质粒提取简介及问题分析

质粒提取简介及问题分析
质粒提取简介及问题分析

质粒提取简介及问题分析

一、导论

(一) 质粒提取的原理:

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:

溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0;

溶液II,0.2 N NaOH,1% SDS;

溶液III,3 M 醋酸钾,2 M 醋酸。

让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH 稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA 变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦。

溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。如果这样怀疑,往1%的SDS溶液中加2M醋酸溶液看看就知道不是这么回事了。大量沉淀的出现显然与SDS的加入有关系。如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

(二)细菌的收获和裂解。

细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。

1、大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种

方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。

2、可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA链迅速得到准确配置,重新形成完全天然的超螺旋分子。

3、一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。故从诸如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。

4、当从表达内切核酸酶A的大肠杆菌菌株(endA 株,如HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒DNA会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。

5、目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。

(三)质粒DNA的纯化。

常用的纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加,从而阻止了溴化乙锭分了的继续嵌入。但线状分子不受此限,可继续结合更多的染料,直至达到饱和(每2个碱基对大约结合1个溴化乙锭分子)。由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。

二、质粒DNA的小量制备

(一)细菌的收获和裂解。

1、收获。

1) 将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30℃剧烈振摇下培养过夜。

2) 将1.5ml培养物倒入离心管中,4℃、12000g离心30秒,将剩余的培养物贮存于4℃。

3) 吸去培养液,使细菌沉淀尽可能干燥。

2、碱法裂解。

1) 将细菌沉淀,所得重悬于100μl用冰预冷的溶液I中,剧烈振荡。溶液I可成批配制,高压下蒸气灭菌15分钟,贮存于4℃。须确使细菌沉淀在溶液I中完全分散。

2) 加200μl新配制的溶液Ⅱ。盖紧管口,快速颠倒离心管5次,以混合内容物。应确保离心管的整个内表面均与溶液Ⅱ接触。不要振荡,将离心管放置于冰上。

3) 加150μl用冰预冷的溶液Ⅲ。盖紧管口,将管倒置后温和地振荡10秒钟溶液Ⅲ在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。

4) 用离心机于4℃、12000g离心5分种,将上清转移到另一离心管中。

5) 可做可不做:加等量酚:氯念,振荡混匀,用微量离心机于4 ℃以12000g离心2分钟,将上清转移到另一良心管中。有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。

6) 用2倍体积的乙醇于室温沉淀双锭DNA。振荡混合,于室温放置2分钟。

7) 用微量离心机于4℃以12 000g离心5分钟。

8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。

9) 用1ml70%乙醇于4℃洗涤双链DNA沉淀,去掉上清,在空气中使核酸沉淀干燥10分钟。

i. 此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5μg。

ii. 如果要通过限制酶切割反应来分析DNA,可取1μl DNA溶液加到另一含8μl水的微量离心管内,加1μl 10×限制酶缓冲液和1单位所需限制酶,在适宜温育1-2小时。将剩余的DNA贮存于-20℃。

iii. 此方法按适当比例放大可适用于100ml细菌培养物:。

3、煮沸裂解。

1) 将细菌沉淀,所得重悬于350μlSTET中。STET:0.1mol/L NaCL,10mmol/L Tris.Cl(pH8.0),1mmol/L EDTA(pH8.0),5% Triton X-100。

2) 加25μl新配制的溶菌酶溶液[10mg/ml,用10mmol/L Tris.Cl(pH8.0)配制],振荡3秒钟以混匀之。如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。

3) 将离心管放入煮沸的水浴中,时间恰为40秒。

4) 用微量离心机于室温以12000g离心10分种。

5) 用无菌牙签从微量离心管中去除细菌碎片。

6) 在上清中加入40μl 5mol/L乙酸钠(pH5.2)和420μl异丙醇,振荡混匀,于室温放置5分钟。

7) 用微量离心机于4℃以12 000g离心5分种,回收核酸沉淀。

8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。

9) 加1ml 70%乙醇,于4℃以12 000g离心2分钟。

10)按步骤8)所述再次轻轻地吸去上清,这一步操作要格外小心,因为有时沉淀块贴壁不紧,去除管壁上形成的所有乙醇液滴,打开管口,放于室温直至乙醇挥发殆尽,管内无可见的液体(2-5)分钟。11)用50μl含无DNA酶的胰RNA酶(20μg/ml)的TE(pH8.0)溶解核酸稍加振荡,贮存于-20℃。注:当从表达内切核酸酶A的大肠杆菌株(endA 株,如HB101 )中小量制粒尤其DNA时,建议舍弃煮沸法。因为煮沸步骤不能完全灭活内切核酸酶A,以后在Mg 2 存在下温育(V中用限制酶时)质粒DNA可被降解。在上述方案的步骤9)之间增加一步,即用酚:氯仿进行抽提,可以避免这一问题。

(二) 质粒DNA小量制备的问题与对策。

碱裂解和煮沸都极其可靠,重复性也很好,而且一般没有什么麻烦。多年来,在我们实验室中日常使用这两种方法的过程中,只碰到过两个问题:

1、有些工作者首次进行小量制备时,有时会发现质粒DNA不能被限制酶所切割,这几乎总是由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意得不够。大多数情况下,用酚:氯仿对溶液进行抽提可以去除小量备物中的杂质。如果总是依然存在,可用离心柱层析注纯化DNA。

