在解题和证明中的一些应用 (4)

3.2 数学归纳法在递归定义上的应用 (10)

3.3 数学归纳法在递归算法上的应用 (13)

参考文献 (17)

数学归纳法原理及其应用举例

摘要:数学归纳法原理是一种有效的证明方法.本文将介绍数学归纳法及其等价形式,并证明为什么它们是有效的.特别地,我们将用大量各种不同类型的例子来说明其应用。这些例子有的来自于集合论,数论,有的来自于计算机科学等.

关键词:良序原理,数学归纳法,第二数学归纳法,递归算法.

Abstract: The principles of mathematical induction provide effective ways for valid arguments in mathematical proofs. This thesis will present these principles and their other equivalent forms, and will show why they work and particularly will show how they work by examples from diversified settings or areas of mathematics, e.g. set theory, number theory, computer algorithm, and so on.

Key words:The well-ordering principle, the first principle of mathematical induction, the second principle of mathematical induction, recursive algorithm.

1 引言

首先使用数学归纳法的是意大利数学家和工程师马奥罗修勒斯(Francesco Maurocyulus ,1494-1575),他在1575年的著作《算术》(Arithmetica )中,用数学归纳法证明了前n 个正奇数之和是2n .帕斯卡(Blaise Pascal,1623-1662)在他关于算术三角形(现在称为帕斯卡三角形)的著作中使用了归纳法.在他1653年的著作《论算术三角形》(Traite du triangle arithmetique )中,在证明用来定义他的三角形的基本性质时,帕斯卡清晰地解释了归纳法.德摩根在1838年的一篇关于证明方法的论文中,把这个原理命名为“数学归纳法”.

前n 个正奇数之和的公式是什么?对1n =,2,3,4,5来说前n 个正奇数之和是

11=,134+=,1359++=, 135716+++=,1357925++++=

根据这些值,有理由猜测前n 个正奇数之和是2n .假如事实上这个猜测是正确的,我们就需要一种方法来证明这个猜测是正确的.数学归纳法是证明这种类型的断言的极为重要的证明技术.

2 数学归纳法原理

2.1 良序原理

所有数学都始于计数,计数就是把要计数的对象集合与几个起始自然数(或计算值):1,2,3,4,5...一一对应的过程.我们用N 表示自然数这个无限集合,这里值得注意的是关于N 的定义并未达成共识,有些数学家把0也归入N .但这两种不同定义并不会引起太大的冲突,哪一种使用方便即可选择哪一种.

自然数N 的一个基本性质是良序性,下面将对自然数的良序性进行形式化的论述,并且把它作为一个关于N 的公理.对于任何系统,公理是无需证明即为真的命题.为了对一个系统(这里指自然数)进行推理,首先需要对该系统做一些假设.尽管这些基本的

假设常常不容易一眼就看出,但它应该是“合理的”和“显而易见为真的”.

良序原理:自然数集N 的每个非空子集都有一个最小元素.

显而易见,自然数N 的任何子集都可以通过列出实际元素的方式给定,即使对于不易直接定义的集合,该定理依然有效.例如,当x 和y 可取任意整数时,考虑1228x y +所表示的所有自然数集合.从定义看该集合的范围并不明显,但是根据良序原理,由于该集合非空(注意这很重要),集合中必有一个通过该方式表示的最小自然数.(当然,求具体的最小自然数的值是另外一回事.注意良序原理保证有一个最小数存在,但绝对没说如何去计算它.)

例2.1.1 用良序原理证明算法的正确性.整除算法说:若a 是整数而且d 是正整数,则存在唯一的整数q 和r 满足0r d ≤<和a dq r =+.

证明 设S 是形如a dq -的非负整数的集合,其中q 是整数.这个集合非空,因为dq -可以任意大(取q 是绝对值很大的负整数).根据良序性,S 有最小元0r a dq =-.

整数r 非负而且r d <.若不是这样,则S 里存在更小的非负整数,即0(1)a d q -+.为了看出这一点,假设r d ≥.因为0a dq r =+,所以00(1)0a d q a dq d r d -+=--=-≥.因此,存在满足0r d ≤<的整数r 和q .证明q 和r 都是唯一的,此处略.

良序原理允许我们证明最有效的一个证明方法,即数学归纳法定理. 2.2 数学归纳法 对任何正整数n ,

21

5811...(32)(37)2

n n n +++++=+

因为存在无限多个正整数,所以,在证明这个断言时,不能通过对n 的每个值逐一验证等式是否成立.有一种规范的方法可用来证明命题对所有的正整数都成立,这种方法称为数学归纳法原理.

定理 2.2.1 假设要证明的命题能写成0()n n P n ?≥,其中0n 是某个固定整数,即:

假设希望证明对所有整数0n n ≥都有()P n 为真,那么如下方法可以说明如何做到这一点.假设(a )0()P n 为真,和(b)如果对任一0k n ≥只要()P k 为真,那么(1)P k +也一定为真.于是对所有0n n ≥,()P n 为真.这种方法称作数学归纳法原理.

因此,用数学归纳法原理证明命题:0()n n P n ?≥为真,必须首先用直接法证明第一个命题0()P n 为真,称其为归纳法的基础步骤,并且通常来讲该步是非常容易的.然后必须证明对0n n ≥的任何选择,()(1)P k P k ?+是一个重言式.因为一个蕴涵为假的惟一情况是如果前提为真而结论为假,做这一步通常是证明如果()P k 为真,那么(1)P k +也一定为真.注意,它同假设对某个k 值()P k 为真不一样.这一步称作归纳步骤,并且某些工作通常要求证明蕴涵恒为真.

