位移胀差调试方法

位移胀差调试方法
位移胀差调试方法

epro MMS6000
System Installation & Startup Guide
位移/胀差安装指南
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

①. 轴向位移调试 轴向位移的调试主要有以下几步: 1) 传感器定零 在汽轮机转子推轴定位以后,根据拟定的测量范围(通常情况下为±2mm) ,把传感器调 整支架旋到合适的位置。安装传感器时,应使传感器头端面与被测面保持平行。测量前置器 的输出电压,将零点间隙电压定到-12V(如果测量范围不对称的话,需要根据传感器的灵敏 度,零点在量程中的位置,通过计算得出零点间隙电压,参见③. 胀差调试) ,锁紧传感器紧 固螺母(锁紧时要特别注意电压值,稍不注意就会跑掉) ,传感器就安装好了。 将百分表顶在传感器支架上合适的地方(要能随手轮调节前后移动) ,根据量程调节百分 表,定零。 2) 离线采集传感器线性 准备好记录纸,调节手轮,先往正方向旋转 0.5mm,记录下此时前置器的间隙电压值。 依次类推,记录下 1.0mm、1.5mm、2.0mm 时对应的电压值。 然后回零,检查一下零点间隙电压,差别应该不会超过±0.05V。往负方向旋转 0.5mm, 记录下-0.5mm、-1.0mm、-1.5mm、-2.0mm 时对应的电压值。 记录表格参见胀差调试。如有必要,可以采集更多的点,比如间隔 0.2mm 或者 0.25mm。 3) 组态及线性化
用组态计算机连好模块,把刚才记录的位移和对应的电压值输入组态进行线性化。做好 以后,上传组态至模块。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

4) 测量值比对 与步骤 2 中的过程相同,此过程需要记录在实际位置,此时组态计算机中对应的显示值。 5) 报警和停机保护动作试验 旋转手轮,位移量达到在模块中设定的报警和危险定值时,相应的保护回路要有开关量 信号输出。在此过程中还可以作报警迟滞(下降触发,具体请参阅对应模块的用户手册)试 验,看是否与设定值相吻合(缺省值为满量程 5%,有时需要设置为 1%) 。 6) 检验 DCS 显示 模块有 4 ~ 20mA 电流和 0 ~ 10V 电压输出,DCS 应能实时显示位移量。若 DCS 不能正 常显示,先用万用表测量模块输出是否正常,若电流输出正常则检查 DCS 的接线;若模块输 出不正常,则应检查模块状态。 7) 固定支架 把万用表支好,调节手轮使间隙电压值显示为零点电压,然后慢慢锁紧固定支架的锁紧 螺母,不要一次锁死。在此过程中会发生电压的波动,再微调手轮,再慢慢锁紧螺母,直到 间隙电压与零点电压的差值不超过±0.05V。固定支架时一定要有耐心,绝对不能敷衍! 记录下定零后的间隙电压值和组态计算机中的显示值。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

②. 胀差调试 一般情况下与轴向位移调试的步骤相同,下面着重讲解反向和串联测量两个方面: A. 使用反向功能 在现场有时受安装位置的影响,传感器只能按照下图所示的位置安装,在这种情况下, 我们就需要用到 MMS6210 模块的反向功能。

意!
反向是指把整个量程颠倒,而不是简单地颠倒正负号!
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

对于 MMS6210 模块来说,反向功能在组态中的实现非常简单,如下图所示。只需要将 “Invert measuring range”后的复选框钩上即可,也就是图中圈住的地方。
下面我们以 PR6426 + CON021/916-120(12mm 量程)为例进行说明,详细讲解如何根据 量程来确定零点电压。这种方法在使用其他类型探头时,确定量程以及零点电压也同样适用。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

为了方便说明,我们设计了如下的表格: 物理量程, mm -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 标准电压,V -4.00 -5.33 -6.66 -8.00 -9.33 -10.66 -12.00 -13.33 -14.66 -16.00 -17.33 -18.66 -20.00 -4 -3 -2 -1 0 1 2 3 4 5 6 6 5 4 3 2 1 0 -1 -2 -3 -4 4 3 2 1 0 -1 -2 -3 -4 -5 -6 定义量程, mm 反向后量程,mm 正 确 错 误
从上表中我们可以十分清楚的看到,反向后的零点电压应该定在-13.33V。以此为基础, 在安装位置测得传感器的线性数据,在组态软件中设置线性化补偿,具体请参阅轴向位移调 试中描述。

意!
作线性化补偿时,要按照定义量程以及对应的电压来输入数据,反向功能由模 块自动实现。 在作测量值比对时,旋转手轮,探头靠近被测面为正向,反之则为负向。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