2、在十分偶然的情况下,个别小时制备物会出现无质粒DNA的现象。这几乎肯定是由于核酸沉淀颗粒已同乙醇一起被弃去。

三、质粒DNA的大量制备

(一) 在丰富培养基中扩增质粒

许多年来,一直认为在氯霉素存在下扩增质粒只对生长在基本培养基上的细菌有效,然而在带有pMBl或ColEl复制子的高拷贝数质粒的大肠杆菌菌株中,采用以下步骤可提高产量至每500ml培养物2-5mg质粒DNA,而且重复性也很好。

1) 将30ml含有目的质粒的细菌培养物培养到对数晚期(DNA 600约0.6)。培养基中应含有相应抗生素,用单菌落或从单菌落中生长起来的小量液体闭关物进行接种。

2) 将含相应抗生素的500ml LB或Terrific肉汤培养基(预加温至37℃)施放入25ml对数晚期的培养物,于37℃剧烈振摇培养25小时(摇床转速300转/分),所得培养物的OD 600值约为0.4。

3) 可做可不做:加2.5ml氯霉素溶液(34mg/ml溶于乙醇),使终浓度为170μg/ml。像pBR322一类在宿主菌内只以中等拷贝娄竿行复的质粒,有必要通过扩增。这些质粒只要从生长达到饷新一代的质粒(如pUC质粒)可复制达到很高的拷贝数,因此无需扩增。这些质粒只要从生长达到饱和的细菌培养物即可大量提纯。但用氯霉素进行处理,具有抑制细菌复制的优点,可减少细菌裂解物的体积和粘稠度,极大地简化质粒纯化的过程。所以一般说来,尽管要在生长中的细菌培养物里加入氯霉素略显不便,但用氯霉素处理还是利大于弊。

4)于37℃剧烈振摇(300转/分),继续培养12-16小时。

(二) 细菌的收获和裂解。

1、收获。

1) 4℃以4000转/分离心15分钟,弃上清,敞开离心管口并倒置离心管使上清全部流尽。

2) 将细菌沉淀重悬于100ml用冰预冷的STE中。STE:0.1mol/L NaCl,10mmol/L Tris-HCl(pH8.0),1mmol/L EDTA(pH8.0)。

3) 按步骤1)所述方法离心,以收集细菌细胞。

2、碱裂解法。

1) 将冼过的500ml 培养物的细菌沉淀物[来自收获细菌的步骤3] 重悬于10ml(18ml)溶液I中。

2) 加1ml(2ml)新配制的溶菌酶溶液[10mg/ml,溶于10mmol/L Tris-HCl(pH8.0)]。当溶液的pH值低于8.0时,溶菌酶不能有效工作。

3) 加20ml(40ml)新配制的溶液Ⅱ。盖紧瓶盖,缓缓颠倒离心瓶数次,以充分混匀内容物。于室温放置5-10分钟。

4) 加15nl(20ml)用冰预冷的溶液Ⅲ。封住瓶口,摇动离心瓶数次以混匀内容物,此时应不再出现分明的两个液相。置冰上放10分钟,应形成一白色絮状沉淀。于0℃放置后所形成的沉淀应包括染体DNA、高分子量RNA和钾-SDS-蛋白质-膜复合物。

5) 用合适转头于4℃以4000转/分离心15分钟,不开刹车而使转头自然停转。如果细菌碎片贴壁不紧,可以5000转/分再度离心20分钟,然后尽可能将上清全部转到另一瓶中,弃去残留在离心管内的粘稠状液体。未能形成致密沉淀块的原因通常是由于溶液Ⅲ与细菌裂解物混合不充分[步骤4)]。

6) 上清过滤至一250ml离心瓶中,加0.6体积的异丙醇,充分混匀,于室温放置10分钟。

7) 用合适转头于室温以500转/分离心15分钟,回收核酸。如于4℃离心,盐也会了生沉淀。

8) 小心倒掉上清,敞开瓶口倒置离心瓶使残余上清液流尽,于室温用70%乙醇洗涤沉积管壁。倒出乙醇,用与真空装置相联的巴期德吸出附于瓶壁的所有液滴,于室温将瓶倒置放在纸巾上,使最后残余的痕量乙醇挥殆尽。

9) 用3ml TE(pH8.0)溶解核酸沉淀。

四、质粒DNA的纯化

(一) 聚乙二醇沉淀法提取质粒DNA。

1、将核酸溶液所得]转入15mlCorex 管中,再加3ml 用冰预冷的5mol/L LiCl溶液,充分混匀,用合适转头于4℃下以10000转/分离心10分钟。LiCl可沉淀高分子RNA。

2、将上清转移到另一30mlCorex管内,加等量的异丙醇,充分混匀,用SorvallSS34转头(或与其相当的转尖)于室温以10 000转/分离心10分钏,回收沉淀的核酸。

3、小心去掉上清,敞开管口,将管倒置以使最后残留的液滴流尽。于室温用70%乙醇洗涤沉淀及管壁,流尽乙醇,用与真空装置相连的巴其德吸管吸去附于管壁的所有液滴,敞开管口并将管侄置,在纸巾上放置几分钟,以使最后残余的痕量乙醇蒸发殆尽。

4、用500μl含无DNA酶的胰RNA酶(20μg/ml )的TE(pH8.0)溶解沉淀,将溶液转到一微量离心管中,于室温放置30分钟。

5、加500μl含13%(w/v)聚乙二醇(PEG 8000)的1.6mol/L NaCl,充分混合,用微量离心机于4℃以12000g 离心5分钟,以回收质粒DNA。