2.3 第二数学归纳法

与上述数学归纳法略有不同的形式在某些证明当中更易于使用.第二数学归纳法或强归纳法中,其归纳步骤是证明

000()(()(1)(2)...())(1)k P n P n P n P k P k ?∧+∧+∧∧?+

是一个重言式.同前面一样,需要检验的唯一情况是如果每个()P j ,0,...,j n k =为真,那么(1)P k +为真.强归纳法与数学归纳法是等价的,在一个证明中使用哪一个取决于方便性.

例 2.3.1 证明:每个正整数1n >能惟一地写成12

12

...s a a a s p p p ,其中i p 是素数且12...s p p p <<<.

证明(用强归纳法)

基础步骤 这里02n =,显然(2)P 为真,因为2是素数.

归纳步骤 使用(2)P ,(3)P ,…,()P k 证明(1)P k +:1k +能惟一地写成12

12

...s a a a s p p p ,其中i p 是素数且12...s p p p <<<.需要考虑两种情况:若1k +是一个素数,则(1)P k +为真.若1k +不是素数,则1k lm +=,2l k ≤≤,2m k ≤≤.利用()P l 和()P m ,得1k +=lm =

121212

121212.........s u s b c a b b c c a a s u s q q q r r r p p p =,其中每个i j p q =或k r ,12...s p p p <<<.若i k j p r q ==,

则i j k a b c =+,否则i j p q =且i j a b =或者i k p r =且i k a c =.因为l 和m 的因子分解是惟一的,所以1k +的因子分解也是唯一的.

2.4数学归纳法的有效性

为什么数学归纳法是一种有效的证明方法?原因在于良序原理.假定知道(1)P 为真,而且对所有正整数n 来说命题()(1)P n P n →+为真.为了证明对所有正整数来说()P n 都为真,假定至少存在一个()P n 为假的正整数.那么使()P n 为假的正整数S 非空.因此,根据良序性,S 有一个最小元,把它表示成k .可以知道k 不是1,因为(1)P 为真.因为k 是正的而且大于1,所以1k -是一个正整数.另外,因为1k -小于k ,它不属于S ,所以

(1)P k -必然为真.因为蕴涵式(1)()P k P k -→也为真,所以实际情况必然是()P k 为真.

这与对k 的选择相矛盾.因此对每个正整数n 来说()P n 必然为真.

3 数学归纳法应用举例

3.1 数学归纳法在解题和证明中的一些应用

定理3.1.1 每一个大于1的整数要么是素数,要么是若干素数的乘积.

证明:设n 为大于1的整数.证明将采用强数学归纳法原理,对n 作归纳.因为2是一个素数,所以命题对2n =是正确的.

假设对某个整数1k >,当2,3,...,n k =时,命题为真.下面要证明1k +要么是素数,要么是若干素数的乘积.如果1k +是素数,那么证明已经完成.所以,假设1k +不是素数.于是,存在一个既不是1也不是1k +的正整数p ,p 整除1k +.所以,

1

k q p

+=是整数,且1q ≠(否则1p k =+),1q k ≠+(否则1p =).因此,p 和q 都是2到k 之间的整数(含2和k ).所以可以对p 和q 运用归纳假设,即p 和q 不是素数就是若干素数的乘积,从而1k pq +=是若干素数的乘积.这就完成了归纳步骤,因此完成了定理的证明.

注意,定理3.1.1虽然说明了大于1的正整数不是素数就是素数的乘积,但这个定

理并不能帮助判断是两种情形中的哪一种.特别地,定理3.1.1也不能实际地找到特定的正整数的素数因子.

例3.1.1 实验室里有容积相同的量杯盛着各种不同的液体,此外还有一只容积相同的

空杯.证明:可以通过有限次混合手续,使它们成为成份相同的溶液,此外还余一个空量杯.

分析:表面上看本题与数学归纳法没有联系,但若我们引入一个整数参数(原有溶液的杯数),我们就可以考虑应用数学归纳法.

事实上,不妨设有n 杯各种不同的溶液,显然1n =时命题成.立假设n k =时命题成立,即k 杯溶液可以通过有限次混合手续,使它们成为成份相同的溶液.此外还有一个空杯,于是当再增加一杯时,我们只需把k 杯已混合好的溶液各倒

1

1

k +杯到空杯中,最后拿增加的那杯溶液去把上述1k +杯液体满,这样我们便得到1k +杯成份相同的液体,此外还有一个空杯,也就是说1n k =+时命题也成立.

上面的分析告诉我们,很多与自然数n 有关的问题都可采用数学归纳法,而一个具体的问题能否用数学归纳法,以及取什么做n ,则取决于能否递推.只要有递推的希望,就不妨一试.

例3.1.2 设1A ,2A ,3A ,…,n A 是任意n 个集合,用数学归纳法证明

11

n n

i i i i A A ==??= ???

(这是德?摩根定律的推广形式.)设()P n 是谓词:对任意n 个集合等式成立.用数学归纳法需证明,对所有1n ≥,()P n 为真.

