2019-2020年教科版物理选修3-5讲义:第2章+4.玻尔的原子模型 能级及答案

2019-2020年教科版物理选修3-5讲义:第2章+4.玻尔的原子模型 能级及答案
2019-2020年教科版物理选修3-5讲义:第2章+4.玻尔的原子模型 能级及答案

4.玻尔的原子模型能级

[学习目标] 1.知道玻尔原子结构理论的主要内容.(重点)2.了解能级、跃迁、能量量子化及基态、激发态等概念.(重点) 3.会用玻尔的原子结构理论解释氢光谱.(重点、难点)4.了解玻尔原子结构理论的意义.

一、玻尔的原子结构理论

1.玻尔原子结构理论的主要内容

(1)电子围绕原子核运动的轨道不是任意的,而是一系列分立的、特定的轨道.当电子在这些轨道上运动时,原子是稳定的,不向外辐射能量,也不吸收能量,这些状态称为定态.

(2)原子处在定态的能量用E n表示,此时电子以r n的轨道半径绕核运动,n称为量子数.当原子中的电子从一定态跃迁到另一定态时,发射或吸收一个光子,光子的能量hν=E n-E m.

上式被称为玻尔频率条件,式中E n和E m分别是原子的高能级和低能级.这里的“跃迁”可以理解为电子从一种能量状态到另一个能量状态的瞬时过渡.2.轨道量子化和能级

(1)轨道量子化

在玻尔原子结构模型中,围绕原子核运动的电子轨道只能是某些分立值,所以电子绕核运动的轨道是量子化的.

(2)能级

不同状态的原子有不同的能量,因此原子的能量是不连续的,这些不同的能量值称为能级.

二、用玻尔的原子结构理论解释氢光谱玻尔原子结构理论的意义

1.氢原子的能级结构

(1)氢原子在不同能级上的能量和相应的电子轨道半径为E n E1

n2n=

1,2,3,…);r n =n 2r 1(n =1,2,3,…),式中E 1≈-13.6 eV ,r 1=0.53×10-10 m.

(2)能量最低的状态叫作基态,其他状态叫作激发态.

(3)氢原子的能级结构图(如图所示)

2.玻尔理论对氢光谱的解释

(1)解释巴尔末公式 ①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的波长计算公式为:

1λ=-E 1hc ? ????1m 2-1n 2, ②用实际数据代入计算,? ??

??-E 1hc 与巴尔末公式中的里德伯常量符合得很好. (2)解释氢原子光谱的不连续性 原子从较高能级向较低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.

1.正误判断(正确的打“√”,错误的打“×”)

(1)玻尔的原子结构理论认为电子的轨道是量子化的. (√)

(2)电子吸收某种频率的光子时会从较低的能量态跃迁到较高的能量态.

(√) (3)电子能吸收任意频率的光子发生跃迁.

(×) (4)氢原子能级的量子化是氢光谱不连续的成因.

(√) (5)玻尔理论能很好地解释氢光谱为什么是一些分立的亮线.

(√) (6)巴尔末公式是玻尔理论的一种特殊情况.

(√)

2.(多选)关于玻尔的原子模型,下述说法中正确的有( )

A .它彻底否定了经典的电磁理论

B.它发展了卢瑟福的核式结构学说

C.它完全抛弃了经典的电磁理论

D.它引入了普朗克的量子理论

BD[原子核式结构模型与经典电磁理论的种种矛盾说明,经典电磁理论已不适用于原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量子化的概念,提出了量子化的原子模型;但在玻尔的原子模型中仍然认为原子中有一很小的原子核,电子在核外绕核做匀速圆周运动,电子受到的库仑力提供向心力,并没有完全抛弃经典的电磁理论.]

3.一个氢原子从n=3能级跃迁到n=2能级,该氢原子()

A.放出光子,能量增加B.放出光子,能量减少

C.吸收光子,能量增加D.吸收光子,能量减少

B[氢原子从高能级向低能级跃迁时,将以辐射光子的形式向外放出能量,故选项B正确.]

1.

轨道半径只能是一些不连续的、某些分立的值,不可能出现介于这些轨道半径之间的其他值.

2.能量量子化

(1)电子在可能轨道上运动时,虽然是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.

(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量值,称为能级.量子数n越大,表示能级越高.

(3)原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能.

3.跃迁:原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,

可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫作电子的跃迁.

【例1】 氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV .求氢原子处于基态时:

(1)电子的动能;

(2)原子的电势能;

(3)用波长是多少的光照可使其电离?

(4)电子在核外旋转的等效电流(已知电子质量m =9.1×10-31 kg).

[思路点拨] (1)电子在各可能轨道上做匀速圆周运动时库仑力提供向心力.

(2)氢原子的能量等于电子的动能与原子电势能之和.

(3)电子跃迁到n =∞的轨道即为电离.