6、吸出上清,用400μl TE(pH8.0)溶解质粒DNA沉淀。用酚、酚:氯仿、氯仿各抽1次。

7、将水相转到另一微量离心管中,加100μl 10mol/L乙醇铵,充分混匀,加2倍体积(约1ml)乙醇,于室温放置10分钟,于4℃以12 000g离心5分钟,以回收沉淀的质粒DNA。

8、吸去上清,加200μl处于4℃以12 000g离心2分钟。

9、吸去上清,敞开管口,将管置于实验桌上直到最后可见的痕量乙醇蒸发殆尽。10)用500μl TE(pH8.0)溶解沉淀1:100稀释[用TE(pH8.0)] 后测量OD 260,计算质粒DNA的浓度(1OD260=50μg质粒DNA/ml),然后将DNA贮于-20℃。

10、纯化。

一些试剂的生化作用原理

1、溶液Ⅰ

溶霉菌:水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌作用。

葡萄糖:增加溶液的粘度,防止DNA受机械剪切力作用而降解。

EDTA:金属离子螯合剂,螯合Mg2+,Ca2+等金属离子,抑制脱氧核糖核酸酶(DNase)对DNA的降解作用(DNase 作用时需要一定的金属离子强度作辅基),同时EDTA的存在,有利于溶霉菌的作用。因为溶霉菌的反应要求有较低的离子强度环境。

2、溶液Ⅱ-NaOH-SDS液

NaOH:核酸在pH值为5~9的溶液中是最稳定的,但pH大于12或小于3时,就会引起双键之间氢键的解离而变性。在溶液Ⅱ中的NaOH浓度为0.2N,加入提取液时,该系统的pH就会高达12.6,因而促使染色体DNA与质粒DNA的变性。

SDS:为阴离子表面活性剂,主要功能有:溶解细胞膜上的脂肪与蛋白,从而破坏细胞膜;解聚细胞中的核蛋白SDS蛋白质结合为复合物,使蛋白变性沉淀下来,但SDS能抑制核糖核酸没的作用,所以在以后的提取过程中,必须把它去除干净,以防用RNase去除RNA时受到干扰。

3、溶液Ⅲ-3M KAc(pH4.8)溶液:

KAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸,所以该溶液实际上是KAc-HAc的缓冲液。用pH4.8的KAc溶液是为了把pH 12.6的抽取液pH调回到中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol∕L KAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白质复合物凝聚而沉淀之。前者是因为中和核酸上的电荷。减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白质复合物作用后,能形成溶解度较小的钠盐形式复合物,使沉淀完全。

4、为什么用无水乙醇沉淀DNA:

此为实验中最常用的沉淀方法。乙醇的优点是低度极性,可以以任意比例和水相混容,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。

DNA溶液时以水合状态稳定存在的DNA,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合。其乙醇的最终含量占67%左右。因而也可改用95%乙醇来代替无水乙醇(因无水乙醇价格更贵),但加95%乙醇使总体积增大,而DNA 在溶液中总有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,会影响收得率。折衷的做法是初次沉淀DNA是可用95%乙醇代替无水乙醇,最后的沉淀步骤要使用无水乙醇。也可以用异丙醇选择性沉淀DNA,一般在室温下放置15~30min即可。

使用乙醇在低温条件下沉淀DNA,分子运动大大减少,DNA易于聚合而沉淀,且温度越低,DNA沉淀得越快。

5、RNase处理核糖核酸后,再次沉淀DNA时为什么一定要加NaAc至最浓度达0.1~0.25M。

在pH 8左右的DNA溶液中,DNA分子是带负电荷的,加一定浓度的NaAc,使Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA纳盐沉淀。当加入大量盐溶液浓度太低时,只有部分DNA形成DNA钠盐聚合,这样就造成DNA沉淀不完全。当加入的盐溶液浓度太高时,其效果也不太好,在沉淀的DNA中,由于过多的盐杂质存在,影响DNA的酶切等反应,必须要进行洗涤或重沉淀。

6、为什么将DNA保存于TE缓冲液中?

在基因操作实验中,选择缓冲液的主要原则是考虑DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统(pKa2=7.2)、硼酸系统(pKal=9.24)等虽然也都符合细胞内环境的生理范围(pH),可以作为DNA 的保存液,但在转化实验时,磷酸根将与Ca2+产生沉淀;在DNA酶反应时,不同的煤对辅助因子的种类及数量要求不同,有的要求高盐离子浓度,有哦则要求低盐离子浓度,采用Tris-HCL(pKa=8.0)的缓冲系统,由于缓冲对时Tris+/Tris,不存在金属离子的干扰作用,故在提取或保存DNA时,大都采用Tris-HCL 系统,而TE缓冲液中的EDTA更能稳定DNA的活性。

操作要领:

1、该实验成功的标志是把染色体DNA,蛋白质与RNA去除干净。获得一定收得率的质粒DNA。去掉染色体DNA最为重要,也较困难。因为在全部提取过程中,只有一次机会去除染色体DNA,其关键步骤是加入溶液Ⅱ与溶液Ⅲ时,控制变性与复性操作时机,既要使试剂与染色体DNA充分作用使之变性;又要使染色体DNA不断裂成小片段而能与质粒DNA相分离。这就要求试剂与溶菌液充分摇匀。摇动时用力适当。一般加入SDS后要注意不能过分用力振荡,但又必须让它反应充分。