证明 基础步骤 (1)P 是命题11A A =,这显然成立. 归纳步骤 用()P k 去证明(1)P k +.(1)P k +的左边是

1211...n i k k i A A A A A +=??= ???

1

21(...)k k A A A A += 的结合性质

1

21(...)

k k A A A A += 两个集合的德?摩根定律

11k i k i A A +=??= ???

用()P k

1

1

k i i A +==

(1)P k +的右边

因此,蕴涵()(1)P k P k ?+的一个重言式,由数学归纳法原理可知对所有1n ≥,()P n 为真.

例3.1.3 本例将要证明:对于任何正整数n ,如果从22n n ?的棋盘(每行和每列有

2n 个方格)中移去任何一个方格,则剩下的方格可以用若干个L 形构件覆盖,每个L 形构件覆盖3个方格,如图1所示.

图一

证明 如图2所示,每个1122?的棋盘移去一个方格后,可被一个L 型构件覆盖.因此,结论对于1n =是正确的.

现在假设对于某个正整数k 结论是正确的,即每个22k k ?的棋盘移去一个方格后,可用若干个L 形构件覆盖.下面要证明:任何一个1122k k ++?的棋盘移去一个方格后,可用L 形构件覆盖.如果1122k k ++?的棋盘在横向和纵向上都平分为两部分,就得到4个

22k k ?的棋盘.其中的一个22k k ?被移去了一个方格,而另外3个是完整的,如图所示.

从每个完整的22k k ?的棋盘中移去那个位于原1122k k ++?的棋盘中心位置的方格,如图3所示.由归纳假设知道,图4所示的所有4个移去了一个方格的22k k ?的棋盘都可以被L 形构件覆盖.因此,再用一个L 形构件覆盖原1122k k ++?的棋盘中央的3个方格,就可以用L 形构件覆盖原来的移去了一个方格的

1122k k ++?的棋盘.这就证明了1k +的情况.根据数学归纳法原理,对每一个正整数

n ,任何去掉了一个方格的22n n ?的棋盘都可以用L 形构件覆盖.

图二

图三 图四

定理 3.1.2 设S 是有n 个元素的集合,其中n 是非负整数.如果r 是一个整数,

0r n ≤≤,那么恰好含有r 个元素的S 的子集的数目是

!

!()!

n r n r -.

证明 证明将采用归纳法,对n 作归纳,并从0n =开始.

如果0n =,那么S 是空集,并且r 必定是0.而φ有且仅有一个含0个元素的子集,即它本身,而且,因为0!1=,所以

!0!

1!()!0!0!

n r n r ==-.

所以公式对0n =是成立的.

现在假设公式对某个整数0k ≥是成立的.设S 是含有1k +个元素的集合,比如说

121{,,...,,}k k S a a a a +=.现在要统计S 恰好含有r 个元素的子集的数目,这里01r k ≤≤+.

显然,含有0个元素的S 的子集只有Φ.类似地,也只有一个S 的子集含有1k +个元素,即S 本身.对这两种情况,公式都给出了正确的值,因为

(1)!10!(10)!k k +=+-,(1)!

1(1)![1(1)]!

k k k k +=++-+.

设R 是S 的恰好包含r 个元素的任意子集,这里1r k ≤≤.有两种情况需要考虑. 第一种情况:1k a R +?.这时R 是12{,,...,}k a a a 的有r 个元素的子集.根据归纳假设,这样的子集有

!

!()!

k r k r -个.

第二种情况:1k a R +∈.在这种情况下,如果从R 中拿掉1k a +,就得到12{,,...,}k a a a 的含有1r -个元素的子集.根据归纳假设,这样的子集有

!

(1)![(1)]!

k r k r ---个.

把这两种情况合起来,看到S 共有!!

!()!(1)!(1)!

k k r k r r k r +---+个含有r 个元素的子

集.而这个值等于

!(1)!!()!(1)(1)!(1)!k k r k r

r k r k r r r k r -++--+--+

!(1)!!(1)!!(1)!k k r k r

r k r r k r -+=

+-+-+

!(1)

!(1)!k k r r r k r -++=

-+

(1)!

!(1)!

k r k r +=

-+

在公式中,用1k +替换n 就得到这个数,因此公式对于1n k =+是正确的.

所以,根据数学归纳法原理,公式对所有的非负整数n 都是正确的.

例3.1.4 证明:可以仅用4分和5分的邮票来组成等于或超过12分的每种邮资. 证明 将要用数学归纳法原理来证明这个结果.然后给出用数学归纳法第二原理的证明.设()P n 是命题:可以用4分和5分的邮票来组成n 分邮资.

首先使用数学归纳法原理.

基础步骤:可以用3个4分邮票来组成12分邮资.

归纳步骤:假定()P n 为真,所以可以用4分和5分邮票来组成n 分邮资.若至少用了一个4分邮票,则用一个5分邮票代替它,就组成1n +分邮资.若没有用任何4分邮票,则仅用了5分的邮票来组成n 分邮资.因为12n ≥,所以至少用了3个5分邮票.所以4个4分邮票来代替3个5分邮票,就组成了1n +分邮资.这完成了归纳步骤以及根据数学归纳法原理的证明.

其次,将要使用数学归纳法的第二原理.将要证明可以组成12,13,14和15分邮资,然后证明如何对15n ≥来说从3n -分邮资得出1n +分邮资.