[解析] (1)设处于基态的氢原子核周围的电子速度为v 1,则ke 2r 21=m v 21r 1

所以电子动能E k1=12m v 21=ke 22r 1

=9×109×(1.6×10-19)2

2×0.53×10-10×1.6×10-19

eV ≈13.6 eV . (2)因为E 1=E k1+E p1,所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV .

(3)设用波长为λ的光照射可使氢原子电离hc λ=0-E 1

所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10

-19 m ≈91.4 nm. (4)等效的环形电流I =e T

由ke 2r 21=mr 1? ??

??2πT 2可得T =2πmr 31ke 2 所以I =e T =e 22πk mr 31 代入数据解得I =1.05×10-3 A.

[答案] (1)13.6 eV (2)-27.2 eV (3)91.4 nm (4)1.05×10-3 A

有关玻尔原子模型及定态问题的四个结论 在氢原子中,电子围绕原子核运动,如将电子的运动轨道看作半径为r 的圆周,则原子核与电子之间的库仑力作为电子做匀速圆周运动所需的向心力,那么由库

仑定律和牛顿第二定律,有ke 2r

2=m e v 2r ,则 (1)电子运动速度v =k e 2

m e r

; (2)电子的动能E k =12m e v 2=ke 22r

; (3)电子在半径为r 的轨道上所具有的电势能

E p =-ke 2

r (无限远处为零);

(4)原子的总能量就是电子的动能E k 和电势能E p 的代数和,即E =E k +E p =-ke 2

2r

.

1.(多选)由玻尔理论可知,下列说法中正确的是( )

A .电子绕核运动有加速度,就要向外辐射电磁波

B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量

C .原子内电子的可能轨道是连续的

D.原子内电子的轨道是不连续的

BD[按照经典物理学的观点,电子绕核运动有加速度,一定会向外辐射电磁波,很短时间内电子的能量就会消失,与客观事实相矛盾,由玻尔理论可知选项A、C错误,B正确;原子内电子轨道是不连续的,D正确.]

1.能级图的理解

如图所示为氢原子能级图.

(1)能级图中n称为量子数,E1代表氢原子的基态能量,即量子数n=1时对应的能量,其值为-13.6 eV.E n代表电子在第n个轨道上运动时的能量.

(2)作能级图时,能级横线间的距离和相应的能级差相对应,能级差越大,间隔越宽,所以量子数越大,能级越密,竖直线的箭头表示原子跃迁方向,长度表示辐射光子能量的大小,n=1是原子的基态,n→∞是原子电离时对应的状态.2.能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n的激发态时,可

能辐射出的光谱线条数为N=n(n-1)

2=C

2

n

.

3.光子的发射:原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.

hν=E m-E n(E m、E n是始末两个能级,且m>n)

能级差越大,放出光子的频率就越高.

4.使原子能级跃迁的两种粒子——光子与实物粒子

(1)原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n能级时能量有余,而激发到n+1时能量不足,则可激发到n能级的问题.

(2)原子还可吸收外来实物粒子(例如,自由电子)的能量而被激发,由于实物粒子的动能可部分地被原子吸收,所以只要入射粒子的能量大于两能级的能量差值(E=E n-E k),就可使原子发生能级跃迁.

【例2】(多选)用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线.调高电子的能量再次进行观测,发现光谱线的数目比原来增加了5条.用Δn表示两次观测中最高激发态的量子数n之差,E表示调高后电子的能量.根据氢原子的能级图(如图所示)可以判断,Δn和E的可能值为()

A.Δn=1,13.22 eV<E<13.32 eV

B.Δn=2,13.22 eV<E<13.32 eV

C.Δn=1,12.75 eV<E<13.06 eV

D.Δn=2,12.75 eV<E<13.06 eV

[思路点拨]氢原子在某一能级跃迁最多发射的光谱线数为C2n,其中n为量子数.

由题意可知,调高电子的能量再次进行观测时,比原来增加5条光谱线,根据此条件可列方程求解量子数.

AD[设原来光谱线数目C2m=m(m-1)

2

,调高电子的能量后,光谱线数目C2n=

n (n -1)2

.依题意有C 2n -C 2m =5,得两组解:n =4,m =2或n =6,m =5.故当Δn =2时,E 4-E 1

分析原子跃迁时需注意的几个问题

(1)注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.

(2)注意直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁.两种情况辐射或吸收光子的频率不同.

2.(多选)欲使处于基态的氢原子激发或电离,下列措施可行的是( )

A .用10.2 eV 的光子照射

B .用11 eV 的光子照射

C .用14 eV 的光子照射

D .用10 eV 的光子照射

AC [由氢原子的能级图可求得E 2-E 1=-3.40 eV -(-13.6) eV =10.2 eV ,即10.2 eV 是第二能级与基态之间的能量差,处于基态的氢原子吸收10.2 eV 的光子后将跃迁到第二能级态,可使处于基态的氢原子激发,A 对;E m -E 1≠11 eV ,即不满足玻尔理论关于跃迁的条件,B 错;要使处于基态的氢原子电离,照射光的能量须≥13.6 eV ,而14 eV >13.6 eV ,故14 eV 的光子可使基态的氢原子电离,C

对;E m-E1≠10 eV,既不满足玻尔理论关于跃迁的条件,也不能使氢原子电离,D错.]

