数学抽象概括方法概论

数学抽象概括方法概论
数学抽象概括方法概论

数学抽象概括方法概论

田伟040109104

数学思想方法作为数学教育的重要内容,已日益引起人们的注意,这恐怕与教育愈来愈重视人的能力的培养与素质提高有着密切的练学好数学有着非常好的促进作用。中学数学所涉及的数学方法很广,主要有抽象方法,划归方法,数形结合方法,数学模型方法,数学归纳猜想方法,演绎法,分类法,类比法,特殊化方法,换元法,待定系数法,配方法等。本文将主要对数学抽象方法进行分析和探究,加深对数学抽象方法的认识以及更好的掌握这种方法。

一:数学抽象的基本原则

(1)数学抽象的基本准则:模式建构形式化原则

在严格的教学研究中,无论所涉及的对象是否具有明显的直观

意义,我们都只能依据相应的定义区进行(演绎)推理,而不能

求助于直观。从而,在这样的意义上,数学的抽象就是一种构

造性的活动,数学研究对象正是通过这种活动逻辑得到“构造”

○1理想化

理想化抽象就是通过对实际事物或一些客观现象进行比较。理想的概念化,并确定一定的彼此关系。理想化的抽象列子很多,比如通常从几何角度讲的圆,直线,都是理想化的,实际生活中的圆,直线,三角形与理想情况相比较都是错误的,都是近似的。所以说数学抽象都是一个理想化的过程,比如说生活中根本找不到没有“大小的

点”和“没有宽度的线”等。

○2模式化

数学对象的“逻辑构建”还是一个“模式化”即“重新构造”的过程。由于数学对象的逻辑建构是借助于纯粹的数学语言得意完成的,因此,相对于现实模型而言,通过数学抽象而形成的数学概念机概念体系就具有更为普遍的意义。它所反映的已不只是这一特定的事物或现象的量性特征,而是一类事物在量的方面的共性特征。也正是这样,数学的研究对象就应当被看成是一种(量化)模式。正如White Head所指出的:“数学就是对模式的研究”。

二:数学抽象方法的孕育和应用

○1代数中的孕育点

通过若干个正数,负数以及零在数轴上的点到原点的距离,概

括出有理数的绝对值概念:a a a

0a=0 -1a<0

有(+4)+(+3)=+7;

(-4)+(-3)=-7;

分别概括出两个符号相同的加减的符号与和的符号的关系,以及加数的绝对值与和的绝对值的关系,从而得到同号两数相加的和的符号规律和绝对值规律

由(-4)+(-3)=+1,

(-4)+(+3)=-1

分别概括出符号相异的加数的符号与和的符号的关系,以及加数的绝

对值与和的绝对值的关系,从而得到异号两数相加的和的符号规律和绝对值的规律。

由(-4)+0=+4,

(-4)+0=-4;

概括出一个数与零相加,仍得这个数。

最后综合起来得到:有理数的加法法则。

○2常见的抽象方法有三种:○1等价抽象;○2理想化抽象○3可能性抽象。

(1)等价抽象

在思维中把同类研究对象的共同属性抽象出来而舍弃其他非共

同属性,这样的抽象就是等价抽象。例如,两个三角形,若它

们的对应角相等,对应边成比例,那么,这样的两个三角形具

有相同的形象,把三角形的这种对应关系以及形象相同的特点

抽象出来,就得到相似三角形的概念。这就是等价抽象。

一般的,等价抽象的对象都具有3个重要性质○1自反性,例如,

A B C A B C

:,则

??

:。○2对称性,例如,''' ABC ABC

??

??

:,

ABC A B C

:,○3传递性,例如,''' '''

A B C A B C

??

??

:。

ABC A B C

'''''''''

A B C A B C

??