附件:记录表格 物理量程 mm -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 标准电压 V -4.00 -5.33 -6.66 -8.00 -9.33 -10.66 -12.00 -13.33 -14.66 -16.00 -17.33 -18.66 -20.00 -4 -3 -2 -1 0 1 2 3 4 5 6 6 5 4 3 2 1 0 -1 -2 -3 -4 定义量程 mm 反向后量程 mm 测量电压 V 显示值 mm
B. 使用串联测量 在使用 epro PR6426 传感器测量胀差时,最大量程只能达到 24mm,300MW 的机组基本 适用。但对于 600MW 机组的低压缸胀差来说,量程要求达到 40mm 甚至更高,这时候就需 要用到双探头串联测量了。如下图所示:
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

这种测量方式要求将两只传感器相对安装在同一测点的两侧,可以通过两个通道间的联 合计算将量程扩大到单只传感器的两倍。 在串联测量时,探头 1 要覆盖测量范围的负向部分(低端) ,探头 2 要覆盖测量范围的正 向部分(高端) 。反之亦然。

意!
串联测量时,如果探头位置靠得很近,就需要将两只前置器中的一只调整成不 同的工作频率,以避免它们之间相互产生干扰。 具体方法非常简单: 剪断前置器中的跳线 J1。此后必须重新校准前置器和传感 器的线性,具体步骤见前置器的说明。
其测量原理如下图所示:
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

以 20mm 量程的探头为例,在使用串联测量时,组态软件中需要作如下设置: i. 进入 MMS6910 组态软件以后,选择 File -> New,如下图所示:
在 Monitor type 下 拉 列 表 框 中 , 选 择 MMS6210 , 在 Monitor subtype 框 中 选 择 Tandem/Cone/Double cone。 ii. 在 Basis 标签中,Measuring mode 选择如图所示的图标,表示串联测量。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

iii.
通道设定
两个通道的设置除了 KKS 以及 Description 条目分别输入通道名称和描述外,其余设定 完全一致。 在通道设定标签(Channel1/2)中设定: ? ? ? ? 前置器的型号(CON-Type)为 CON021 -4/-20V; 传感器的型号(Sensor-Type)为 PR 6426; 灵敏度(Sensitivity)条目中输入 0.8V; 在测量范围起点/终点条目(Start/End of measuring range)内输入传感器的额定测量范
围 0/20 mm; ? ? 在参考点位移(Tare value displacement)要填入 0 mm; 在参考点电压条目(Tare value voltage)中必须填入与之对应的测量电压下限值-4 V。
如下图所示:
iv.
通道输出
在输出通道(Output channel)标签中可对联合通道的报警和危险值分别进行设定。 通道 1 和通道 2 各自输出一个与轴位移量成正比的 0…20mA/4…20mA 的特征值电流。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

两通道的报警输出和前面板上的报警指示灯也同时工作。 如果将测量范围(总量程)定义为 0 ~ X(例如 0 ~ 40mm),而测量范围的零点与总的 工作范围下限重合,此时要在参考点条目中输入 0 mm。 如果测量范围定义为-X ~ 0 ~ X(例如-10 ~ 0 ~ +30mm) ,此时要填入测量范围的零点和 总的工作范围下限之间的距离。该距离应大于或等于测量范围的负向部分。 我们把测量范围定义为-10 ~ +30mm,则在参考点(Reference point)条目中输入 10mm。 如有必要,同样可以选择反向测量(Invert measuring range) 。报警值和危险值根据实际情况 进行设定。具体设置如下图所示:
v.
线性化并固定探头位置
首先,安装并固定好探头-1,此时可以不用固定探头-2,根据下面的表格采集线性参数 并作线性化补偿,具体的操作参见前面的描述。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

物理量程 mm 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
标准电压 V -4.00 -4.8 -5.6 -6.4 -7.2 -8.0 -8.8 -9.6 -10.4 -11.2 -12.0 -12.8 -13.6 -14.4 -15.2 -16.0 -16.8 -17.6 -18.4 -19.2 -20.0
定义量程 mm -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
反向后量程 mm 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
测量电压 V -4.07
显示值 mm
-5.11
-6.76
-8.36
-9.73
-11.42
-13.06
-14.71
-16.20
-17.55
-18.83
我们在上表中填入了某次的实验数据,作为参考。此步骤完成以后,调节手轮,使探头 -1 的前置器输出电压为最大值,即 -18.83V。 然后, 将探头-2 大致固定在-20V 的位置, 根据下面的表格采集线性参数并作线性化补偿。 我们在表中填入了某次的实验数据,作为参考。此步骤完成以后,调节手轮,使探头-1 的前置器输出电压为最大值,即-18.83V,把支架固定牢固,并锁紧调节手轮。然后,调整探 头-2 的位置,使其前置器输出电压为最大值,即-19.02V,此时,固定好探头-2 的支架,并且 检查探头-1 的输出电压,不应有变化。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