1.(多选)玻尔在他提出的原子模型中所作的假设有()

A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量

B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的

C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子

D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率

ABC[A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能量跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.]

2.氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则()

A.吸收光子的能量为hν1+hν2

B.辐射光子的能量为hν1+hν2

C.吸收光子的能量为hν2-hν1

D.辐射光子的能量为hν2-hν1

D [由题意可知:

E m -E n =hν1,E k -E n =hν2.因为紫光的频率大于红光的频率,所以ν2>ν1,即k 能级的能量大于m 能级的能量,氢原子从能级k 跃迁到能级m 时向外辐射能量,其值为E k -E m =hν2-hν1,故只有D 项正确.]

3.(2019·全国卷Ⅰ)氢原子能级示意图如图所示.光子能量在1.63 eV ~3.10 eV 的光为可见光.要使处于基态(n =1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为( )

A .12.09 eV

B .10.20 eV

C .1.89 eV

D .1.51 eV

A [因为可见光光子的能量范围是1.63 eV ~3.10 eV ,所以氢原子至少要被激发到n =3能级,要给氢原子提供的能量最少为E =(-1.51+13.60)eV =12.09 eV ,即选项A 正确.]

4.氦原子被电离出一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E 1=-54.4 eV ,氦离子能级的示意图如图所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢气.

(1)氦离子发出的光子中,有几种能使氢原子发生光电效应?

(2)发生光电效应时,光电子的最大初动能是多少?

[解析] (1)一群氦离子跃迁时,一共发出

N =n (n -1)2

=6种光子

由频率条件hν=E m-E n知6种光子的能量分别是

由n=4到n=3hν1=E4-E3=2.6 eV

由n=4到n=2hν2=E4-E2=10.2 eV

由n=4到n=1hν3=E4-E1=51.0 eV

由n=3到n=2hν4=E3-E2=7.6 eV

由n=3到n=1hν5=E3-E1=48.4 eV

由n=2到n=1hν6=E2-E1=40.8 eV

由发生光电效应的条件知,hν3、hν5、hν6三种光子可使处于基态的氢原子发生光电效应.

(2)由光电效应方程E k=hν-W0知,能量为51.0 eV的光子使氢原子逸出的光电子初动能最大,将W0=13.6 eV代入E k=hν-W0,得E k=37.4 eV.

[答案](1)3种(2)37.4 eV

2015届高中物理原子物理讲义

2015届高中物理原子物理讲义 基础知识讲解 一.波粒二象性 1.能量量子化 2.光电效应 3.康普顿效应 4.粒子波动性 二.原子结构 1.电子的发现 2.原子核式结构 3.波尔氢原子模型 4.光谱

三.原子核 1.原子核组成 2.放射性元素的衰变 3.人工核反应 4.核力与结合能 5.核裂变与核聚变 习题精选 波粒二象性 1.红光和紫光相比() A. 红光光子的能量较大;在同一种介质中传播时红光的速度较大 B. 红光光子的能量较小;在同一种介质中传播时红光的速度较大 C. 红光光子的能量较大;在同一种介质中传播时红光的速度较小 D. 红光光子的能量较小;在同一种介质中传播时红光的速度较小 2.关于光电效应,有如下几种陈述,其中正确的是() A.金属电子的逸出功与入射光的频率成正比 B.光电流的强度与入射光的强度无关 C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大 D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应 3.用某种频率的紫外线分别照射铯、锌、铂三种金属,从铯中发射出的光电子的最大初动能是2.9eV,从锌中发射出的光电子的最大初动能是1.4eV,铂没有光电子射出,则对这三种金属逸出功大小的判断,下列结论正确的是() A.铯的逸出功最大,铂的逸出功最小 B.锌的逸出功最大,铂的逸出功最小C.铂的逸出功最大,铯的逸出功最小 D.铂的逸出功最大,锌的逸出功最小