2、当加入溶液Ⅱ5min后,若没有看到溶液变稠时,实验不能再继续做下去了。

3、配置试剂时,要用重蒸水配置外,其器皿必须严格清洗,最后要用重蒸水冲洗三次,凡可以进行灭菌的试剂与用具都要经过高压蒸汽灭菌,防止其他杂质或酶对DNA的降解,对Ep管、Tip头与非玻璃离心管等只能湿热灭菌,然后放置在50℃温箱中烘干使用。

4、用乙醇沉淀DNA时,要观察水相与乙醇之间没有分层现象之后,才可放在冰箱中去沉淀DNA。

实验一 碱法提取质粒DNA

实验一碱法提取质粒DNA 一、目的 掌握微量移液器、高速离心机等的正确使用 掌握碱法提取质粒DNA的原理和方法。 二、原理 从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。从大肠杆菌中抽提质粒DNA的方法很多,可以在实验中根据不同的需要采用不同的方法,碱变性法因其抽提效果好,收得率高,获得的DNA可用于酶切、连接与转化,因而被各实验室广泛采用。碱变性法抽提质粒DNA的基本原理是根据染色体DNA和质粒DNA分子量的巨大差异而达到分离的。首先用含一定浓度葡萄糖的缓冲液(溶液Ⅰ)悬浮菌体,再加入溶液II(NaOH、SDS)后,碱性环境下菌体的细胞壁裂解,而使质粒缓慢释放出来,并且碱性条件使DNA的氢键断裂,宿主染色体双螺旋结构解开而变性,而闭合环状的质粒DNA的两条链不会完全分离,当加入溶液III中和后,宿主染色体DNA相对分子质量大,还没来得及复性,就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起而沉淀下来,而质粒DNA由于能够迅速配对恢复原来的构型而溶解在上清液中。然后用酚、氯仿多次抽提进一步纯化质粒DNA 。氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。再用两倍体积的无水乙醇洗涤沉淀,以去除残留的氯仿。最后用75%乙醇溶液洗涤沉淀,以去除残留的盐离子。最后获得的质粒DNA储存在TE溶液中,-20℃保存。用于下一步凝胶电泳鉴定。 三、仪器设备、材料与试剂 仪器设备 恒温培养箱恒温摇床台式离心机高压灭菌锅制冰机电子天平pH计 量筒(10 mL,100 mL,500 mL,1 000 mL)烧杯(50 mL,100 mL,500 mL,1 000 mL)一次性手套无粉乳胶手套(光明牌,大、中、小三种号码) 玻璃棒称量勺微量移液器(1 000 μL,200 μL,20 μL)酒精灯灭菌的1.5 mL 离心管(eppendorf管)灭菌吸头(1 000 μL,200 μL),相应的吸头盒吸水纸

质粒提取有关问题及注意点

质粒提取常见问题解析 涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死? 参考见解:涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。蘸了酒精后再烧一小会,烧的是酒精而不是涂布棒。建议涂布棒还是干烧较长时间后,冷却了再涂。同时作多个转化时,应用几个涂布棒免得交叉污染。 原先测序鉴定没有问题的细菌,37℃摇菌后发现质粒大小或序列出现异常? 参考见解:这种情况出现的几率较小,常出现在较大质粒或比较特殊的序列中。解决办法: 1、降低培养温度,在20~25℃下培养,或室温培养可明显减少发生概率。 2、使用一些特殊菌株,如Sure菌株,它缺失了一些重组酶,如rec类等,使得质粒复制更加稳定。 3、质粒抽提有一个酶切不完全的原因就是溶液Ⅱ中的NaOH浓度过高造成的,请大家注意一下! 【有两种方法可以在提质粒前判断菌生长是否正常: 1、利用你的嗅觉。只要平时做实验仔细点就能闻出大肠杆菌的气味,新鲜的大肠杆菌是略带一点刺鼻的气味,但不至于反感。而在泥水状的菌液中你只要一凑过去就感觉到其臭无比或者没有气味,可以和正常菌液对照。 2、肉眼观察活化菌株。对于生长不正常的菌液进行划板验证或者稀释到浓度足够低涂板,第二天观察单克隆生长情况,LB平板生长的DH5A正常形态在37℃16h后直径在1mm左右,颜色偏白,半透明状,湿润的圆形菌斑,如果观察到生长过快,颜色又是泛黄的话基本上不正常了。】 未提出质粒或质粒得率较低,如何解决? 参考见解: 1、大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。 2、质粒拷贝数低:由于使用低拷贝数载体引起的质粒DNA提取量低,可更换具有相同功能的高拷贝数载体。 3、菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次转接后有可能造成质粒丢失。例如,柯斯质粒在大肠杆菌中长期保存不稳定,因此不要频繁转接,每次接种时应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。 4、碱裂解不充分:使用过多菌体培养液,会导致菌体裂解不充分,可减少菌体用量或增加溶液的用量。对低拷贝数质粒,提取时可加大菌体用量并加倍使用溶液,可以有助于增加质粒提取量和提高质粒质量。 5、溶液使用不当:溶液2和3在温度较低时可能出现浑浊,应置于37℃保温片刻直至溶解为清亮的溶液,才能使用。 6、吸附柱过载:不同产品中吸附柱吸附能力不同,如果需要提取的质粒量很大,请分多次提取。若用富集培养基,例如TB或2×YT,菌液体积必须减少;若质粒是非常高的拷贝数或宿主菌具有很高的生长率,则需减少LB培养液体积。 7、质粒未全部溶解(尤其质粒较大时) :洗脱溶解质粒时,可适当加温或延长溶解时间。 8、乙醇残留:漂洗液洗涤后应离心尽量去除残留液体,再加入洗脱缓冲液。 9、洗脱液加入位置不正确:洗脱液应加在硅胶膜中心部位以确保洗脱液会完全覆盖硅胶膜的表面达到最大洗脱效率。 10、洗脱液不合适:DNA只在低盐溶液中才能被洗脱,如洗脱缓冲液EB(10mM Tris-HCl, 1mM EDTA,pH8.5)或水。洗脱效率还取决于pH值,最大洗脱效率在pH7.0-8.5间。当用水洗脱时确保其pH值在此范围内,如果pH过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱缓冲液加热至60℃后使用,有利于提高洗脱效率。

