质粒提取原理和方法

质粒提取原理和方法
质粒提取原理和方法

质粒DNA提取的原理及方法

碱裂解法质粒DNA提取原理

质粒DNA提取主要包括以下几个方面:如何将细胞裂解释放质粒DNA,如何将质粒DNA和基因组DNA分离开来,如何去除RNA污染,如何去除蛋白质和其它杂质。

质粒提取方法中,最常用的方法是碱裂解法,它具有得率高,适用面广,快速,纯度高等特点。其原理是:

强碱性条件下,质粒DNA和基因组DNA同时从细胞中释放出来,并发生变性。在pH中性,并有高盐浓度存在的条件下,质粒DNA会迅速发生复性,仍为可溶性状态,染色体DNA之间交联形成不溶性网状结构,在去垢剂SDS作用下,染色体DNA与变性蛋白质和细胞碎片结合形成沉淀,通过离心去除沉淀后,再用酚氯仿抽提进一步纯化质粒DNA,用异丙醇或乙醇沉淀可将之纯化出来。

BIOMIGA公司质粒DNA纯化系列试剂盒,采用碱裂解法质粒提取原理,在高盐环境下,采用硅胶膜特异性的吸附质粒DNA,而蛋白质不被吸附,最后用低盐洗脱液将DNA从膜上洗脱下来,方法简单,快速,质量好,收获量高。

影响质粒提取的因素

影响质粒提取的因素有很多种,如质粒拷贝数,宿主菌株的种类,细菌的培养时间、培养基种类、培养条件等等。

质粒拷贝数

质粒DNA最终收获量取决于质粒的拷贝数和质粒的大小。BIOMIGA 公司质粒DNA提取系列试剂盒,操作步骤适用于高拷贝数质粒的纯化,对于低拷贝质粒纯化提取,应加大起始菌液量的体积,并且相应地增加各种缓冲液的用量。

下表给出一些常用质粒载体的拷贝数:

质粒种类

复制起点

拷贝数

1 mL菌液质粒DNA收获量(μg)

pSC101

pSC101

5

0.1-0.2

pACYC

P15A

10-12

0.4-0.6

pSuperCos

pMB1

10-20

0.4-1

pBR322

pMB1

15-20

0.6-1

pGEMR

Muted pMB1

300-400

6-7

pBluescriptR

ColE1

300-500

6-8

pUC

Muted pMB1

500-700

8-12

宿主菌株

宿主菌株的种类将会影响质粒的收获量。含内源核酸酶的宿主菌株,如JM101, JM110, HB101, TG1以及它们的衍生菌株,通常因为内源核酸酶的存在,或者在提取过程中释放出

来的核酸酶的作用下,将会显著影响最终收获量,或者纯化到的质粒容易降解,推荐客户将质粒转化至不含内源核酸酶的宿主菌株中,如Top10, DH5a进行质粒纯化。

如果从含内源核酸酶的宿主菌株中纯化质粒DNA,请用试剂盒附送的核酸酶去除溶液,去除核酸酶的污染。或选用HP系列试剂盒进行质粒的纯化。

下表给出一些常用的宿主菌株种类:

EndA- Strains of E. Coli

DH5α

DH1

DH21

JM106

JM109

SK2267

SRB

XLO

TOP10

DH10B

JM103

JM107

SK1590

MM294

Stbl2?

XL1-Blue

BJ5182

DH20

JM105

JM108

SK1592

Select96?

Stbl4?

XL10-Gold

EndA+ Strains of E. Coli

C600

JM110

RR1

ABLE? C

CJ236

KW251

P2392

BL21(DE3)

HB101

TG1

TB1

ABLE? K

DH12S?

LE392

PR700

BL21(DE3) pLysS

JM101

JM83

TKB1

HMS174

ES1301

M1061

Q358

BMH 71-18

All NM strains

菌液培养

BIOMIGA 公司质粒DNA提取系列试剂盒,标准操作适用于在LB培养基中培养12~16小时,OD600在2.0~3.0的菌液质粒DNA的提取。如果使用丰富培养基,如TB,2 x YT培养基,请保证OD600不超过3.0。菌液过量,将会影响最终的收获量和纯度。

培养方式

如果用于质粒小提,请从固体培养基平板上挑取新鲜单菌落,接种到加入筛选抗生素的培养基中,震荡培养12~16小时。

如果用于中提、大提或超大提,请按照以下方式制备菌液:

挑取单克隆,接种到1~5mL培养基中,进行初摇,然后按照1:1000的比例进行放大培养,培养瓶中培养基的体积最好不要超过培养瓶的1/4体积。

抗生素浓度的选择

对含有抗性的质粒载体,在进行筛选或培养时应加入相应的抗生素。

各种抗生素的工作浓度请参照下表:

抗生素

溶解性

保存条件

严紧型质粒

松弛型质粒

氨苄青霉素

50 mg/mL(溶于水)

-20℃

20 μg/mL

60 μg/mL

羧苄青霉素

50 mg/mL溶于水

-20℃

20 μg/mL

氯霉素

34 mg/mL溶于无水乙醇

-20℃

25 μg/mL

170 μg/mL

卡那霉素

10 mg/mL溶于水

-20℃

10 μg/mL

50 μg/mL

链霉素

10 mg/mL溶于水

-20℃

10 μg/mL

50 μg/mL

四环素

5 mg/mL溶于无水乙醇

-20℃

10 μg/mL

50 μg/mL

质粒质量鉴定

纯化到的质粒DNA一般可以通过以下三种方式进行质量鉴定。

琼脂糖凝胶电泳检测

理想条件下,经碱裂解法纯化到的质粒DNA,应该只出现超螺旋一条带。但在质粒提取过程中机械力,强碱溶液的作用等原因,纯化到的质粒常常会出现三条带,甚至有时候会出现四条带(变性超螺旋),不管是哪种形式的超螺旋,经单酶切后,呈现一条带,则说明提取结果正常,没有基因组污染。

纯化到的质粒,进行进一步的酶切操作,鉴定质粒的大小。

紫外分光光度计检测

纯化到的质粒,稀释一定的倍数,通过测定OD280,OD260,OD230,计算收获量和纯度。OD260/OD280在1.7~1.9之间,说明质粒纯度较好。如果洗脱时用去离子水洗脱,测光吸收时,pH值和离子浓度会影响光吸收值,比值会偏低,但并不表示纯度低。

实验一 碱法提取质粒DNA

实验一碱法提取质粒DNA 一、目的 掌握微量移液器、高速离心机等的正确使用 掌握碱法提取质粒DNA的原理和方法。 二、原理 从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。从大肠杆菌中抽提质粒DNA的方法很多,可以在实验中根据不同的需要采用不同的方法,碱变性法因其抽提效果好,收得率高,获得的DNA可用于酶切、连接与转化,因而被各实验室广泛采用。碱变性法抽提质粒DNA的基本原理是根据染色体DNA和质粒DNA分子量的巨大差异而达到分离的。首先用含一定浓度葡萄糖的缓冲液(溶液Ⅰ)悬浮菌体,再加入溶液II(NaOH、SDS)后,碱性环境下菌体的细胞壁裂解,而使质粒缓慢释放出来,并且碱性条件使DNA的氢键断裂,宿主染色体双螺旋结构解开而变性,而闭合环状的质粒DNA的两条链不会完全分离,当加入溶液III中和后,宿主染色体DNA相对分子质量大,还没来得及复性,就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起而沉淀下来,而质粒DNA由于能够迅速配对恢复原来的构型而溶解在上清液中。然后用酚、氯仿多次抽提进一步纯化质粒DNA 。氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。再用两倍体积的无水乙醇洗涤沉淀,以去除残留的氯仿。最后用75%乙醇溶液洗涤沉淀,以去除残留的盐离子。最后获得的质粒DNA储存在TE溶液中,-20℃保存。用于下一步凝胶电泳鉴定。 三、仪器设备、材料与试剂 仪器设备 恒温培养箱恒温摇床台式离心机高压灭菌锅制冰机电子天平pH计 量筒(10 mL,100 mL,500 mL,1 000 mL)烧杯(50 mL,100 mL,500 mL,1 000 mL)一次性手套无粉乳胶手套(光明牌,大、中、小三种号码) 玻璃棒称量勺微量移液器(1 000 μL,200 μL,20 μL)酒精灯灭菌的1.5 mL 离心管(eppendorf管)灭菌吸头(1 000 μL,200 μL),相应的吸头盒吸水纸