:,则''''''

(2)理想化抽象

所谓理想化抽象,是指通过抽象得到的数学概念和性质,并非

就是客观事物本身存在的东西,而是从实际事物分离出来的经

过思维加工的来的,甚至是假想出来的。例如,几何中的“点”,

“直线”,“平面”等抽象概念,在自然界是不存在的,那是人

们“假想”出来的理想化概念。

在数学中,在原有的研究对象中引入理想化的元素,往往可创

造出新的数学理论。例如,我们知道,在实数系中解方程会遇

到负数开偶次方的问题,人们在实数的基础上引入理想化的元

素----虚数,把虚数和实数一起进行运算,这样,不仅使“负数

开偶次方”问题得到解决,而且使方程论化繁为简。有了复数,就得到“一元n次方程必有n个根”等结论。其后还进一步发

展处复变函数理论。

理想化抽象对数学的发明创造有重要的意义。

(3)可能性抽象

在数学中,我们常常研究各种抽象对象的无限集合,如自然数

列等,要把原来有限的集合无限的延伸,就要把我们认识客观

事物在时间,空间中的局限性舍去,而从实践的观点来看,能

够实现的过程必须是有限的步骤,实际上,任何人都不可能把

再燃数列延伸到无限的境地。但我们知道,如果能够把自然数

延伸到自然数n,那么必能写出自然数n后面一位自然数n+1.

因此,我们可认为把自然数列无限延伸潜在着实现的可能性,

简称可能性,把这种性质抽象成为无限延伸概念的特殊方法是

一种潜在可能性的抽象方法,简称可能性抽象,在数学中,无

限小,无限大,权限等概念都是有这种抽象方法得来的。三.抽象方法的应用

例1.格尼斯堡七桥问题:如图,格尼斯堡有一条大河横管城中,河中有两个小岛,把城区分为A,B,C,D四个地区,在地区之间共建了七座桥,试问:能否从某地出发经过每一座桥一次又不许重复的返回原地。

瑞士数学家欧拉在1736年把这个问题抽象成一笔画问题并解决了此问题。

七桥问题等价于图中从某一点出发,不重复的经过每条边一次而返回出发点,欧拉证明了一个网络是一笔画的充要条件为:它联通并且奇次点(即与该点关联的边是奇数条)的个数等于0或2,由于上图中A,B,C,D都是奇次点,所以答案是否定的,在这个列子中,把实际问题抽象成纯数学问题(数学模型)来进行研究的,从而获得了解决这类问题的方法(数学模型方法)

例:海滩上有一对苹果是5只猴子的财产,它们要平均分配,第一只猴子来了,把苹果分成5堆还剩一个,然后他把剩下的那个苹果仍到海里,自己拿了一堆,第二只猴子来了,又把苹果分成5堆,又多出1个,它又把多出的那个苹果扔到海里,拿走一堆,以后每只猴子都照做,问原来至少有多少苹果?最后至少有多少苹果?

列方程解应用题就是抽象分析法的一个具体应用,解决上述问题

就是通过对问题进行具体分析,从题设中数量与数量之间的关系,特别是数量间的相等关系,从而建立其方程式,使问题得以解决。

解:设任一只猴子来到时,苹果个数为x ,猴子离开时剩下的苹

果个数为y ,依题意,有:

1(1)(1)5y x =-- 即

4(1)5y x =- 由题意,设最初由n 个苹果,第i (i=1,2,3,4,......)个,猴子离开时,剩下苹果个数为i y ,则

144(1)(4)4,55y n n =-=+-

22334455444[(4)41]()(4)4555

4()(4)4,5

4()(4)4,5

4()(4) 4.5y n n y n y n y n =+--=+-=+-=+-=+-

要使5y 取整数,必须有n+4是5

5的倍数,所以n 的取值为n=5

5-4=3121,所以,5y =54-4=1020,故原来至少为3121个苹果,最后至少有1020个苹果。

使用抽象方法不仅可以解决许多实际问题,而且在数学中可以用来建立新概念和创新新理论。

四 概括方法

概括是吧抽象出来的若干事物的共同属性归结出来进行考察的思维方法,概括要以抽象为基础,它是抽象的发展,概括的过程就是从个别带一般的过程,抽象度越高,概括性就越强,所得的概念和理

论运用于实际时,其迁移范围就更广,也就是说,高度的概括对事物的理解更具有一般性,则获得的理论或方法就有更普遍的指导性。

概括方法在数学中得到广泛应用,并对数学的发展起了很大作用 例如:自然数的运算性质(加法和乘法的交换率,结合律,以及乘法对于加法的分配率)推广到代数式及抽象元素所组成集合上的运算,其中就是运用到了概括的方法。