(完整word版)质粒抽提原理

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦,后面我再详细说明。 每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。如果你这样怀疑,往1%的SDS溶液中加如2 M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS 溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。 不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。用25/24/1

关于质粒抽提的杂菌污染问题解决方案

关于质粒抽提的杂菌污染问题解决方案过 对于从事分子生物学的研究的人来说,质粒抽提几乎是每天都用做的常规技术。我们经常会收到来自用户的各种求助,像质粒提取失败了、不是自已想要的那个质粒及提取得率低等等。 其实提取质粒并不难,基本上按照质粒提取试剂盒的说明书,小心操作,一般不会有问题。但是为什么还会有这些问题存在?因为在实验中我们应该注意一些我们经常忽略的细节。可能实验室的环境的污染,操作时的不注意都会造成我们培养细菌时染杂菌,使得在质粒的提取过程中现象出现异常,导致实验不成功。说到这里,有些人可能会问:那我们染的杂菌是什么菌呢?其实大部分为真菌,也有可能是革兰氏阳性菌如金黄色葡萄球菌等。 为了让大家能能判断出所用的菌体是否染杂菌,继而能从实验现象可以判断出该原因,我们特意在本实验室里做了一个从染杂菌的细菌中提取质粒的对照模拟实验。 实验方案 编号具体方案 号高拷贝质粒的大肠杆菌1 2号号染杂菌的大肠杆菌3 4号全为杂菌(酵母菌)号 5.6号 实验步骤 根据simgen快速质粒DNA小量试剂盒的说明书的操作步骤进行实验。 实验结果 (一)Buffer II裂解不完全

后溶液变粘稠的澄清液体;而部分BufferII2号为正常的大肠杆菌加入如上图所示1、号加入之后溶液呈不粘稠的浑浊、64号变为粘稠的浑浊液体;全为杂菌的5染菌的细菌3、液体。时,其中的碱性溶液能使革兰氏阴性菌的细胞壁破裂以及蛋白质变Buffer II 在加入号正常的革兰氏阴性细2等细胞内容物。对于1、性,从而释放出质粒DNA、基因组DNA等细胞内容物从而溶液变为粘稠的DNAII溶液能将其细胞壁破裂,释放出质粒菌,Buffer 溶液能号,我们可以看到它出现了粘稠的浑浊液体,这是因为Buffer II澄清液体,而3、4的细胞壁却不能破裂,真菌)溶解正常的革兰氏阴性细菌的细胞但部分杂菌(革兰氏阳性菌、5、6号都为杂菌,不能被破裂的杂菌呈现浑浊状。它们的细胞壁较厚,Buffer II溶液只能裂解很小部分的细胞壁使其穿孔而泄露部分核酸(主要是RNA),细胞内的基因组DNA等其他细胞内容物难以释放,所以它呈现了不粘稠的浑浊状。 (二)拷贝数降低或质粒丢 失. 图2

质粒DNA提取方法与原理

质粒提取的原理、操作步骤、各溶液的作用 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和 SDS溶液中裂解时,蛋白质与DNA 发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS 也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS 呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。基因组 DNA 的断裂会带来麻烦。 3.溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。 溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果你这样怀疑,往1%的 SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。大量沉淀的出现,显然与SDS的加入有关系。如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate, PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是