质粒DNA的提取及检测实验报告

题目:质粒DNA的提取及检测 一.实验目的: 1.学习碱裂解法提取质粒的原理和方法; 2.学习DNA琼脂糖凝胶电泳的原理和方法。 二.实验原理 1. 质粒 (Plasmid): 一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。主要发现于细菌、放线菌和真菌细胞中,常常编码一些对宿主有利的酶的基因,这些基因的表型包括抗生素抗性,产生抗生素、限制酶、修饰酶等。 2.载体(Vector): 要把一个有用的外源基因通过基因工程手段,转化到细胞中去进行繁殖和表达,需要运载工具,携带外源基因进入受体细胞的这种工具就叫载体。目前除了大肠杆菌中的质粒、λ噬菌体、M13噬菌体、噬菌粒外,还有酵母人工染色体载体以及动、植物病毒载体等。 3.分离质粒DNA: (1)培养细菌使质粒扩增; (2)收集和碱裂解细菌; (3)分离和纯化质粒DNA。 4.碱裂解法 (1)溶液Ⅰ:50mmol/L葡萄糖,10mmol/EDTA-Na,25mmol/LTris-HCl 作用:分散细胞,螯合金属离子使酶失活,防止DNA的降解

(2)溶液Ⅱ:L NaOH,2% SDS,临用前1:1配制 作用:细胞在NaOH和SDS溶液中裂解时,蛋白质与染色体DNA发生变性 (3)溶液Ⅲ:5mol/L 醋酸钾60ml,冰醋酸,双蒸水 作用:酸性条件上质粒DNA复性,留在上清液。大肠杆菌DNA和蛋白质-SDS复合物等发生沉淀。 5.电泳 带电荷的物质,在电场中的趋向运动称为电泳。DNA的琼脂糖凝胶电泳可以分离长度为200bp至近50kb的DNA分子。DNA的迁移率(U)的对数与凝胶浓度(T)之间存在反平行线 性关系。因此,要有效地分离不同大小的DNA片段,选用适当的琼脂糖凝胶浓度是非常重要的。 6.提取质粒 在质粒提取的过程中,由于操作原因,提取的质粒可能有三种:线性DNA、开环DNA 、 闭环超螺旋DNA 。当提取的质粒DNA电泳时,同一质粒 DNA泳动速度:闭环超螺旋〉线状〉 开环。但有时也有也会出现相反情况,因为与琼脂糖浓度、电流强度、离子强度及核酸染料 含量有关。 三.实验材料及设备 1.实验材料: (1)含质粒pUC18大肠杆菌,塑料离心管,EP管架,微量取液器和取液器吸头,常用玻璃器皿(如三角瓶、量筒、试剂瓶等); (2)提取的pUC18,琼脂糖,锥形瓶,一次性手套,胶铲,封口膜,剪刀,取液器吸头。实验设备:

(完整word版)质粒抽提原理

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦,后面我再详细说明。 每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2 M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS 溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。 不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。用25/24/1

碱裂解法提取质粒-配方,操作说明

碱裂解法提取质粒 一、基本概念 1.质粒:质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中染色体以外的脱氧核糖核酸(DNA)分子。现在习惯上用来专指细菌、酵母菌和放线菌等生物中染色体以外的DNA分子。在基因工程中质粒常被用做基因的载体。许多细菌除了染色体外,还有大量很小的环状DNA分子,这就是质粒(plasmid)。质粒上常有抗生素的抗性基因,例如,四环素抗性基因或卡那霉素抗性基因等。有些质粒称为附加体(episome),这类质粒能够整合进细菌的染色体,也能从整合位置上切离下来成为游离于染色体外的DNA分子。 目前,已发现有质粒的细菌有几百种,已知的绝大多数的细菌质粒都是闭合环状DNA分子(简称cccDNA)。细菌质粒的相对分子质量一般较小,约为细菌染色体的0.5%~3%。根据相对分子质量的大小,大致上可以把质粒分成大小两类:较大一类的相对分子质量是40×106以上,较小一类的相对分子质量是10×106以下(少数质粒的相对分子质量介于两者之间)。每个细胞中的质粒数主要决定于质粒本身的复制特性。按照复制性质,可以把质粒分为两类:一类是严紧型质粒,当细胞染色体复制一次时,质粒也复制一次,每个细胞内只有1~2个质粒;另一类是松弛型质粒,当染色体复制停止后仍然能继续复制,每一个细胞内一般有20个左右质粒。一般分子量较大的质粒属严紧型。分子量较小的质粒属松弛型。质粒的复制有时和它们的宿主细胞有关,某些质粒在大肠杆菌内的复制属严紧型,而在变形杆菌内则属松弛型。 在基因工程中,常用人工构建的质粒作为载体。人工构建的质粒可以集多种有用的特征于一体,如含多种单一酶切位点、抗生素耐药性等。常用的人工质粒运载体有pBR322、pSC101。pBR322含有抗四环素基因(Tcr)和抗氨苄青霉素基因(Apr),并含有5种内切酶的单一切点。如果将DNA片段插入EcoRI切点,不会影响两个抗生素基因的表达。但是如果将DNA片段插入到HindIII、BamHI 或SalI切点,就会使抗四环素基因失活。这时,含有DNA插入片段的pBR322将使宿主细菌抗氨苄青霉素,但对四环素敏感。没有DNA插入片段的pBR322会使宿主细菌既抗氨苄青霉素又抗四环素,而没有pBR322质粒的细菌将对氨苄