基础步骤:可以分别用3个4分邮票,2个4分邮票和1个5分邮票,1个4分邮票和2个5分邮票,以及3个5分邮票,来组成12,13,14和15分邮资.

归纳步骤:设15n ≥.假定可以组成k 分邮资,其中12k n ≤≤.为了组成1n +分邮资,用组成3n -分邮资的邮票加上一个4分邮票.这完成了归纳步骤以及根据数学归纳法第二原理的证明.

注意 例3.1.4说明如何让数学归纳法第二原理适应于处理某些情形,其中仅对充分大的n 值来说归纳步骤才是有效的.具体说来为了证明对,1,2,...n k k k =++来说()P n 为真,其中k 是整数,首先证明(),(1),(2),...,()P k P k P k P l ++都为真(基础步骤),然后

证明对每个整数1n ≥来说[()(1)(2)...()](1)P k P k P k P n P n ∧+∧+∧∧→+为真(归纳步

骤).例如,例3.1.4解答里的第二个证明的基础步骤证明(12),(13),(14)P P P 和(15)P 都为真.需要分别地证明这些情形,因为归纳步骤证明[(12)(13)...()](1)P P P n P n ∧∧∧→+,

它仅当15n ≥时才成立.

在下面将要讨论数学归纳法的另外两个重要应用.第一个应用涉及到定义序列而不给出明确的项公式.第二个应用涉及到证明计算机程序是正确的.

3.2 数学归纳法在递归定义上的应用 3.2.1 引言

定义3.2.1 有时难以用明确的方式来定义一个对象.不过,用这个对象来定义它自身,这也许是容易的.这种过程称为递归.

可以用递归来定义序列、函数和集合.例如,对0,1,2,...n =来说用2n n a =来给出2的幂的序列.不过通过给出这个序列的第一项,即01a =,以及从该序列前面一项来求当前项的规则,即对0,1,2,...n =来说12n n a a +=,也可以定义这个序列.

3.2.2 递归地定义函数

定义3.2.2 为了定义以非负整数集合作为其定义域的函数,就要 (1)规定这个函数在0下处的值.

(2)给出从较小的整数处的值来求出当前的值的规则. 这样的定义称为递归定义或归纳定义.

许多函数都可以利用它们的递归定义来研究.阶乘函数就是一个这样的例子. 例3.2.1 给出阶乘函数()!F n n =的归纳定义.

解 可以通过规定阶乘函数的初值,即(0)1F =,并且给出从()F n 求出(1)F n +的规则,来定义这个函数.要得出这个结果,注意通过乘以1n +就从!n 计算出(1)!n +.因此,所需要的规则是(1)(1)()F n n F n +=+.

为了从在例7中求出的递归定义来确定阶乘函数的一个值,比如(5)5!F =,有必要多次使用说明如何用()F n 表示(1)F n +的规则:

(5)5(4)54(3)543(2)5432(1)F F F F F ==?=??=???

54321(0)54321120F =????=????=

一旦(0)F 是出现的唯一的函数值,就不需要任何更多的归约.剩下来要做的唯一事情是把(0)F 的值插入到公式里.

递归地定义的函数是严格定义的.这是数学归纳法原理的一个后果. 例3.2.2 给出0n

k k a =∑的递归定义.

解 这个递归定义的第一步是 0

00

k k a a ==∑,

第二步是 110

n n

k k n k k a a a ++===+∑∑.

在函数的某些递归定义里,规定了函数在前k 个正整数处的值,而且给出了从一个较大的整数之前的部分或全部k 个整数处的函数值来确定在该整数处的函数值的规则.从数学归纳法第二原理可以得出结论说这样的定义产生严格定义的函数.

例3.2.3 斐波那契数012,,,...f f f 是用等式00f =,11f =,以及对2,3,4,...n =来说

12n n n f f f --=+

来定义的.斐波那契数2f ,3f ,4f ,5f ,6f 是什么?

解 因为这个定义的第一部分说00f =和11f =,所以从这个定义的第二部分得出

210101f f f =+=+= 321112f f f =+=+= 432213f f f =+=+= 543325f f f =+=+= 654538f f f =+=+=

可以用斐波那契数的递归定义来证明这些数的许多性质.在下一个例子里给出一个这样的性质.

例3.2.4 证明:每当3n ≥时就有2n n f α->

,其中(1/2α=.

证明 可以用数学归纳法第二原理来证明这个不等式.设()P n 是命题:2n n f α->.想要证明每当n 是大于或等于3的整数时就有()P n 为真.

首先,注意到

32f α<=,24(3/23f α=<=

所以(3)P 和(4)P 都为真.现在假定()P k 为真,即对所有满足3k n ≤≤的整数k 来说有2k k f α->,其中4n ≥.必须证明(1)P n +为真,即11n n f α-+>.因为α是210x x --=的解(二次方程求根公式说明这一点),所以得出21αα=+.因此,

12333323(1)1n n n n n n n αααααααααα-------=?=+?=?+?=+ 根据归纳假设,若5n ≥,则得出

31n n f α-->,2n n f α->

因此就有

23111n n n n n n f f f ααα---+-=+>+=

由此得出(1)P n +为真,证毕.

注意 归纳步骤证明了每当4n ≥时,从对3k n ≤≤来说()P k 为真的假定就得出

(1)P n +.因此,归纳步骤没有证明(3)(4)P P →.所以,不得不单独证明(4)P 为真.