4.当具有5.0eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初动能是1.5eV 。 为了使这种金属产生光电效应,入射光的最低能量为( ) A .1.5eV B .3.5eV C .5.0eV D . 6.5eV 5. 在下列各组所说的两个现象中,都表现出光具有粒子性的是( ) A .光的折射现象、偏振现象 B .光的反射现象、干涉现象 C .光的衍射现象、色散现象 D .光电效应现象、康普顿效应 6.关于光的波粒二象性的理解正确的是( ) A .大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B .光在传播时是波,而与物质相互作用时就转变成粒子 C .高频光是粒子,低频光是波 D .波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 7.人类对光的本性的认识经历了曲折的过程,下列关于光的本性的陈述符合科学规律或历史事实的是( ) A .牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的 B .光的双缝干涉实验显示了光具有波动性 C .麦克斯韦预言光是一种电磁波 D .光具有波粒二象性 8.一金属表面,爱绿光照射时发射出电子,受黄光照射时无电子发射.下列有色光照射到这金属表面上时会引起光电子发射的是( ) A .紫光 B .橙光 C .蓝光 D .红光 9.用绿光照射一光电管能产生光电效应,欲使光电子从阴极逸出时的最大初动能增大就应 A .改用红光照射 B .增大绿光的强度 C .增大光电管上的加速电压 D .改用紫光照射 10、频率为v 的光子,德布罗意波长为λ=h/p ,能量为E ,则光的速度为 ( ) A .E λ/h B .pE C .E/p D .h 2/Ep 11、2002 年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴晶俊发现了宇宙 X 射线源. X 射线是一种高频电磁波,若 X 射线在真空中的波长为λ,以 h 表示普朗克常量,c 表示真空中的光速,以 E 和 p 分别表示 X 射线每个光子的能量和动量,则( ) A.E=h λc ,p=0 B.E= h λc ,p= h λc 2 C. E= hc λ ,p=0, D.E= hc λ ,p= h λ 12.如下图所示,一验电器与锌板相连,在A 处用一紫外线灯照射锌板,关灯后,指针保持一定偏角。 (1)现用一带负电的金属小球与锌板接触,则验电器指针偏角 将 (填“增大”“减小”或“不变”)。 (2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指 针无偏转。 那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指 针 (填“有”或“无”)偏转。 (3)实验室用功率P =1 500 W 的紫外灯演示光电效应。 紫外线波长λ=253 nm , 阴极离光源距离d =0.5m ,原子半径取r =0.5×10-10 m ,则阴极表面每个原子每秒 钟接收到的光子数为 。 13.康普顿效应证实了光子不仅具有能量,也有动量,下图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向 运动,并且波长 (填“不变”“变小”或“变长”)。 14.某金属受到频率为v 1=7.0×1014 Hz 的紫光照射时,释放出来的光电子最大初动能是0.69 eV ,当受到频率为v 2=11.8×1014 Hz 的紫外线照射时,释放出来的光电子最大初动能是2.69

高中物理选修3-5原子核章节检测带答案

2017年01月19日阿甘的高中物理组卷 一.选择题(共30小题) 1.下列核反应方程中X代表质子的是() A. B. C. D. 2.太阳能是由于太阳内部高温高压条件下的聚变反应产生的,下列核反应属于聚变反应的是() A.→ B.→ C.→ D.→ 3.某原子核内有核子N个,其中包含质子n个,当核经过一次α衰变和一次β衰变后,它自身变成一个新的原子核,可知这个新的原子核内() A.有核子(n﹣3)个B.有核子数(N﹣4)个 C.有中子(N﹣n﹣1)个D.有质子(n﹣1) 4.下列说法正确的是() A.当大批氢原子从4能级跃迁到1能级时,氢原子会产生3种频率的光子

B.卢瑟福提出了原子的核式结构模型 C.β衰变所释放的电子是原子核外的电子电离形成的 D.对放射性物质施加压力,其半衰期将减少 5.居室装修中经常用到花岗岩、大理石等装饰材料.这些材料都不同程度地含有放射性元素.有些含有铀和钍的花岗岩会释放出放射性惰性气体氡,而氡发生衰变,放射出α、β、γ射线,很容易对人体造成伤害.下列的说法中正确的是() A.氡的半衰期为3.8天,若取4个氡原子核经过7.6天后就全部衰变完了 B.β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的 C.γ射线一般伴随α射线或β射线产生,在这三种射线中,γ射线的穿透能力最强,电离能力最弱 D.发生α衰变时,生成核与原来的原子核相比,中子数减少4 6.铝箔被α粒子轰击后发生了以下核反应:→.下列判断正确的是() A.n是质子B.n是电子 C.X是P的同位素 D.X是的同位素 7.下列说法正确的是() A.γ射线在电场和磁场中都不会发生偏转 B.β射线比α射线更容易使气体电离 C.太阳辐射的能量主要来源于重核裂变