质粒提取注意事项

1. 质粒制备的基本原理是什么? 答:做过分子生物学实验的,大多数做抽提过质粒,但不是所有人都知道质粒制备的基本原理。所以有必要做一个说明,能帮助您了解和解决实验过程中遇到的一些问题。制备质粒最常用的方式是碱裂解法。质粒被转化到细菌中,单菌落接种到含有特定抗生素的培养基中,一般培养到细菌生长的平台期离心收集细胞;细菌用悬浮液(Solution I, 内含RNase A)悬浮细胞,用SDS-NaOH (Solution II)裂解。SDS是很强的去污剂,抽提出细胞膜蛋白质和磷脂,释放出细胞内物质,NaOH为强碱,使蛋白质,染色体DNA和质粒DNA变性;细胞裂解彻底后,加入酸性醋酸钾(Solution III), 中和裂解液,同时SDS-K,变性蛋白质,变性基因组DNA和细胞碎片形成沉淀,通过离心,但是质粒DNA正确复性,仍留在上清溶液中。如何从上清液中回收DNA的方法有很多,有用苯酚/氯仿抽提的,有用乙醇沉淀的,有用核酸吸附吸附的,目的都是试图采用有效,快速的方式纯化质粒DNA。我们提供的试剂盒就是选用特异的核酸吸附材料,优化结合与洗脱条件得到高纯度质粒DNA,纯化的质粒DNA纯度和得率可以满足分子生物学实验的要求。 2. 质粒DNA 制备的关键是什么? 答:碱裂解法的关键是如何把握SDS-NaOH处理的时间。质粒制备过程中,如果质粒长时间暴露于NaOH, 质粒有可能不可逆变性,使得抽提质粒中有部分是变性质粒。这些变性质粒,不能酶切。所有一般情况下,SDS-KOH处理时间不能超过5分钟,最好在冰里处理,观察到液体变得清就可以加入中和液。 3. 质粒中基因组污染是怎么产生的? 答:基因组的产生一般是因变性和中和步骤处理不当所致。如果为了提高混合效果,混匀的动作过于剧烈,基因组DNA可能被剪切成小片段,这些小片段在后来中和过程中被复性,保留在溶液中,与质粒一起回收出来了。要降低基因组的污染,记注两点:混合动作要温和,细胞用量要合适。 4. 如何确定质粒小抽细胞的用量? 答:根据实验目的确定质粒的需求量。对于一般的克隆酶切鉴定,亚克隆、测序分析等常规分析,有几微克的DNA就够了。质粒拷贝数的高低确定接种体积的大小。高拷贝的质粒,接过2-3ml 的细胞就够了,对于中低拷贝的如pBR322,接种5ml也能满足要求。使用过过的细胞,由于细胞裂解难以彻底,时间难以把握,DNA的纯度和得率有时因吸附材料容量的限制,得率并没有显著提高,纯度反而下降。对于细胞数很大的质粒制备,需要按比例提高各溶液的用量,才能保证抽提质粒的纯度和得率。 5. 电泳分析抽提的质粒会看到什么? 答:如果您制备的质粒很脏,从电泳加样孔起,您会看依次看到微量的基因组DNA, 开环环装质粒(open circular plasmid),超螺旋质粒(Super Coiled), 变性的超螺旋质粒(denatured supercoiled plasmid), 细菌RNA。判定质粒制备质量高低的标准是观察超螺旋质粒在整个抽提DNA中的百分比。质量高的主要部分为超螺旋质粒,没有变性超螺旋质粒和没有基因

【珍藏版】质粒提取中的原理

1.溶液I—溶菌液: 溶菌酶:它是糖苷水解酶,能水解菌体细胞壁的主要化学成分肽聚糖中的β-1,4糖苷键,因而具有溶菌的作用。当溶液中pH小于8时,溶菌酶作用受到抑制。 葡萄糖:增加溶液的粘度,维持渗透压,防止DNA受机械剪切力作用而降解。 EDTA:(1)螯合Mg2+、Ca2+等金属离子,抑制脱氧核糖核酸酶对DNA的降解作用(DNa se作用时需要一定的金属离子作辅基);(2)EDTA的存在,有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度的环境。 2.溶液II-NaOH-SDS液: NaOH:核酸在pH大于5,小于9的溶液中,是稳定的。但当pH>12或pH<3时,就会引起双链之间氢键的解离而变性。在溶液II中的NaOH浓度为0.2mo1/L,加抽提液时,该系统的pH就高达12.6,因而促使染色体DNA与质粒DNA的变性。 SDS:SDS是离子型表面活性剂。它主要功能有:(1)溶解细胞膜上的脂质与蛋白,因而溶解膜蛋白而破坏细胞膜。(2)解聚细胞中的核蛋白。(3)SDS能与蛋白质结合成为R-O-SO3-…R+-蛋白质的复合物,使蛋白质变性而沉淀下来。但是SDS能抑制核糖核酸酶的作用,所以在以后的提取过程中,必须把它去除干净,防止在下一步操作中(用RNase去除RNA时)受到干扰。 3. 溶液III--3mol/L NaAc(pH 4.8)溶液: NaAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸。所以该溶液实际上是Na Ac-HAc的缓冲液。用pH4.8的NaAc溶液是为了把pH12.6的抽提液,调回pH至中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3mol/L NaAc有利于变性的大分子染色体DNA、RNA以及SDS-蛋白复合物凝聚而沉淀之。前者是因为中和核酸上的电荷,减少相斥力而

质粒提取操作步骤

操作步骤: 本实验方法适用于从1-10ml过夜培养的大肠杆菌菌液中提取质粒。提取量受菌株、质粒拷贝数、菌液体积和培养时间、培养基类型等因素的综合影响。 1.收菌:将过夜培养(37℃,12-16小时)的菌液于室温≧10,000g 离心1-2分钟,彻底弃除上清。 注意:高拷贝质粒建议使用≦5ml菌液;菌液用量过大不仅不能增加质粒产量,反而会因裂解不完全或杂质封闭硅胶膜而降低产量;培养时间不宜过长,否则会增加开环结构质粒的比例。。 2.重悬:加入250μl含RNase A的细胞悬浮液(S1),充分混悬震荡 或用枪头反复抽打使细菌彻底分散悬浮。 3.裂解:加入250μl细胞裂解液(S2),轻轻上下颠倒混合5次,室 温静置1-5分钟,待细菌充分裂解,溶液变半透明。 注意:避免剧烈震荡导致基因组DNA裂解,裂解时间不能超过5分钟。 4.中和:加入350μl中和缓冲液(S3),轻轻上下颠倒混合5次,充 分混匀,避免剧烈震荡。室温下≧12,000g离心10分钟。 5.DNA结合:小心吸取上清,转移到插入收集管的离心吸附柱内,室 温下≧12,000g离心1分钟,弃除收集管中的废液,将离心吸附柱重新插回收集管中。 6.清洗:加入500μl漂洗液(WB,请确认已加入乙醇!)于离心吸附 柱中,室温下≧12,000g离心30秒,弃除收集管中的废液,将离心吸附柱重新插回收集管中。 7.再次清洗:加入500μl漂洗液(WB)于离心吸附柱中,室温下≧ 12,000g离心30秒,弃除收集管中的废液,将离心吸附柱重新插