3.2.3 递归地定义集合

递归定义常常用来定义集合.当这样做时,给出初始的一些元素.然后给出用来从已知属于集合的元素来构造集合的其他元素的规则.以这种方式描述的集合是严格定义的,用它们的递归定义可以证明关于它们的定理.下面是集合的递归定义的一些例子.

例3.2.5 设S 是用 3S ∈ ;

若x S ∈且y S ∈,则x y S +∈

来递归地定义的.证明:S 是被3整除的正整数集合.(注意在这个定义里隐含着假定:

所有属于S 的东西都是用S 的递归定义里的两个命题来生成的.)

证明 设A 是被3整除的所有正整数的集合.为了证明A S =,必须证明A 是S 的子集而且S 是A 的子集.为了证明A 是S 的子集,必须证明被3整除的每个正整数都属于S .将要用数学归纳法来证明它.

设()P n 是命题:3n 属于S .基础步骤成立,因为根据S 的递归定义的第一部分,

313?=是属于S 的.为了证明归纳步骤,假定()P n 为真,即3n 属于S .因为3n 属于S 而且因为3属于S ,所以从S 的递归定义的第二部分得出333(1)n n +=+也属于S .

为了证明S 是A 的子集,使用S 的递归定义.首先,该定义的基础步骤规定3属于S .因为331=?,所以所有在这个步骤里被规定属于S 的元素都被3整除.为了完成这个证明,必须证明所有用该递归定义的第二部分所生成的属于S 的元素都属于A .这包括证明每当x 和y 都是S 中的元素并且假定它们都属于A 时,就有x y +属于A .现在若x 和y 都属于A ,则可以得出3|x 和3|y .由整数的可数性的性质,得出3|()x y +,证毕.

在上例里集合的递归定义是典型的.首先,给出一组初始元素.其次,给出从已知属于集合的元素来生成新元素的规则.在定义里隐含着只有在初始元素中列出的元素,或者可以用构造新元素的规则来生成的那些元素才属于这个集合.

3.3 数学归纳法在递归算法上的应用 3.3.1 引言

有时可以把带有具体的一组输入的问题的解归约到带更小的一组输入的相同问题的解.例如,求两个正整数a 和b 的最大公因子的问题,其中b a >,就可以归约到求一对更小的整数(即mod b a 和a )的最大公因子的问题,因为gcd(mod ,)gcd(,)b a a a b =.当可以实现这样的归约时,就可以用一系列归约来求出原问题的解,直到把问题归约到解是已知的某种情形为止.例如,对求最大公因子来说,归约持续到两个数中较小的一个为零,因为当0a >时,gcd(,0)a a =.

定义3.3.1 若一个算法通过把问题归约到带更小的输入的相同问题的实例,来解决原来的问题,则这个算法称为递归的.

例3.3.1 把线性搜索算法表达成递归过程.

解 为了在搜索序列12,,...,n a a a 里搜索x ,在算法的第i 步比较x 与i a .若x 等于i a ,则i 是x 的位置.否则,对x 的搜索就归约到在少了一个元素的序列(即序列1,...,i n a a +)里的搜索.现在给出递归过程.

设(,,)search i j x 是在序列1,,...,i i j a a a +里搜索x 的过程.过程的输入包括三元组(1,,)n x .若剩余序列的第一项是x ,

或者若序列只有一项并且它不是x ,则过程在这一步终止.若x 不是这一项而且存在其他的项,则执行同样的过程,但是搜索序列减少一项,它是通过删除搜索序列的第一项而获得的.

递归顺序搜索算法 procedure search (,,)i j x if i a x = then Location:=i else if i j = then location:=0 else

search (1,,)i j x + 3.3.2 递归与迭代

递归定义把在正整数处的函数值表达成在更小的整数处的函数值.这意味着可以设计递归算法来求出递归地定义的函数在正整数处的值.

例3.3.2 下面给出阶乘的递归算法. 阶乘的递归过程

procedure factorial(n :正整数) if 1n = then factorial(n ):=1

else

factorial(n ):=n *factorial(1n -)

存在另外一种方式,从阶乘函数的递归定义求它在整数处的值.代替连续地把计算归纳到在更小的整数处来求函数的值,可以从在1处的函数值开始,连续地应用递归定义来求出在更大的整数处的函数值.这样的过程称为迭代.换句话说,为了用迭代过程求出!n ,从1(即在1处的阶乘函数值)开始,连续地乘以每个小于或等于n 的正整数.

对递归地定义的序列求值的迭代方法,比起使用递归的过程来,常常要求较少量的计算机(除非使用专门的递归机器).用求第n 个斐波那契数的迭代的递归过程来说这一点.首先给出递归过程.

斐波那契数的递归算法

procedure fibonacci(n :非负整数) if 0n =then fibonacci(0):=0 else if 1n =then fibonacci(1):=1

else fibonacci(n ):= fibonacci(1n -)+fibonacci(2n -)

当使用递归算法求n f 时,首先把n f 表示成12n n f f --+.然后把这两个斐波那契数都换成两

个前面的斐波那契数之和.当0f 或1f 出现时,就直接换成它的值.