高考物理通用版二轮复习讲义:第二部分 第一板块 第6讲 “活学巧记”应对点散面广的原子物理学

第6讲|“活学巧记”应对点散面广的原子物理学 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考法学法原子物理学部分知识点较多,需要学生强化对知识的理解和记忆。在高考试卷中,对原子物理学的考查一般是一个选择题,难度不大。考查热点主要有:①光电效应、波粒二象性;②原子结构、氢原子能级跃迁;③原子核的衰变规律、α、β、γ三种射线的特点及应用;④核反应方程的书写、质量亏损和核能的计算。由于本讲内容琐碎,考查点多,因此复习时应抓住主干知识,梳理出关键点,进行理解性记忆。 提能点(一)光电效应波粒二象性 ? ? ? ? ? ? ? ? 基础保分类考点 练练就能过关 [知能全通]———————————————————————————————— 1.爱因斯坦光电效应方程 E k=hν-W0 2.光电效应的两个图像 (1)光电子的最大初动能随入射光频率变化而变化的图像如图所示。 依据E k=hν-W0=hν-hν0可知:当E k=0时,ν=ν0,即图线在横轴上的截距在数值上等于金属的极限频率。 斜率k=h——普朗克常量。 图线在纵轴上的截距的绝对值等于金属的逸出功:W0=hν0。 (2)光电流随外电压变化的规律如图所示。 图中纵轴表示光电流,横轴表示阴、阳两极处所加外电压。 当U=-U′时,光电流恰好为零,此时能求出光电子的最大初动能,即E k =eU′,此电压称为遏止电压。 当U=U0时,光电流恰好达到饱和光电流,此时所有光电子都参与了导电,电流最大为I max。 3.处理光电效应问题的两条线索 (1)光强大→光子数目多→发射光电子数多→光电流大。 (2)光子频率高→光子能量大→产生光电子的最大初动能大。 4.光的波粒二象性 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

原子物理学试题汇编

临沂师范学院物理系 原子物理学期末考试试题(A卷) 一、论述题25分,每小题5分) 1.夫朗克—赫兹实验的原理和结论。 1.原理:加速电子与处于基态的汞原子发生碰撞非弹性碰撞,使汞原子吸收电子转移的的能量跃迁到第一激发态。处第一激发态的汞原子返回基态时,发射2500埃的紫外光。(3分) 结论:证明汞原子能量是量子化的,即证明玻尔理论是正确的。(2分) 2.泡利不相容原理。 2.在费密子体系中不允许有两个或两个以上的费密子处于同一个量子态。(5分) 3.X射线标识谱是如何产生的 3.内壳层电子填充空位产生标识谱。(5分) 4.什么是原子核的放射性衰变举例说明之。 4.原子核自发地的发射 射线的现象称放射性衰变,(4分)例子(略)(1分) 5.为什么原子核的裂变和聚变能放出巨大能量 5.因为中等质量数的原子核的核子的平均结合能约为大于轻核或重核的核子的平均结合能,故轻核聚变及重核裂变时能放出巨大能

量。(5分) 二、(20分)写出钠原子基态的电子组态和原子态。如果价电子被激发到4s态,问向基态跃迁时可能会发出几条光谱线试画出能级跃迁图,并说明之。 二、(20分)(1)钠原子基态的电子组态1s22s22p63s;原子基态为2S1/2。(5分) (2)价电子被激发到4s态向基态跃迁时可发出4条谱线。(6分)(3)依据跃迁选择定则1 0, j 1,± = ? ± ?= l(3分)能级跃迁图为(6分) 三、(15 耦合时,(1)写出所有 可能的光谱项符号;(2)若置于磁场中,这一电子组态一共分裂出多少个能级(3)这些能级之间有多少可能的偶极辐射跃迁 三、(15分)(1)可能的原子态为 1P 1,1D 2, 1F 3; 3P 2,1,0, 3D 3,2,1, 3F 4,3,2。 (7分) (2)一共条60条能级。(5分) (3)同一电子组态形成的原子态之间没有电偶极辐射跃迁。(3分)

原子物理学复习资料

原子物理学总复习指导 名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则 数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德

堡常量,hc,?c,玻尔磁子,精细结构常数,拉莫尔进动频率 著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应, 理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表 计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及

量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态 谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。 2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。 3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,

则加速时跨过的电势差称为电离电势。 4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势 5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

高中物理 9原子与原子核的结构课后作业 新人教版选修12

二、原子与原子核的结构 1.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是( ) A.α粒子的散射实验 B.对阴极射线的研究 C.天然放射现象的发现 D.质子的发现 解析:卢瑟福根据α粒子的散射实验的结果,提出原子的核式结构模型。故正确选项为A。答案:A 2. 如图为卢瑟福和他的助手做α粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,关于观察到的现象,下述说法中正确的是( ) A.相同时间内放在A位置时观察到屏上的闪光次数最多 B.相同时间内放在B位置时观察到屏上的闪光次数只比放在A位置时稍少些 C.放在C、D位置时屏上观察不到闪光 D.放在D位置时屏上仍能观察到一些闪光,但次数极少 解析:α粒子散射实验现象是判断各选项是否正确的依据。大多数α粒子几乎不发生偏转,少数α粒子发生了大角度偏转,极少数α粒子几乎返回去。A、B、D正确。 答案:ABD 3.一个原子核错误!未找到引用源。Bi,关于这个原子核,下列说法中正确的是( ) A.核外有83个电子,核内有127个质子 B.核外有83个电子,核内有83个质子 C.核内有83个质子、127个中子 D.核内有210个核子 解析:根据原子核的表示方法可知,这种原子核的电荷数为83,质量数为210。因为原子核的电荷数等于核内质子数,故该核内有83个质子。因为原子核的质量数等于核内质子数与中子数之和,即等于核内核子数,故该核核内有210个核子,其中有127个中子。 答案:BCD 4.质子、中子和氘核的质量分别为m1、m2、m3,真空中光速为c,当质子和中子结合成氘核时,放出的能量是( ) A.m3c2 B.(m1+m2)c2 C.(m3-m1-m2)c2 D.(m1+m2-m3)c2 解析:根据ΔE=Δmc2,质子和中子结合成氘核放出的能量是ΔE=(m1+m2-m3)c2,D项正确。 答案:D 5.下列对原子结构的认识中,错误的是( ) A.原子中绝大部分是空的,原子核很小 B.电子在核外空间绕核运动,向心力为库仑力 C.原子的全部正电荷都集中在原子核内