回收集管中。将离心吸附柱开盖再次离心2分钟,彻底除去残余漂洗液。 8.洗脱:小心取出离心吸附柱,将其套入一个新的1.5ml灭菌离心 管中。向硅胶吸附膜的中央加入100μl洗脱缓冲液(EB),室温放置1分钟后,≧12,000g离心1分钟收集质粒DNA。 注意:为提高质粒浓度,最低可使用30μl的EB溶液,离心收集后壳将洗脱的质粒溶液再次加入离心吸附柱中重复洗脱;使用100μlEB溶液则无需二次洗脱;对6kb以上的质粒,可使用预先加热至55℃的EB溶液洗脱以提高产量;EB溶液不含EDTA,故不会影响荧光测序等后续反应;如必须使用无菌去离子水洗脱,需注意其pH值是否接近中性,否则应使用NaOH溶液将pH值调节至7.0-8.5之间。 9.储存:弃除离心吸附柱,纯化的质粒可直接用于后续反应或于 -20℃长期保存。 注意:经检测,本试剂盒从endAˉ菌株(如DH5α,TOP10,XL1-blue等)中提取的质粒反复冻融20次无降解;如需在4℃长期保存或者保存从endA+菌株(如JM109,HB101,BL21等)中提取的质粒,可向每100μl质粒溶液中加入11μl的10×TE溶液,但含EDTA的质粒溶液不可用作荧光测序模板。

实验一、质粒DNA的提取及检测实验报告

实验一、质粒DNA的提取及检测 【实验目的】 1、掌握碱裂解法提取质粒的原理和步骤 2、掌握琼脂糖凝胶电泳检测DNA的方法和技术 3、学会PCR操作的基本技术 第一部分质粒DNA的提取 一、实验原理: 碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去。 二、仪器与试剂 1、仪器恒温摇床、台式离心机 2、试剂溶液I、溶液Ⅱ、溶液Ⅲ、无水乙醇、TE缓冲液、胰RNA酶、酚、氯仿 三、实验步骤 1、将2mL含相应抗生素(Amp:50μg/mL)的LB液体培养基加入到试管中,接入含pUC19 质粒的大肠杆菌,37℃振荡培养过夜。 2、取1.5mL培养物倒入微量离心管中,4000r/min离心2min。 3、吸去培养液,使细胞沉淀尽可能干燥。 4、将细菌沉淀悬浮于100μL溶液I中,充分混匀,室温放置10 min。 5、加200μL溶液Ⅱ(新鲜配制),盖紧管皿,混匀内容物,将离心管放冰上5min。 6、加入150μL溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。冰上放置15min。 7、12000r/min,离心15min,将上清转至另一离心管中。 8、向上清中加入等体积酚:氯仿(1:1)(去蛋白),反复混匀,12000r/min,离心5min, 将上清转移到另一离心管中。 9、向上清加入2倍体积无水乙醇,混匀后,室温放置5~10min。12000r/min,离心5min。 倒去上清液,把离心管倒扣在吸水纸上,吸干液体。 10、用1mL70℅乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干 燥。 11、加20μLTE缓冲液,其中含有20μg/mL的胰RNA酶,使DNA完全溶解,-20℃保存。

质粒提取的原理、操作步骤、各溶液的作用

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA 分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 一、试剂准备 1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl[t1] (pH 8.0)1 2.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。 任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液。50 mM葡萄糖最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。所以说溶液I 中葡萄糖是可缺的。EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I 中加入高达 10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。 NaOH也使DNA变性,但只是个副产物,在溶液3加入后其中的醋酸和NaOH中和,质粒DNA恢复活性 2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置[t2]。 这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基

提取质粒实验学习整理

1.菌液OD值越高,质粒产量越高 2.大肠杆菌OD值越高,提取的质粒的浓度就越高吗???还要看质粒纯度,纯度一般 在1.8-1.9最适合,再高了就是蛋白污染 3.一般而言gene 导入原核细胞称转化,导入真核细胞称转染。 4.用QIANGEN质粒提取试剂盒提取质粒,我没有提不出来的经历,有以下几点要注意, 从细胞、试剂盒及操作三个方面考虑: 1..确定细菌是阳性转化子,应该含有你的质粒,过夜摇菌已足够,记得加抗生素。 2.关于试剂。溶液2中是否浑浊,SDS在低温产生结晶,使用前用37度水浴。溶液3 中的醋酸钾可能产生结晶,使用前应该温水溶解。确认洗脱液1中的乙醇没有挥发,闻一闻就知道了。洗脱液2是否在使用前已加乙醇,加乙醇后在盖子上打钩,以免与没加的混淆。 3.抽提过程中,加溶液1(放4度保存)后应该充分悬浮菌体,以便裂解充分;加溶液 2和3应该快,加溶液2后打开盖有丝状物,加溶液3出现絮状沉淀,离心要充分。 请严格按说明书操作。 如果你觉得以上几点你都做的很好,试剂盒是新的,换含其它质粒的菌株试一试,如pUC18的转化子。如果试剂和是用过的,放置太久,换其它试剂盒吧,要不换土法试试! 5.Qiagen我卖这么多个,到目前还是零投诉。不过出现问题基本如下: 1。如果是质粒超纯试剂盒,得率偏低,因为Qiagen自己得专利树脂填料,对纯度得要求比对得率得要求高,在超纯质粒的抽提过程中,得率比同类产品要低些,不过OD 得比值很好,就是纯度很高。 2。如果是质粒小提,快速提取等,基本不出什么问题。 有些操作要注意, 1。Solution 2,3有没有沉淀。 2。细菌培养过程中,有没有抗生素选择压力,不然质粒丢失。 4。收获细菌有没有测OD值,有些仅凭目测,呵呵,又差异得。 不过,有个建议,质粒小提,快速提取,就不要用Qiagen得了,偏贵。 6.从你跑的电泳来看,你的质粒不是很多,差不多就是300ng,可能你的小片段太少,所 以你的小片断那就看不出来了,不知道你大片段分子是小片段的多少倍,一般跑电泳能看到在50ng左右,标准的MARK是每条带是50ng,如果你即使切下来了,但你的小片段太小,也是什么都看不到的,这里有一个大约估计量的公式,小片段的纳克数等于大片段纳克数乘他们分子量的比值 7.提取质粒失败的可能的原因:1:克隆有问题;2:提质粒时裂解时间过长;3:质粒提 取试剂盒的溶液有问题;4:有点可能本身拷贝数就比较低,可换感受态重新转化后提质粒