注意,在递归的每个阶段,直到获得1f 或0f 为止,需要求值的斐波那契数的个数都一直翻倍.例如,当使用这个递归算法求出4f 时,就必须完成图五里树形图所说明

的全部计算机.这个树包括用4f 标记的根,以及从根到用 图五

两个斐波那契数3f 和2f 标记的顶点的分支,它们出现在4f 的计算的归约里.每个后续的

归约都产生树里的两个分支.当遇到0f 和1f 时,这种分支结束.

现在考虑用下面的迭代过程来求出n f 所需要的计算量.

计算斐波那契数的迭代算法

procedure iterative fibonacci(n :非负整数) if 0n = then y :=0 else begin x :=0 y :=1

for i :=1 to 1n - begin

z :=x y + x :=y y :=z end

end

{y 是第n 个斐波那契数}

这个过程把x 初始化成00f =,把y 初始化成11f =.当经过循环时,把x 和y 之和赋给辅助变量z .然后把x 赋成y 的值,而把y 赋成辅助变量z 的值.因此,在经过第一次循环之后得出x 等于1f 而y 等于012f f f +=.另外,在经过1n -次循环之后x 等于1n f -而且y 等于n f .当1n >时,用这个迭代方法求出n f 仅仅使用了1n -次加法.因此,这个算法比递归算法需要少得多的计算.

参考文献

[1] 华罗庚. 数学归纳法[M].北京:科学出版社,2002.

[2] 屈婉玲. 离散数学[M].北京:清华大学出版社,2005.

[3] 邓辉文. 离散数学[M].北京:清华大学出版社,2006.

[4] 邵学才. 离散数学[M].北京:清华大学出版社,2006.

[5] 魏献祝. 高等代数[M].上海:华东师范大学出版社,1990.

[6] 霍元极. 高等代数[M].北京:北京师范大学出版社,1990.

[7] 多西. 离散数学:第4版[M].北京:清华大学出版社,2005.

[8] 左孝凌. 离散数学[M].上海:上海科学技术文献出版社,1982.

[9] 约翰索鲍. 离散数学:第5版[M].北京:人民邮电出版社, 2003.

[10]费尔,克朗. 离散数学:双语版[M].北京:清华大学出版社,2005.

[11] Kenneth H.Rosen. 离散数学及其应用:原书第4版[M].北京:机械工业出版社,

2002.

[12] 科尔曼,巴斯比,罗斯. 离散数学结构:第5版翻译版[M].北京:高等教育出版

社,2005.

[13] Susanna. Discrete Mathematics with Applications:第3版[M].北京:高等

教育出版社,2005.

[14] J. R. Monk. Introduction to Set Theory[M].NewYork:McGrawHill,1969.

[15] E. Mendelson. Introduction to Mathematical Logic [M].New York:Van Nostrand

Reinhold, 1964.

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

谈谈数学归纳法 本科论文

本科生毕业论文(设计)册 作者姓名: 指导教师: 所在学部:信息工程学部 专业:数学与应用数学 班级(届):2014届2班 二〇一四年五月十日

学位论文原创性声明 本人所提交的学位论文《谈谈数学归纳法》,是在导师的指导下,独立进行研究工作所取得的原创性成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。 本声明的法律后果由本人承担。 论文作者(签名):指导教师确认(签名): 年月日年月日 学位论文版权使用授权书 本学位论文作者完全了解河北师范大学汇华学院有权保留并向国家有关部门或机构送交学位论文的复印件和磁盘,允许论文被查阅和借阅。本人授权河北师范大学汇华学院可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存、汇编学位论文。 (保密的学位论文在年解密后适用本授权书) 论文作者(签名):指导教师(签名): 年月日年月日

河北师范大学汇华学院本科毕业论文(设计)任务书 编号:2014230302099 学部:信息工程学部专业:数学与应用数学班级: 2014届2班 学生姓名:学号: 2010511882 指导教师:张硕职称:副教授 1、论文(设计)研究目标及主要任务 通过对数学归纳法定义、理论依据、基本形式等深入的学习,灵活的运用数学归纳法,分析其易错点和解题技巧,并给出自己的建议与思考. 2、论文(设计)的主要内容 (1)数学归纳法的定义、数学归纳法的理论依据、数学归纳法的基本类型; (2)研究数学归纳法解决的常见题型; (3)剖析使用数学归纳法解决应用问题时易出现的错误和解题技巧; (4)数学归纳法的推广应用. 3、论文(设计)的基础条件及研究路线 基础条件:学校拥有大型图书馆和校园网,到学校图书馆查找资料或者上网检索收集大量相关的最新资料,在写作的过程中有指导老师的指导. 研究路线:通过对数学归纳法基本内容的学习研究,归纳总结其在解决问题中的应用方法,并从中分析出解题的误区和一些做题的技巧,提出自己的思考建议. 4、主要参考文献 [1]张莉,贺贤孝.数学归纳法的历史[J].辽宁师范大学学报(自然科学版),1999, (2):102-106. [2]张顺燕.数学的思想、方法和应用[M].北京大学出版社,1997:37-38. [3]余元希等.初等代数研究(上册)[M].高等教育出版社,2010:8-11. [4]李明振、齐建华、王跃进等. 数学方法与解题研究[M].上海科技教育出版社, 2014:183-201 [5]吴志翔著.证明不等式[M].河北人民出版社,1982:56-59. 指导教师: 年月日教研室主任: 年月日

数学:2.3《数学归纳法》教案(新人教A版选修2-2) (2)