原子物理学期末自测题

1、原子半径的数量级是: A.10-10cm; B.10-8m C.10-10m D.10-13m 2、原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180° B. α粒子只偏差2°~3° C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 3、进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚 C.卢瑟福理论是错误的 D.小角散射时一次散射理论不成立 4、用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限.试问用质子束所得结果是用α粒子束所得结果的几倍? A.1/4 B.1/2 C.1 D.2 5、动能E =40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离 K 为(m): A.5.9 B.3.0 C.5.9╳10-12 D.5.9╳10-14 6、如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4 7,每10000 现有4个粒子被散射到角度大于5°的围.若金箔的厚度增加到4倍,那么被散 A. 16 B.8 C.4 D.2 8、90°和60°角方向上单位立体角的粒子数之比为: A. 9,, 分布,在散射物不变条件下则必须使: A B C D 10、氢原子光谱莱曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R

11、氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V;B.–13.6V和-10.2V;C.13.6V和3.4V;D.–13.6V和-3.4V 12 A.5.29×10-10m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m 电子的动能为1eV,其相应的德布罗意波长为1.22nm。 13、欲使处于激发态的氢原子发出H 线,则至少需提供多少能量(eV)? α A.13.6 B.12.09 C.10.2 D.3.4 14、用能量为12.7eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 15、按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 16、已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为: A. 17 A.-3.4eV B.+3.4eV C.+6.8eV D.-6.8eV +的第一轨道半径是: 18、根据玻尔理论可知,氦离子H e A. +处于第一激发态(n=2)时电子的轨道半径为: 19、一次电离的氦离子H e -10m-10-10-10m +离子中基态电子的电离能能是: 20、在H e A.27.2eV B.54.4eV C.19.77eV D.24.17eV 21、弗兰克—赫兹实验的结果表明: A电子自旋的存在B原子能量量子化C原子具有磁性D原子角动量量子化 22、为使电子的德布罗意假设波长为100nm,应加多大的加速电压: A.6V; B.24.4V;5V; D.15.1V 23、如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):

高中物理原子与原子核知识点总结选修3-5

高中物理原子与原子核知识点总结(选修3-5) 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助. 一波粒二象性 1光电效应的研究思路 (1)两条线索: 10 J·S h为普朗克常数 h=6.63×34 ν为光子频率 2.三个关系 (1)爱因斯坦光电效应方程E k=hν-W0。 (2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。 (3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。 3波粒二象性 波动性和粒子性的对立与统一 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

(3)光子说并未否定波动说,E =h ν=hc λ 中,ν(频率)和λ就是波的概念。 光速C=λν (4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。 3.物质波 (1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。 (2)物质波的波长:λ=h p =h mv ,h 是普朗克常量。 二 原子结构与原子核 (1)卢瑟福的核式结构模型 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。 (2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原

高中物理选修3-5课时作业5:18.4 波尔的原子模型

18.4 玻尔的原子模型 A 组(反馈练) 1.α根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为'E 的轨道,辐射出波长为λ的光,以h 表示普朗克常量,c 表示真空中的光速,则'E 等于( ) A .E h c λ - B .E h c λ + C .c E h λ - D .c E h λ + 2.用光子能量为E 的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为123123v v v v v v <<、、的三种光子,且。入射光束中光子的能量应是( ) A .3hv B .12()h v v + C .23()h v v + D .123()h v v v ++ 3.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是( ) A .电子绕核旋转的轨道半径增大 B .电子的动能减少 C .氢原子的电势能增大 D .氢原子的能级减小 4.氢原子的基态能量为1E ,下列四个能级图,正确代表氢原子的是( ) 5.若氢原子从能级A 跃迁到能级B 时,吸收频率为1v 的光子,若从能级A 跃迁到能级C 时,释放频率为2v 的光子。已知21v v >,而氢原子从能级C 跃迁到能级B 时,则( ) A .释放频率为21v v -的光子 B .释放频率为21v v +的光子 C .吸收频率为21v v -的光子 D .吸收频率为21v v +的光子 6.图为氢原子n=1、2、3、4的各个能级示意图。处于n=4能量状态的氢原子,当它向较低能级发生跃迁时,发出的光子能量可能为( ) A .2.55 eV B .13.6 eV C .12.75 eV D .0.85 eV