物理量程 mm 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
标准电压 V -4.00 -4.8 -5.6 -6.4 -7.2 -8.0 -8.8 -9.6 -10.4 -11.2 -12.0 -12.8 -13.6 -14.4 -15.2 -16.0 -16.8 -17.6 -18.4 -19.2 -20.0
定义量程 mm 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
反向后量程 mm 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
测量电压 V -4.01
显示值 mm
-5.03
-6.67
-8.27
-9.64
-11.26
-12.93
-14.47
-16.29
-17.65
-19.02
接着,松开调节手轮,在安装位置,调节手轮在满量程范围内走一遍线性,用以比对组 态软件和 DCS 中的显示值。 最后,调节手轮,使探头-1 的前置器输出电压等于列表中定义量程对应的零点电压值, 即-11.42V,锁紧手轮和支架,此时,安装即告完成。
PDF created with pdfFactory Pro trial version https://www.360docs.net/doc/ac10574859.html,

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

汽轮机轴向位移和胀差

汽轮机轴向位移与胀差 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策 (1) 汽轮机的热膨胀和胀差 (2) 相關提問: (2) 1、轴向位移和胀差的概念 (3) 2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3) 使胀差向正值增大的主要因素简述如下: (3) 使胀差向负值增大的主要原因: (4) 正胀差 - 影响因素主要有: (4) 3、轴向位移和胀差的危害 (6) 4、机组启动时胀差变化的分析与控制 (6) 汽封供汽抽真空阶段。 (7) 暖机升速阶段。 (7) 定速和并列带负荷阶段。 (7) 汽轮机推力瓦温度的防控热转贴 (9) 1 润滑油系统异常........................................................... .. (9) 2 轴向位移增大 (9) 3 汽轮机单缸进汽 (10) 4 推力轴承损坏 (10) 5 任意调速汽门门头脱落 (10) 6 旁路系统误动作 (10) 7 结束语 (10) 汽轮机轴向位移与胀差 轴向位移增大原因及处理 一、汽轮机轴向位移增大的原因 1)负荷或蒸汽流量突变; 2)叶片严重结垢; 3)叶片断裂; 4)主、再热蒸汽温度和压力急剧下降; 5)轴封磨损严重,漏汽量增加; 6)发电机转子串动; 7)系统周波变化幅度大; 8)凝汽器真空下降; 9)汽轮机发生水冲击; 10)推力轴承磨损或断油。 二、汽轮机轴向位移增大的处理 1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

发变组差动保护测试的方法和步骤

发变组差动保护测试的方法和步骤 摘要:本文介绍了组发电机差动保护的基本配置方案。通过对差动速断保护和 比例差动保护的制动面积进行分析,测试了比率制动差动保护原理并对发电机差 动保护的简易型测试方法和步骤进行了讨论。 关键词:发变组;差动保护;发电机 引言随着我国电力工业的迅猛发展 ,发电机也时刻受到外界负荷的影响。为了保证供电 的可靠性和连续性,必须对电力发电机继电保护装置的性能和动作可靠性做出相应的严格设置。 1.发电机差动保护的原理与配置 发电机纵差动保护是发电机的主保护,它采集发电机定子绕组两端的电流。如图1所示:发电机中性点侧和发电机出口断路器的各安装了一组电流互感器,它的二次侧输出直接 连接到发电机的主保护装置。根据两侧的电流相量差和差动保护整定值来决定是否动作。在 正常情况下,中性侧电流和出口侧的电流是大小相等,方向相同,两侧的差动电流是零。当 相间短路故障发生时,两侧的电流互感器的短路电流均流向短路点。此时,两侧电流的方向 相反,所以差动电流将不再为零。 事实上,由于类型、特性等存在不同,两侧的电流互感器存在一些差异。在正常情况下,两侧的每相绕组一次侧电流是相同的,但二次侧电流也可能存在不平衡电流。因此,对差动 保护动作电流的整定值不能太小,以躲开不平衡电流。根据上面的整定方法,可能导致差动保 护不能动作,需要等待故障进一步发展后,保护才能动作。但到那个时候,发电机可能已经 造成了巨大的伤害。 第三部分的动作区域包含比率制动差动保护和差动速断保护,只要任一条件满足,保护将会 动作。 2.发电机微机保护的测试方法 测试分为比率制动差动保护和差动速断保护两部分分别测试,其完整的测试连接如图3 所示。整定定值为, 根据测试结果表1的连接,正确设置系统保护装置的参数,可以使比率制动差动保护和 差动速断保护正确动作。 3.简易型比率制动差动保护的测试方法和流程 对于中小机组来说,由于测试设备较为简单,可以使用固定制动电流,改变差动电流, 寻找差动保护动作的关键点来判断保护是否正确动作,即为简易型保护测试方法。 (1)保护测试接线如图3所示,IA和IB是保护测试仪连接保护装置的差动保护电流输入,并根据正确的极性分别设定IA和IB的相角。 (2)向保护测试仪输入IA=1.5A,IB=0.5A,IA和IB的相角根据极性来设定。在保护测试 仪中设置IA、IB的电流步长为0.01A。在测试过程中使用手动功能增加/减少电流,使制动电 流不变,可以实现锁定制动电流Ir为2.0A如图4所示。然后逐渐增加差动电流Id,找到并 验证差动保护制动特性的当前值。 图4 比率制动差动保护的动作特性 采用手动调整电流的测试方法,首先用手动逐步减小测试电流,使IA=1.3A,IB=0.7A,然后将测试电流加入保护装置。此时Ir=2.0A,Id=0.6A,而且Id>Id0,但根据比率制动特性,保 护装置应可靠的不动作。当采用手动调整逐渐增加电流IA,沿垂线找到相应的差动保护电流。观察交流采样结果和差动保护电流、制动电流的计算值,记录当前保护的动作值。根据灵敏 度要求,当差动电流为整定值的95%时,保护装置应可靠的没有不动作。 根据上述方法进行实际测试,采用博电PW30保护测试仪对差动保护测试,试验结果如 表2所示。