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是

天然产物提取方法的研究进展

天然产物提取方法的研究进展 姓名:吴震 专业:生药学 学号:201312283018

天然产物提取方法的研究进展 摘要:提取是中药制药的关键环节,影响着最终药物制剂的质量和成本,以及中药制药业的现代化水平。本文着重分析了近些年来中药提取新技术的基本原理、特点、研究和应用进展。这些提取技术包括超声波提取、微波提取、酶法提取法、超临界流体萃取法、组织破碎提取法、半仿生提取法等。 关键词:天然产物;提取技术 中药是中华民族几千年灿烂文化的瑰宝,在继承和发扬中医药优势和特色的基础,充分利用现代科学技术,借鉴国际通行的医药标准规范,提高中药的质量,研究开发进入国际中药市场的中药产品,实现中药的现代化、国际化。而提高中药的质量,让中药进人国际市场,这就对中药的制备加工工艺提出了更高的要求,其中天然产物有效成分的提取分离过程是其重要的关键环节。现将天然产物提取技术进行综述。 1天然产物传统的提取方法 传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗流法、煎煮法、回流提取法、连续提取等。但这些方法普遍存在着有效成分提取率不高,杂质清除率,低能耗,高生产周期长等缺点,直接影响了中药制药产业的发展[1]。 2天然产物现代的提取方法 2.1超声波提取技术 超声波是指频率为20千赫-50兆赫的电磁波,它是一种机械波,需要能量载体(介质)来进行传播。超声提取技术是近年来应用在中草药有效成分提取分离方面的一种最新的较为成熟的手段。研究表明,利用超声波产生的强烈振动、高加速度、强烈空化效应、热效应、搅拌作用等,都可以加速药物有效成分进入溶剂,从而提高提取效率,缩短提取时间,节约溶剂,并且免去了高温对提取成分的破坏。 2.1.1超声提取的原理 (1)空化效应空化效应是超声提取的主要动力。液体中往往存在一些真空或含有少量气体或蒸汽的小泡,当一定频率的大量超声波作用在液体时,尺寸适宜的小泡能产生共振现象,它们在声波的稀疏阶段迅速胀大,在声波的压缩阶段又被绝热压缩,直至湮灭。小泡在湮灭过程中,能够产生几千摄氏度的高温和几千个大气压的高压冲击波,这就是空化现象。这种强烈的冲击作用能使物料破碎,也能造成生物细胞壁及整个生物体破裂,从而加速细胞内物质的释放、扩散及溶解。 (2)机械效应超声在传播过程中,会引起介质质点交替的压缩与伸张,构成了压力的变化,这种压力的变化将引起机械效应。对于中药提取过程,这种机械效应包括简单的骚动效应和溶剂与药材组织之间的摩擦。这种骚动效应可使蛋白质变性,细胞组织变形;而超声波引起的介质质点的加速度与超声波振动频率的平方成正比,有时超过重力加速度的数万倍,由于溶剂和药材组织获得的加速度不同,即溶剂分子的速度远大于药材组织的速度,从而使它们之间产生摩擦,这

【珍藏版】质粒提取中的原理

1.溶液I—溶菌液: 溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。 葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。 EDTA:(1)螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNa se作用时需要一定的金属离子作辅基);(2)EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。 2.溶液II-NaOH-SDS液: NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。 SDS:SDS是离子型表面活性剂。它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。(2)解聚细胞中的核蛋白。(3)SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。 3. 溶液III--3mol/L NaAc(pH 4.8)溶液: NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是Na Ac-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而