原子物理学期末试卷d

原子物理学D 卷 试题第1页(共3页) 原子物理学D 卷 试题第2页(共3页) 皖西学院 学年度第 学期期末考试试卷(D 卷) 系 专业 本科 级 原子物理学课程 一.填空题:本大题共9小题;每小题3分,共27分。 1. 在认识原子结构,建立原子的核式模型的进程中, 实验起了 重大作用。 2. 夫兰克-赫兹实验中用 碰撞原子,测定了使原子激发的“激发电势”,从而 证实了原子内部能量是 。 3. 线状光谱是 所发的,带状光谱是 所发的。 4. 碱金属原子光谱的精细结构是由于电子的 和 相互作用,导致碱 金属原子能级出现双层分裂(s 项除外)而引起的。 5.α 衰变的一般方程式为:α →X A Z 。放射性核素能发生α衰变的 必要条件为 。 6.原子中量子数l m l n ,,相同的最大电子数是 ;l n ,相同的最大电子数是 ; n 相同的最大电子数是 。 7.X 射线管发射的谱线由 和 两部分构成,它们产生的机制分别是: 和 。 8.二次电离的锂离子+ +Li 的第一玻尔半径,电离电势,第一激发电势和赖曼系第一条 谱线波长分别为: , , 和 。 9.泡利为解释β衰变中β粒子的 谱而提出了 假说,能谱的最大值对应于 的动量为零。 二.单项选择题:本大题共6小题;每小题3分,共18分。在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填在题后的括号内。 1. 两个电子的轨道角动量量子数分别为:31=l ,22=l ,则其总轨道角动量量子数可 取数值为下列哪一个? (A )0,1,2,3 (B )0,1,2,3,4,5 (C )1,2,3,4,5 (D )2,3,4,5 ( ) 2. 静止的Rb 22688发生α衰变后,α粒子和子核动量大小之比为多少? (A )111:2 (B )3:111 (C )2:111 (D )1:1 ( ) 3. 在原子物理和量子力学中,描述电子运动状态的量子数是:),,,(s l m m l n ,由此判 定下列状态中哪个状态是存在的? (A )(1,0,0,-1/2) (B )(3,1,2,1/2) (C )(1,1,0,1/2) (D )(3,4,1,-1/2) ( ) 4. 在核反应O n n O 15 8168)2,(中,反应能MeV Q 66.15-=,为使反应得以进行,入射粒 子的动能至少为多少? (A )15.99MeV (B )16.64MeV (C )18.88MeV (D )克服库仑势,进入靶核 ( ) 5. 钾原子的第十九个电子不是填在3d 壳层,而是填在4s 壳层,下面哪项是其原因? (A ) 为了不违反泡利不相容原理; (B ) 为了使原子处于最低能量状态; (C ) 因为两状态光谱项之间满足关系 );3()4(d T s T < (D ) 定性地说,3d 状态有轨道贯穿和极化效应,而4s 状态没有轨道贯穿和极化 效应。 ( ) 6. 基态原子态为23 D 的中性原子束,按史特恩-盖拉赫方法,通过不均匀横向磁场后分 裂成多少束? (A )2; (B )3; (C )5; (D )7。 ( )

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS ) §5-1 氦光谱和能级 氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念): 1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同. 2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变; 3)基态01 S 1与第一激发态13 S 2 间能量相差很大,为eV .7719;电离能也是所有元素中最大的,为eV .5824; 4)在三层结构那套能级中没有来自2 (1S)的能级. §5-2 电子组态和原子态 1.电子组态:原子中各电子状态的组合 描述一个电子的状态可用s l m m l n 、、、四个量子数. 考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述. 氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态. 对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态. 多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合. 由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态. 例如:氢原子处于基态时,电子处于01=、= l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有 3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子 组态为p s 222 . 在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态 可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用 价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、. 这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合 成总轨道角动量L 和总自旋角动量S ,再将L 和S 合成总角动量J .(S L -耦合对于较轻元素 的低激发态成立,适用性较广) 2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总 角动量1j 和2j ,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现) 对于多电子耦合的情况可记为:? ??==-==-J j j j l s l s l s j j J L S l l l s s s S L )())()((:),(),,)(,,(:323322113213211 3.S L -耦合的原子态 21l l L +=.L 的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:???=±=+=0 1,)1(21s s S S S S 原子的总角动量S L J +=,量子数S L S L S L J --++=,,1, 对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别 为: 1)0=S 时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态. 由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 2 1 ,2;21,12211= ===s l s l ,用