第06章 汽轮机轴向位移与胀差测量装置

第六章汽轮机轴向位移及胀差测量保护装置 一、JZX-3A型轴向位移和JDX-3A型相对膨胀装置 我厂1、3、4号机均采用JZX-3A型轴向位移测量保护装置和JDX-3A型相对膨胀测量装置,它们的结构、原理、使用方法完全一样,只是量程不同。轴向位移量程±2毫米,胀差量程±5毫米。它们具有共同的特点:设计合理,结构紧凑;性能稳定,线性度好;功能齐全,维修方便。 1检修项目与质量要求 1.1发讯器支架与测量盘检查 检查汽轮机上安装发讯器的支架与测量盘,该支架应安装牢靠,机械连接部件的可动部分,应灵活无卡涩,无晃动;弹簧张力恰当,回位正确;测量盘表面应光滑无损伤,损伤严重时应进行修补,否则,在低转速时,示值将摆动。 1.2发讯器部分 1.2.1发讯器的铁芯端面应平整无损,固定螺丝、销钉、防松垫等应齐全牢固,引线及保护金属软管应完整无损,不应与机械转动部分接触磨擦。 1.2.2测量发讯器各组线圈电阻值,应符合规定值。 1.2.3用500V绝缘表测量各组线圈间及对外壳的绝缘电阻,应不小于10MΩ(注意:测量时,必须拨下装置内的插头,防

止高压损伤电子元件)。 1.2.4发讯器上的标志牌应正确清楚,固定牢靠。 1.3 电源部分 1.3.1电源部分内外应清洁,各引线螺丝、固定螺丝、插接件等应齐全无松动。线头标志清楚正确。电源指示灯正常,电压指示表指示正确。 1.3.2各组电压值正确。当电源电压在200~240V范围内变化时,其输出电压变化应不超过±1%。 1.3.3用500V绝缘表测量一、二次线圈对外壳的绝缘电阻,应不小于10MΩ。 1.4 调整装置 1.4.1装置内部应清洁,各零部件固定牢靠,元器件插(焊)接应牢固。 1.4.2各指示灯、开关、按钮应齐全、可靠,电位器应接触良好,无跳动现象。 1.5指示仪表校准 仪表示值误差和同量程误差不应超过仪表的允许误差。并且模拟表应无卡涩现象,数字表无示值跳动现象。 2 整套装置的校准与技术要求 整套装置的校准是将发讯器按要求装在模拟试验台上进行

CSC数字式母线保护装置调试方法

C S C-150数字式母线保护装置 调试方法 1. 概述 CSC-150母线保护装置是适用于750kV及以下电压等级,包括单母线、单母分段、双母线、双母分段及一个半断路器等多种接线型式的数字式成套母线保护装置(以下简称装置或产品)。装置最大接入单元为24个(包括线路、元件、母联及分段开关),主要功能包括虚拟电流比相突变量保护、常规比率制动式电流差动保护、断路器失灵保护、母联充电保护、母联失灵及死区保护、母联过流保护、母联非全相保护。装置由一个8U保护机箱和一个4U 辅助机箱构成,8U保护机箱共配置18个插件,包括8个交流插件、启动CPU插件、保护CPU插件、管理插件(MASTER)、开入插件1、开出插件1(含一块正板和一块副板)、开出插件2、开出插件3(含一块正板和一块副板)及电源插件;4U辅助机箱共配置7个插件,包括隔离刀闸辅助触点转接板(2块)、开入插件2、开入插件3、开入插件4、开入插件5、开入插件6,对需要模拟盘显示的用户还会配置一块模拟盘开关位置转接板。 2. 调试与检验项目 2.1 通电前检查 2.2 直流稳压电源通电检查 2.3 绝缘电阻及工频耐压试验 2.4 固化CPU软件 2.5 装置上电设置 a) 设置投入运行的CPU; b) 设置装置时钟; c) 检查软件版本号及CRC校验码; d) 整定系统定值; e) 设置保护功能压板; f) 整定保护定值。 g) 装置开入开出自检功能 2.6 打印功能检查 2.7 开入检查 2.8 开出传动试验