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一) 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +== ∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,41 4 a =,由此得到:*1,n a n N n =∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数? 过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83, (7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数 3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 二、讲授新课: 1. 教学数学归纳法概念: ① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般. 不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法. 完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳

数学归纳法以及其在数论中的应用开题报告

_ 成 绩 评 定 答辩小组评语: 论文首先介绍了五种数学归纳法,并给出相关的例题。紧接着又介绍了数学归纳法在初等数论中的应用且应注意的问题。该生参考了一定的文献资料,对其理解和应用一般,文章篇幅基本符合学院规定,内容基本完整,层次结构安排基本恰当,但论文选题一般且缺乏个人见解。论文选题符合专业培养目标,题目有一定难度,但工作量一般,基本达到了本科毕业论文的要求。 论文观点明确,文字基本通顺,答辩时表达基本清楚,回答问题基本正确,经答辩小组充分讨论,一致同意通过毕业论文答辩。 评定成绩(优秀、良好、中等、及格、不及格): 答辩小组组长签名: 年 月 日 分学位委员会意见: 分学位委员会主席签名: 年 月 日 洛阳师范学院 本科生毕业论文(设计)基本情况表 __数学科学学院__院(系) 开 题 报 告 姓 名 性别 学 号 专 业 年 级 孙** 女 110412016 数学与应用数学 2011级 题 目 数学归纳法及其在初等数论中的应用 课题来源 (2) 综 述 选题目的、国外研究现状、选题意义、需要解决的主要问题及可行性等。 选题目的:数学归纳法我们从中学就开始接触,但是有时对的原理并非特别清楚。在诸多证明方法中,数学归纳法那种机械又明快的结构,特立独行. 它的思想性价值很高,是从有限通向无限的第一条高速公路,有里程碑式的作用。特别是在初等数论中的应用。 国内外研究现状:在国内外大学教育中,数学归纳法是数学研究中必不可少的一部分,具有特别重要的地位,因此引起了大量学者对它的研究,其研究也是比较完整和全面的。 选题意义:虽然在课本上有许多例题应用数学归纳法,但是并没有详细介绍它的来源和原理,而且它在证明初等数论中的定理和各种各样的数学问题时,还有着非常广泛 的应用,这就是这篇论文产生的必要性。 需要解决的主要问题及可行性:大学课本上关于数学归纳法定理的证明不是十分完整。本文将会补充完整.说明一些定理在初等数论中成立,最后再将这些定理通过一些例题进行应用。 思 路 及 方 法 思路:首先叙述数学归纳法内容和它的定理的证明,在此基础上再用数学归纳法来 证明初等数论中的例题,最后说明应用数学归纳法在初等数论中应该注意的问题。 方法:本论文采用文献研究法,演绎推理,反证法等多种方法。 指导教师签名: 年 月 日 课题来源:(1)教师建议;(2)学生拟定;(3)企业和社会征集;(4)科研单位提供

1.5 归纳法原理与反归纳法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1.5 归纳法原理与反归纳法 1.5 归纳法原理与反归纳法数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的: 如果一个命题与自然数有关,命题对 n=1 正确;若假设此命题对 n-1 正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法: 命题对 n=1 正确,因而命题对 n=2 也正确,然后命题对 n=3 也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明.定理 1.19 如果某个命题T,它的叙述含有自然数,如果命题T对 n=1 是正确的,而且假定如果命题T对 n 的正确性就能推出命题T对 n+1 也正确,则命题T对一切自然数都成立.(第一数学归纳法)证明设M是使所讨论的例题T正确的自然数集合,则 M1.设Mn ,则命题T对 n 正确,这时命题对(2) Mn 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立.下面我们给出一个应用数学归纳法的命题.例1求证(1) nn=+1也正确,即6) 证明 (1)当 n=1 时,有 16) 112 () 11 (112=+++= 所以 n=1,公式正确. (2)假设当 k=n 时,公式正确,即那么当 k=n+1时,有 1 / 9

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学(本科)毕业论文题目汇总

数学毕业(学位)论文题目汇总 一、数学理论 1.试论导函数、原函数的一些性质。 2.有界闭区域中连续函数的性质讨论及一些推广。 3.数学中一些有用的不等式及推广。 4.函数的概念及推广。 5.构造函数证明问题的妙想。 6.对指数函数的认识。 7.泰勒公式及其在解题中的应用。 8.导数的作用。 9.Hilbert空间的一些性质。 10.Banach空间的一些性质。 11.线性空间上的距离的讨论及推广。 12.凸集与不动点定理。 13.Hilbert空间的同构。 14.最佳逼近问题。 15.线性函数的概念及推广。 16.一类椭圆型方程的解。 17.泛函分析中的不变子空间。 18.线性赋范空间上的模等价。 19.范数的概念及性质。 20.正交与正交基的概念。 21.压缩映像原理及其应用。 22.隐函数存在定理的再证明。 23.线性空间的等距同构。 24.列紧集的概念及相关推广。 25.Lebesgue控制收敛定理及应用。 26.Lebesgue积分与Riemann积分的关系。 27.重积分与累次积分的关系。 28.可积函数与连续函数的关系。 29.有界变差函数的概念及其相关概念。 30.绝对连续函数的性质。 31.Lebesgue测度的相关概念。 32.可测函数与连续函数的关系。 33.可测函数的定义及其性质。 34.分部积分公式的推广。 35.Fatou引理的重要作用。 36.不定积分的微分的计算。 37.绝对连续函数与微积分基本定理的关系。 38.Schwartz不等式及推广。 39.阶梯函数的概念及其作用。 40.Fourier级数及推广。