质粒提取的原理、操作步骤、各溶液的作用

质粒提取的原理、操作步骤、各溶液的作用 (2010-11-11 17:19:05) 转载▼ 分类:Biology 标签: 质粒 溶液 无水乙醇 大肠杆菌 杂谈 细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,下面主要介绍碱裂解法提取质粒DNA的方法。 碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 碱裂解法:此方法适用于小量质粒DNA的提取,提取的质粒DNA可直接用于酶切、PCR扩增、银染序列分析。方法如下: 1、接1%含质粒的大肠杆菌细胞于2ml LB培养基。 2、37℃振荡培养过夜。 3、取1.5ml菌体于Ep管,以4000rpm离心3min,弃上清液。 4、加0.lml溶液I(1%葡萄糖,50mM/L EDTA pH8.0,25mM/L Tris-HCl pH8.0)充分混合。 5、加入0.2ml溶液II(0.2 mM/L NaOH,1%SDS),轻轻翻转混匀,置于冰浴 5 min . 6、加入0.15m1预冷溶液III(5 mol/L KAc,pH4.8),轻轻翻转混匀,置于冰浴5 min .

质粒提取简介问题分析

质粒提取简介及问题分析 一、导论 (一) 质粒提取的原理: 为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液: 溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0; 溶液II,0.2 N NaOH,1% SDS; 溶液III,3 M 醋酸钾,2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH 稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。很多人对NaOH的作用误以为是为了让基因组DNA 变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦。 溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。最容易产生的误解是,当SDS 碰到酸性后发生的沉淀。如果这样怀疑,往1%的SDS溶液中加2M醋酸溶液看看就知道不是这么回事了。大量沉淀的出现显然与SDS的加入有关系。如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。 (二)细菌的收获和裂解。 细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。 1、大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种

质粒dna的提取实验报告思考题doc

质粒dna的提取实验报告思考题 篇一:质粒DNA的提取及其琼脂糖凝胶电泳实验报告及思考题 1.实验目的: (1)通过本次实验学习和掌握碱裂解法提取质粒; (2)通过本次实验学习琼脂糖凝胶电泳检测DNA的方法和技术; 2.实验材料及用品 (1)实验仪器(apparatus): 恒温培养箱(Constant temperature incubator)、恒温摇床(Constant temperature shaking table)、高速离心机(High speed centrifuge)、漩涡振荡器(Vortex mixer)、超净工作台(Bechtop)、高压灭菌锅(Autoclave)、微量加样器(Pipettes)、烧杯( beaker)、量筒(graduated cylinder)、玻璃棒(stir bar)、微波炉(microwave)、天平(Pan balance)、电泳梳子(comb)、电泳槽(electrophoresis tank)、电泳器(Electro-phoresis System)、紫外灯(Ultraviolet transilluminator )3)、材料与试剂(Reagents): ①溶液I(Solution Ⅰ): 50mmol/L 葡萄糖;25mmol/L 三羟基甲基氨基甲烷(Tris)Tris-HCl(pH8.0);10mmol/

L 乙二胺四乙酸(EDTA) pH8.0 溶液I可成批配制,每瓶约100ml,10磅高压蒸气灭菌15分钟,贮存于4℃。 ②溶液Ⅱ(Solution Ⅱ):新鲜配制,等体积混合 0.2mol/L NaOH(临用前用10mol/L贮存液现用现稀释);1% SDS (可用10%贮存液稀释配制)注意:SDS易产生气泡,不要剧烈搅拌。 ③溶液III (Solution Ⅲ,100mL):加上后混匀会形成絮状沉淀 60mL5mol/L KAc, 11.5mL 冰醋酸, 28.5mL H2O (该溶液钾离子浓度为3mol/L,醋酸根离子浓度为5mol/L) ④TE液缓冲液:10 mmol/L Tris-HCl(pH8.0);1 mmol/L EDTA(pH8.0) ⑤70% 乙醇; ⑥平衡酚:氯仿 1:1: 将量取25 ml Tris-HCl(pH8.0)平衡苯酚,加入24 ml 氯仿和 1 ml 异戊醇,充分混合后,移入棕色玻璃瓶中,4℃保存。 ⑦LB培养基: 胰化蛋白胨 10g

相关文档
最新文档