2.9 模拟量检查 a) 零漂调整与检查; b) 刻度调整与检查; c) 电流、电压线性度检查; d) 电流、电压回路极性检查; e) 模入量与测量量检查。 2.10 保护功能试验 a) 各种保护动作值检验和动作时间测量。 b) 整组试验。 2.11 直流电源断续试验 2.12 高温连续通电试验 2.13 定值安全值固化 3. 检验步骤及方法 3.1 通电前检查 a) 检查装置面板型号标示、灯光标示、背板端子贴图、端子号标示、装置铭牌标注完整、正确。 b) 对照装置的分板材料表,逐个检查各插件上元器件应与其分板材料表相一致,印刷电路板应无机械损伤或变形,所有元件的焊接质量良好,各电气元件应无相碰,断线或脱焊现象。 c) 各插件拔、插灵活,插件和插座之间定位良好,插入深度合适;大电流端子的短接片在插件插入时应能顶开。 d) 交流插件上的TA和TV规格应与要求的参数相符。 e) 检查各插件的跳线均应符合表1、表2和表3要求。 表1 CPU板跳线说明

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

汽机轴向位移和胀差传感器的零位锁定问题

汽机轴向位移和胀差传感器的零位锁定问题 摘要:胀差、轴位移是汽轮机监测保护系统最重要的两项技术参数,本文具有针对性的从理论和实际调试两方面阐述了如何正确地锁定本特利3300系统胀差、轴位移传感器的测量零位;就如何避免实际安装调试中常出现的问题,分析并提出了可靠的解决方法,从而为减少因传感器零位锁定不当造引言:在高参数,大容量汽轮发电机组中,轴位移和胀差是直接反映汽轮机动静间隙的两项最重要的技术参数,也是两项重要保护。目前,由于许多机组的轴差、位移监测系统传感器的零位锁定不当,使该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护,只能停机处理。因此,检修后机组的轴位移、胀差传感器的零位锁定是直接影响启机后,胀差、位移监测系统能否正确的反映汽轮机组的动静间隙,从而可靠投入保护的一项重要工作。 1 胀差、位移监测系统的测量原理 胀差、位移监测系统都是利用涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测仪表,从而实现监测和保护的目的。现以300MW机组中N300-16.7/538/538型汽轮机组为例,将美国本特利内华达公司生产的3300/46斜坡式胀差和3300/20轴位移监测系统的测量原理进行阐述(轴位移、胀差的测量一次元件均采用本特利7200系列84712-00-07-10-02涡流传感器)。 1.1 本特利3300/46斜坡式胀差监测系统的工作原理 在机组正常运行中,胀差传感器固定在缸体上,而传感器的被测金属表面铸造在转子上,因此,汽缸和转子受热膨胀的相对差值称为“胀差”(一般习惯将转子的膨胀量大于汽缸的膨胀量产生的差值做为“正胀差”,反之为“负胀差”)。该差值被涡流传感器A和B做它和转子上被测表面的相对位移利用其“输出电压与被测金属表面距离成正比”的关系,并利用转子被测表面加工的8°斜坡将传感器的测量范围进行放大,其换算关系如下: δ=L×Sin8°(式1-1) (δ:传感器与被测斜坡表面的垂直距离;L:胀差) 如果传感器的正常线性测量范围为4.00mm(即δ=4.00mm),则对应被测胀差范围L为: L=δ/Sin8°=400/Sin8°=28.74mm 由上式可知:胀差传感器利用被测表面8°的斜坡将其4.00mm的正常线性测量范围扩展为28.74mm的线性测量范围,从而满足了对0-20mm的实际胀差范围的测量。传感器将其与被测斜坡表面的垂直距离转换成直流电压信号送至前置放大器进行整形放大后,输出0-24VDC电压信号至3300/46斜坡式胀差监测器,分别将A、B传感器输入的信号进行叠加运算后进行胀差显示,并输出开关量信号送至保护回路时进行报警和跳闸保护。同时输出0-10VDC、1-5VDC 或4-20mA模拟量信号至记录仪。具体安装原理图如下:

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

低缸胀差和轴向位移偏大的原因分析和调整方法

低缸胀差和轴向位移偏大的原因分析和调整方法 运行中低缸胀差偏大或轴向位移偏大是常见的缺陷,由于产生原因不清楚,机组不得不降负荷运行,但有时候往往是虚惊一场,较多的是转子冷、热态在缸内的位置不清楚,元件调整和传动试验方法不对,本文以125MW机组为例,阐述它们之间的关系和调整方法,供其它类型机组的专业技术人员参考。 1.与动静间隙的关系 1.1低缸胀差与动静间隙的关系 低缸胀差传感器装在3号轴承盘车齿轮处,该轴承箱与低压缸没有直接连接,因此,3300表盘上所显示的低缸胀差值应是低压转子的绝对膨胀值。整根转子的膨胀死点在推力轴承处,低压外缸的膨胀死点在低压缸靠2号轴承前端,低压内缸相对低压外缸的死点在低压进汽中心线处,因此,在热态下,低压内缸除沿进汽中心线向两侧膨胀外,还与低压外缸一起向发电机侧膨胀。 假设以低压缸进汽中心线为参考点则有: 转子在该点的膨胀量为低缸差胀(A)的一半。 低压外缸在该点的膨胀值为低压外缸绝对膨胀值(B)的一半,B一般为1~1.2mm。 若取0.5~0.6mm的安全裕量。 设安装间隙为(X0),内缸膨胀量为C则膨胀后的轴向间隙(X)有: X=X0-A/2+B/2-C-0.6 正向: 低压缸动静碰摩最危险的部位是靠机头前的19、20、21级最小安装间隙为7mm。中心线距21级约600mm,平均温度按250℃计,低压内缸在21级处与转子反向膨胀约1.5mm,要保证动静部分不发生摩擦就必须使X>0。 X=7-1.5-A/2+1~1.2/2-0.6>0 A<10mm时,是安全的。 负向: 低压缸动静碰摩最危险的部位是靠电机侧的25、26、27级最小安装间隙为3+0.5mm,在26级处,由于内缸与转子的温差很小,相对胀差可忽略,因此有: X=-(3+0.5)-A/2+1~1.2/2-0.6 A<-5mm时,是安全的。 1.2轴向位移与动静间隙的关系 轴向位移在正常运行时是一定的,它的显示值与机组的推力间隙和热工测量系统调整时的初始值有关,机组运行后基本不变,只有在推力瓦有磨损时它才发生变化。推力间隙一般控制在0.35~0.45mm之间,机组检修过程中调整动静间隙都是将推力盘分别向前、后推足后进行调整的,所以,正常运行时,推力间隙所对应的轴向位移,对机组的动静间隙是没有影响的,它对胀差的影响较小。 事故状态下,推力轴承磨损后,轴向位移将发生较大的变化,推力瓦乌金厚度为1.5mm 左右,轴向位跳机值为+(-)1.2mm,考虑到极端情况下,此时的胀差也到跳机值,低缸胀差的保护定值为+7.5、-1.5因此有:

轴向位移

轴向位移 1什么是轴向位移?轴向位移变化有什么危害? 答:气压机与汽轮机在运转中,转子沿着主轴方向的串动称为轴向位移。 机组的轴向位移应保持在允许范围内,一般为0.8~1.0mm,超过这个数值就会引起动静部分发生摩擦碰撞,发生严重损坏事故,如轴弯曲,隔板和叶轮碎裂,汽轮机大批叶片折断等。转子轴向位移(也被成为窜轴)这一指标主要是用以监督推力承轴的工作状况。 汽轮机运行中,汽流在其通道中流动时所产生的轴向推力是由推力承轴来承担的,并由它来保持转子和汽缸的相对轴向位置。不同负荷下轴向推力的大小是不同的,推力承轴在受压时产生的弹性变形也相应变化,所以运行中应该将位移数值和准值作比较,借以查明机组运行是否正常。 作用在汽轮机转子的轴向推力,是由推力承轴来承受的,推力承轴承受转子的轴向推力并维持汽轮机通流部分正常的动静轴向间隙。如果显然,轴向推力的变化将影响推力承轴工况的变化,进而会影响到汽轮机动静轴向间隙。从汽轮机安全运行的角度看来,动静轴向间隙是不允许由过大的变化的,所以通常均在推力承轴部位装设汽轮机转子轴向位移监测装置,以保证汽轮机组的安全工作。 推力承轴,包括承轴座架、瓦架、油膜,并非绝对刚性,也就是说在轴向推力用下会产生一定程度的弹性位移。如果汽轮机轴向推力过大,超过了推力承轴允许的负载限度,则会导致推力承轴的损坏,较常见到的就是推力瓦磨损和烧毁,此时推力承轴将不能保持机组动静之间的正常轴向间隙,从而将导致动静碰磨,严重时还会造成更大的设备损坏事故。而在机组运行中,轴向推力增大的因素常常有: (1)负载增加,则主蒸汽流量增大,各级整齐压差随之增大,使机组轴向推力增大。抽气供热式或背压式机组的最大轴向推力可能发生在某一中间负荷,因为机组除了电负荷增加外,还有供热负荷增加的影响因素。 (2)主蒸汽参数降低,各级的反动度都将增大,使机组轴向推力增大。 (3)隔板气封磨损,漏气量增加,使级间压差增大。 (4)机组通流部分因蒸汽品质不佳而结垢时,相应级的叶片和叶轮前后压差将增大,使机组的轴向推力增加。 (5)发生水冲击事故时,机组的轴向推力将明显增大。 由于机组在正常工况下运行时,作用在汽轮机转子上的轴向推力就很大,如果再发生以上几种异常情况,轴向推力将会更大,引起推力瓦块温度升高,严重时会使推力瓦块融化。 从上述分析可知,轴向位移可以较直观反映出运行中机组轴向推力的变化。同时还可看到,轴向推力的大小将影响到推力承轴工况的变化,也就是说提倡者工况的变化可在一定程度反映出轴向推力的变化,这一点已为运行实践所证实,例如轴向推力增大时,推力瓦温度将升高,推力承轴回油温度也将升高。近来一些机组还装设了推力瓦油膜压力表。实践表明,用推力瓦油膜压力表来监视轴向推力的变化,反映很灵敏。当然用推力瓦温、推力承轴回油温度或推力瓦油膜压力都不能直接反映出轴向推力的绝对值,但都可在一定限度内反映轴向推力变化的幅度。应该指出:推力承轴回油温度对轴向推力变化的反映比较迟缓,已经由不少慈乌金已磨损或开始熔化,但回油温度仍无明显变化的实例,所以我们认为应选择推力瓦温和油膜压力作为轴向推力和轴向位移的主要辅助监视表计。一些机组推力瓦片未装热电阻测温装置,这是不够安全的,应该创造条件加装。目前大功率机组推力承轴不仅每一推力瓦片均装设热电阻,甚至非工作瓦片也装设有测温装置。