41.完全正交系的概念及其作用。 42.Banach空间与Hilbert空间的关系。 43.函数的各种收敛性及它们之间的关系。 44.数学分析中的构造法证题术, 45.用微积分理论证明不等式的方法 46.数学分析中的化归法 47.微积分与辩证法 48. 积分学中一类公式的证明 49.在上有界闭域的D中连续函数的性质 50.二次曲线中点弦的性质 51.用射影的观点指导中学初等几何内容 52.用近代公理分析中学几何中的公理系统 53.球上Hardy空间上的加权复合算子 54.多圆盘上不同Bergman空间上的加权复合复合算子 55.从加权Bergman空间到Bloch空间的加权复合算子 56.从加权Bergman空间到加权Bloch空间的加权复合算子 57.刻画I[x] ,K[x,y](进而R[x],R为Pid)中的素理想,其中I为整数环,K为域。 58.给出求方程X2+Y2=Z2 的所有整数解的三种不同方法。 59.对于每个n≥2,找出对称群Sn 在Mn(Z) 中的一个表示(模型),其中Mn(Z)为整数环Z上的n 阶矩阵环. 60.给出Euler定理(若(a,m)=1,则) 的三种不同证明。 61.试论矩阵环(代数)Mn(K)的基本结构性质,其中以为域,n≥2. 62.试述函数在数学中的地位和作用。 63.阐明函数理论在高等数学中的地位和作用。 64. 浅谈微分学(或积分学)在中学数学教学中的应用 65.论在数学教学中培养学生的创新精神。 66.初等几何变换在中学数学(代数、几何、三角)中的应用 67.从随机方法(概率方法)处理非随机数学问题看数学的统一性。 68.构造函数证题的妙想与思维方法的特点 69.数学知识的分类及其教学策略 70.数学知识的分类测量与评价 71.关于导函数性态的讨论与研究 72.泰勒公式及其应用 73.概率方法在讨论其它数学问题中的一些应用 74.随机变量函数的分布密度及其求法 75.用微积分理论证明不等式的方法 76.数学分析中的化归法 77.微积分与辩证法 78.刻画I[x] ,K[x,y](进而R[x],R为Pid)中的素理想,其中I为整数环,K为域。 79.给出求方程X2+Y2=Z2 的所有整数解的三种不同方法。 80.对于每个n≥2,找出对称群Sn 在Mn(Z) 中的一个表示(模型),其中Mn(Z)为整数环Z上的n 阶矩阵环. 81.给出Euler定理(若(a,m)=1,则) 的三种不同证明。 82.试论矩阵环(代数)Mn(K)的基本结构性质,其中以为域,n≥2.

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理(六种):【第二归纳法】【跳跃归纳法】【反向归纳法】 一行骨牌,如果都充分地靠近在一起(即留有适当间隔),那么只要推倒第一个,这一行骨牌都会倒塌;竖立的梯子,已知第一级属于可到达的范围,并且任何一级都能到达次一级,那么我们就可以确信能到达梯子的任何一级;一串鞭炮一经点燃,就会炸个不停,直到炸完为止;……,日常生活中这样的事例还多着呢! 数学归纳法原理设P(n)是与自然数n有关的命题.若 (I)命题P(1)成立; (Ⅱ)对所有的自然数k,若P(k)成立,推得P(k+1)也成立. 由(I)、(Ⅱ)可知命题P(n)对一切自然数n成立. 我们将在“最小数原理”一章中介绍它的证明, 运用数学归纳法原理证题的方法,是中学数学中的一个重要的方法,它是一种递推的方法,它与归纳法有着本质的不同.由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,用归纳法可以帮助我们从具体事例中发现一般规律,但是,仅根据一系列有限的特殊事例得出的一般结论的真假性还不能肯定,这就需要采用数学归纳法证明它的正确性. 一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明,证明的步骤为:(I)验证当n取第1个值no时,命题P(no)成立,这一步称为初始验证步. (Ⅱ)假设当n=k(k∈N,后≥no)时命题P(k)成立,由此推得命题P(k+1)成立.这一步称为归纳论证步. (Ⅲ)下结论,根据(I)、(Ⅱ)或由数学归纳法原理断定,对任何自然数(n≥no)命题 P(n)成立.这一步称为归纳断言步, 为了运用好数学归纳法原理,下面从有关注意事项与技巧及运用递推思想解题等几个方面作点介绍. 运用数学归纳法证题时应注意的事项与技巧三个步骤缺一不可 第一步是递推的基础,第二步是递推的依据,第三步是递推的过程与结论.三步缺一不可.数学归纳法的其他几种形式还有:第二数学归纳法;跳跃数学归纳法;倒推数学归纳法(反向归纳法);分段数学归纳法二元有限数学归纳法;双向数学归纳法;跷跷板数学归纳法;同步数学归纳法等。 1.5归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n=1正确;若假设此命题对n-1正确,就能推出命题对n也正确,则命题对所有自然数都正确.通俗的说法:命题对n=1正确,因而命题对n=2也正确,然后命题对n=3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而

相关文档
最新文档