新课标人教版3-5选修三18.4《玻尔的原子模型》WORD教案2

普通高中课程标准实验教科书一物理(选修3- 5)[人教版] 第十八章原子结构 新课标要求 1 ?内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1用录像片或计算机模拟,演示a粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18. 4玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1课时 ★教学过程 (一)引入新课 复习提问: 1.a粒子散射实验的现象是什么? 2 ?原子核式结构学说的内容是什么? 3?卢瑟福原子核式结构学说与经典电磁理论的矛盾 电子绕核运动(有加速度) 辐射电磁波频率等于绕核运行的频率 电子沿螺旋线轨道落入原子核原子光谱应为连续光谱 (矛盾:实际上是不连续的亮线)教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1 ?玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原 子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n)跃迁到另一种定态(设 能量为E m)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即A = E m - E n (h为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核 (针对原子核式模型提

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

人教版物理选修3-5第十九章原子核同步导学案

第十九章原子核 19.1 原子核的组成 ★学习目标 (一)知识与技能 1.了解天然放射现象及其规律。 2.知道三种射线的本质,以及如何利用磁场区分它们。 3.知道原子核的组成,知道核子和同位素的概念。 (二)过程与方法 1.通过观察,思考,讨论,初步学会探究的方法。 2.通过对知识的理解,培养自学和归纳能力。 (三)情感、态度与价值观 1.树立正确的,严谨的科学研究态度。 2.树立辨证唯物主义的科学观和世界观。 ★学习重点:天然放射现象及其规律,原子核的组成。 ★学习难点:知道三种射线的本质,以及如何利用磁场区分它们。 ★课时安排:1 课时 ★课前导学: 1、原子的组成: 2、电子是如何发现的 3、α粒子散射实验的现象是 α粒子散射实验得到的结论是 4、玻尔理论的基本假设是 玻尔理论的基本假设揭示氢原子核外的电子是如何运动的 ★学习过程 1.原子核内部是什么结构?原子核是否可以再分?它是由什么微粒组成?用什么方法来研究原子核呢?

2.人类认识原子核的复杂结构和它的变化规律,是从开始的。① ② 3.天然放射现象 (1)放射性(radioactivity) 天然放射现象 放射性元素.(2)放射性不是少数几种元素才有的,研究发现, 4.射线到底是什么 把放射源放入由铅做成的容器中,射线只能从容器的小孔射出, 成为细细的一束。在射线经过的空间施加磁场,发现射线如图所示: 思考与讨论: ①你观察到了什么现象?为什么会有这样的现象? ②如果α射线,β射线都是带电粒子流的话,根据图判断,他们 分别带什么电荷。 ③如果不用磁场判断,还可以用什么方法判断三种射线的带电性 质? 学生分组讨论 请同学们阅读课文后填写表格: 射线种类组成速度贯穿本领电离作用 α射线 β射线 γ射线

高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习 1.(多选)关于玻尔的原子模型,下述说法中正确的有( ) A.它彻底否定了卢瑟福的核式结构学说 B.它发展了卢瑟福的核式结构学说 C.它完全抛弃了经典的电磁理论 D.它引入了普朗克的量子理论 解析:玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确;它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C错误,D正确. 答案:BD 2.(多选)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( ) A.核外电子受力变小 B.原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子 解析:由玻尔理论知,当电子由离核较远的轨道跃迁到离核较近的轨道上时,要放出能量,故要放出一定频率的光子;电子的轨道半径减小了,由库仑定律知它与原子核之间的库仑力增大了.故A、C错误,B、D正确. 答案:BD 3.(多选)如图所示给出了氢原子的6种可能的跃迁,则它们发出的光( ) A.a的波长最长 B.d的波长最长 C.f比d的能量大 D.a频率最小 解析:能级差越大,对应的光子的能量越大,频率越大,波长越小. 答案:ACD

4.(多选)根据玻尔理论,氢原子能级图如图所示,下列说法正确的是( ) A.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 B.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 C.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 D.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 解析:由于处在激发态的氢原子会自动向低能级跃迁,所以一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出C24=6种频率不同的光子,故A正确,B错误;一个原处于n=4能级的氢原子回到n=1的状态过程中,只能是4→3→2→1或4→2→1或4→1三种路径中的一种路径,可知跃迁次数最多的路径为4→3→2→1,最多放出3种频率不同的光子, 故C错误,D正确. 答案:AD 5.如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49 eV的金属钠.下列说法正确的是( ) A.这群氢原子能发出3种不同频率的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出6种不同频率的光,其中从n=3跃迁到n=1所发出的光频率最小C.这群氢原子发出不同频率的光,只有一种频率的光可使金属钠发生光电效应 D.金属钠表面发出的光电子的最大初动能为9.60 eV 解析:一群氢原子处于n=3的激发态,可能发出C23=3种不同频率的光子,n=3和n=2间能级差最小,所以从n=3跃迁到n=2发出的光子频率最低,根据玻尔理论hν=E2-E1=hc 可知,光的波长最长,选项A错误.因为n=3和n=1间能级差最大,所以氢原子从n=3跃λ 迁到n=1发出的光子频率最高.故B错误.当入射光频率大于金属钠的极限频率时,金属钠能

相关文档
最新文档