保护装置实用调试技巧

RCS-978主变保护装置调试方法 一、装置铭牌对数: 装置型号:RCS-978 版本号:1.10 CPU 校验码:F1565E26 管理序号:SUBQ 00090844 二、装置调试技巧: 变压器参数计算: 项目 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 变压器全容量e S 180MV A 电压等级e U 220kV 115kV 10.5kV 接线方式 Y 0 Y 0 Δ-11 各侧TA 变比TA n 1200A/5A 1250A/5A 3000A/5A 变压器一次额定电流 472A 904A 9897A 试验项目 一、 纵差保护定值检验 1、差动速断定值校验 2、差动启动值校验 3、比率制动特性校验 4、二次谐波制动特性校验 计算数值:各侧额定 电流 计算公式:nTA Un S Ie **3 其中:S 为容量,Un 为各侧额定电压,nTA 为各侧额定电流 计算数据:I 1e =180*103/(1.732*220*240)=1.96A I 2e =180*103/(1.732*115*250)=3.61A I 3e =180*103/(1.732*10.5*600)=16.5A 各侧平衡 系数k 高压侧(I 侧) 中压侧(II 侧) 低压侧(III 侧) 4.000 2.177 0.476 试验项目一 差动速断定值校验 整定定值 (举例) 差动速断电流定值:5Ie , 试验条件 1. 硬压板设置:投入主保护压板 1LP2、退出其他功能压板 2. 软压板设置:投入主保护软压板 3. 控制字设置:“差动速断”置“1” 计算方法 计算公式:I=m*I zd 注:m 为系数 计算数值: 单相校验法: 高压侧Izd=5I 1e =5*1.96*1.5=14.7A

轴向位移

轴向位移又叫串轴,就是沿着轴的方向上的位移。总位移可能不在这一个轴线上,我们可以将位移按平行、垂直轴两个方向正交分解,在平行轴方向上的位移就是轴向位移。轴向位移反映的是汽轮机转动部分和静止部分的相对位置,轴向位移变化,也是静子和转子轴向相对位置发生了变化。全冷状态下一般以转子推力盘紧贴推力瓦为零位。向发电机为正,反之为负,汽轮机转子沿轴向向后移动的距离就叫轴向位移。 影响轴向位移的因素 1).负荷变化. 2).叶片结垢严重. 3).汽温变化. 4).蒸汽流量变化. 5).高压轴封漏汽大,影响轴承座温度的升高. 6).频率变化. 7).运行中叶片断落. 8).水冲击. 9).推力轴瓦磨损或损坏. 10).抽汽停用,轴向推力变化. 11).发电机转子窜动. 12).高压汽封疏汽压调节变化. 13).真空变化. 14).电气式轴位移表受频率,电压的变化影响. 15).液压式轴位移表受主油泵出口油压,油温变化等影响. 轴向位移大如何消除 如果是机组运行中轴向位移偏大,那就降负荷,这样就能减少轴向位移。 机组停机后应该用千斤顶检查转子产生轴向位移的原因,比如推力瓦块的推力间隙是否过大,轴承是否定位不良,找到原因并消除。还有就是检查轴向位移的测量回路是否存在问题。 ?汽轮机轴向位移-零点定位到底是在推力盘靠在工作瓦上的时候还是靠在非工作瓦上的时候来确定的,还是两边都行?定完位后还要给推回中间位置吗? 1.是平衡盘靠在推力瓦工作面上,因为汽轮机正常运行时,转子就在这个位置上。 2.我们厂轴向位移定零位是推力盘紧靠工作瓦块自然回松后作为基准点。 3.实际工作中,转子轴向位移零位定位可以有三种方案:①汽轮机转子推力盘贴死推力瓦工作面的状态下定位;②推力盘贴死推力瓦非工作面的状态下定位; ③推力盘处于推力轴承工作瓦与非工作瓦之间,不贴死任何一面的情况下定位。汽轮机转子轴向位移的保护值一般为正、负向各1.0毫米,而推力轴承的推力总间隙一般只有0.25至0.38左右,因此,推力盘处在什么状态下定轴向零位,对汽轮机轴位移的影响不大。另外,汽轮机的差胀最大有十几个毫米,更不介意轴