碱裂解法提取质粒

碱裂解法质粒提取的原理 碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。下面是该法的提取原理: 碱法质粒抽提用到三种溶液: 溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0; 溶液II,0.2 N NaOH / 1% SDS; 溶液III,3 M 醋酸钾/ 2 M 醋酸。 溶液I的作用 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 溶液II的作用 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌,自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH 的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦。 溶液III的作用 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2M 的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二

质粒抽提原理和详细操作步骤

质粒抽提,实验室必备技能之一 质粒 质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA 分子。 质粒抽提 从细菌中分离质粒DNA的方法包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA。采用强碱液、加热或溶菌酶(主要针对革兰氏阳性细菌)可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和 TritonX-100(一般很少使用)可使细胞膜裂解。经溶菌酶和SDS或 Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开。当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。 质粒抽提最常用的方法是碱裂解法,它具有得率高、适用面广、快速和纯度高等特点。当然,碱裂解法也有缺陷:容易导致不可逆的变性。要降低不可逆的变性,就要控制好碱裂解的时间。 碱裂解法抽提质粒需要用到以下三种溶液 溶液Ⅰ 50 mmol/L 葡萄糖,25 mmol/L Tris-Cl(pH 8.0),10 mmol/L EDTA(pH 8.0),在15 psi 压力下蒸汽灭菌15 min,4℃保存。 溶液Ⅱ 0.2 mmol/L NaOH(从10 mmol/L 贮存液中现用现稀释),10 g/L SDS(室温保存)。 溶液Ⅲ

文本特征提取方法研究

文本特征提取方法研究 ______________________________________________________ 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。 在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分

碱法质粒抽提用到三种溶液

碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH 值的Tris-Cl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA 是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦,后面我再详细说明。 每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2 M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS 并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl[t1] (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I 中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I 中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置[t2]。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基

质粒抽提试剂盒基本原理

质粒抽提试剂盒基本原理 碱裂解法从大肠杆菌中制备质粒,是每个分子生物学实验室都要用到的常规技术,但是大家对碱法抽提质粒的原理知之甚少。 一、碱法抽提质粒用到的三种溶液及硅酸纤维膜(超滤柱) 溶液I:50 mM葡萄糖 / 25 mM Tris-Cl / 10 mM EDTA,pH 8.0; 溶液II:0.2 N NaOH / 1% SDS; 溶液III:3 M 醋酸钾/ 2 M 醋酸/75%酒精。 二、溶液I中各成分的作用葡萄糖是使悬浮后的大肠杆菌不会快速沉积到管子的底部,因此有些试剂厂商的溶液I没有葡萄糖成分;EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,其主要目的是为了螯合二价金属离子从而达到抑制DNase的活性。 三、溶液II中各成分的作用NaOH主要是为了溶解细胞,释放DNA,因为在强碱性的情况下,细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的变化;但NaOH 发生反应,形成碳酸钠,降低了NaOH的碱性,所以必须用新鲜的NaOH。SDS 易和空气中的CO 2 与NaOH联用,其目的是为了增强NaOH的强碱性,同时SDS能很好地结合蛋白,产生沉淀。这一步要记住两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA会断裂。 四、溶液III中各成分的作用溶液III中的醋酸钾是为了使钾离子置换SDS中的纳离子而形成了PDS,因为十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是不溶水的,同时一个SDS分子平均结合两个氨基酸,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了。2 M的醋酸是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被 PDS共沉淀了,所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA 混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。75%酒精主要是为了清洗盐份和抑制Dnase;同时溶液III的强酸性也是为了使DNA更好地结合在硅酸纤维膜上

质粒提取的原理、操作步骤、各溶液的作用

质粒提取的原理、操作步骤、各溶液的作用 (2010-11-11 17:19:05) 转载▼ 分类:Biology 标签: 质粒 溶液 无水乙醇 大肠杆菌 杂谈 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,下面主要介绍碱裂解法提取质粒DNA的方法。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下: 1、接1%含质粒的大肠杆菌细胞于2ml LB培养基。 2、37℃振荡培养过夜。 3、取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。 4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。 5、加入0.2ml溶液II(0.2 mM/L NaOH,1%SDS),轻轻翻转混匀,置于冰浴 5 min . 6、加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min .

相关文档
最新文档