深圳南瑞PRSD差动保护调试说明

深圳南瑞PRS-D差动保护调试说明

————————————————————————————————作者:————————————————————————————————日期:

PRS-753D调试说明 说明:以下调试说明可能会和现场保护装置有少许出入,请以现场所配说明书为准。PRS-753D操作说明 1)装置正常运行时应将操作界面退出到最外面的菜单,否则装置显示器背光会一直点亮,缩短显示器使用寿命; 2)装置退出到最外层界面时,按“F2”键可复归已返回的动作时间,而上、下键可调节显示对比度。 3)进行保护调试前或投运前必须确定保护在投入状态,因为在调试状态装置会退出保护。 4)对于“光纤通信中断”、“本侧机与对侧机识别码不对应”动作信号装置判为装置异常,其动作返回后必须在“预设”菜单下——〉“保护功能”——〉“复归事件”— —〉“复归装置异常”下手动复归。 5)光纤差动保护联调时,本侧识别码与对侧识别码设置需相反,即本侧机的本侧识别码为“1”,对侧识别码设为“2”时,对侧机的本侧识别码需设为“2”,对侧识别 码设为’1”。 6)光纤插件背板上标识的“TX”口为光纤发信口,“RX”口为光纤收信口,在通道调好后若插上光纤后光纤插件背板上的红灯仍亮,侧将“TX”口与“RX”口的光纤 交换一下,若还不行则可用一根尾纤将两个光纤口环节,若其熄灭则可排除装置光 纤口故障。 7)光纤通道正常和识别码设置后,可以开始两侧联调,在对侧将电流、电压后,本侧可看交流量是否正确,在“查看”——〉“交流采样”中可以看到nIa、nIb、nIc即 为对侧电流,nUa、nUb、nUc对侧三相电压。两侧进行差动保护联调时,若在一 侧加电流,要两侧保护动作则需将另一侧的投退型定值中“弱电源侧”投入,这 样两侧就能同时动作。 其他操作详见说明书。 PRS-753D保护逻辑调试大纲 以下定值以5A系统为例。1A系统相应的电流定值需除以5。 数值型定值中线路全长设为100km,线路正序阻抗二次值=10Ω、线路正序阻抗角度=80°、线路零序阻抗二次值=30Ω、线路零序阻抗角度定值)=70°;启动元件中电流突变量启动定=1A、零序阻抗补偿系数=0.67、电流突变量启动定值=1A、零序电流启动定值=1A。对侧TA

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

汽轮机轴向位移与胀差的分析与控制

汽轮机轴向位移与胀差的分析与控制 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策.......................................................................... 1汽轮机的热膨胀和胀差............................................................................................................. 2相關提問: .......................................................................................................................... 21、轴向位移和胀差的概念................................................................................................ 32、轴向位移和胀差产生的原因(影响机组胀差的因素)............................................ 3使胀差向正值增大的主要因素简述如下: .............................................................. 3使胀差向负值增大的主要原因: .............................................................................. 4正胀差-影响因素主要有:.................................................................................... 43、轴向位移和胀差的危害................................................................................................ 64、机组启动时胀差变化的分析与控制............................................................................ 61、汽封供汽抽真空阶段。........................................................................................

母线差动保护调试方法

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值0.5,大差比例低值0.3,小差比例高值0.6,小差比例低值0.5,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,在差流比率制动动作满足条件下,分别验证保护Ⅰ母的电压闭锁中相电压(40.4V),负序电压(4V),零序电压定值(6V),正常电压,相应母线差动不出口,复合电压闭锁任一条件开放,差动出口。对于Ⅱ母故障,Ⅱ母单元加入故障电流,正常电压,逐项验证Ⅱ母复压开放。 3、CT断线闭锁差动,默认投入,闭锁三相,在Ⅰ母(或Ⅱ母)上任一单元A相加电流至CT断线闭锁定值,延时5S发“CT断线闭锁”事件,CT断线信号灯亮及信号接点闭合,此时另选一单元,A相加故障电流至差动动作值,此时差动不出口,B相故障电流满足差动条件,差动不出口,C相加故障电流满足差动

汽轮机胀差轴向位移的产生原因及其防控措施

汽轮机胀差,轴向位移的产生原因及其防控措施1轴向位移和胀差的概念 轴位移指的是轴的位移量,而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 根据汽缸分类又可分为高差、中差、低I差、低II差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。 启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如果轴向位移大于汽轮机动静部分的最

小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 2轴向位移和胀差的影响因素 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。 4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。 7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。

相关文档
最新文档