犹如,在中学数学中,幂的运算性质,把同底数的自然数指数幂的运算性质:

()()()()m n m n

m n m n n m m n mn

n n n

n

n n a a a a a a

a a a a

b a b a a b b +-?=======g

g

推广到有理数指数幂,以至实数指数幂的运算,都是运用了概括的方法。

抽象与概括是密不可分的,抽象可以仅涉及一个对象,而概括则涉及一类对象,从不同角度考察同一事物会得到不同性质的抽象,即不同的属性,而概括则必须从多个对象的考察中寻找共同的属性,抽象思维侧重于分析,提炼,概括思维则侧重于归纳,综合,数学中的每一个概念都是对一类事物的对个对象通过观察分析,抽象出每个对象的各种属性,在通过归纳,概括出各个对象的共同属性而形成形成的。

在解决数学问题方面,得出数学的模型,模式,总结出解题的规

律和方法都是通过分析,比较,抽象,归纳等思维环节,最后进行理论概括的结果。

抽象思想方法在小学数学教学中的渗透

最新资料推荐 抽象思想方法在小学数学教学中的渗透 抽象思想方法在小学数学教学中的渗透通常,在小学数学课堂上,教师对知识点可以游刃有余地进行讲解,学生也可以就问题给出正确答案,可学生对问题的来龙去脉只是一知半解,抓不住问题的本质。 所以,我们必须反思,在数学教学中,我们应该教给学生什么?《义务教育数学课程标准(2019 版)》(以下简称《课标》)中明确指出: 数学教育既要使学生掌握现代生活和学习中所需要的数学知识与 技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用。 那么,在小学数学教学中,有意识地渗透抽象思想,对小学生深 度学习数学可以起到事半功倍的效果。 一、小学数学学习的现状反思随着知识经济的迅速发展,新旧知识的更新也是日新月异,对人才培养的要求不可避免地变高。 基础教育中数学是重要的学科之一,新课程改革对数学学习提出 了新的要求。 在课程内容方面,除了数学结果以及数学结果的形成过程以外, 还包含众多的数学思想,从某种程度上说,课程内容还要?N 近学生 的生活实际,这使得学习目标更加明确,学习的内容较以往更加广泛多元。 1 / 7

在学习活动方面,学习方式有很多,例如自主探索、合作交流等。 在学习过程中,不仅要求学生能理解和掌握数学的基础知识与基本技能,还要求能体会和运用数学的基本思想和方法,提升能力,获得基本活动经验。 但是,我们不得不面对现实。 首先,尽管新课程改革为教学提出了更利于学生发展的新要求,可教学期望与教学现实之间仍旧存在着一条没有被跨越的鸿沟。 对于小学数学教师而言,专业成长之路任重而道远,仅浮于数学知识表面的教学显然不能被赞许。 其次,对小学生而言普遍存在学习力不足的现象,学生一直处于要我学的状态中,没能够真正地走进数学。 此外,在功利社会背景下,家长们一边谩骂应试教育,一边以分数的高低来评判孩子学习能力的高低,以不让孩子输在起跑线上为由,强迫孩子高负荷学习。 数学素养是学生全面发展的重要组成部分,尽管小学生学的数学很简单,但在其中依旧存在很多的数学思想,况且数学思想是数学的灵魂。 二、数学的抽象思想方法什么是数学思想方法?数学思想方法是指人们对数学知识在内容上的本质认识,对所使用的方法和规律的理性认识。 数学的基本思想则是在众多的思想方法中具有本质特征和基本重 要性特征的思想。

小学数学中的抽象与推理

小学数学中的抽象与推理 一、数学的基本思想 1、课程标准:由双基到四基(实现教育理念的转变) 过去的教育理念:以知识为本 教学大纲 关心问题是:应当教哪些内容;应当教到什么程度 考核内容是:规定的内容是否教了;学生的掌握是否达到要求 教学目标是:基础知识(概念记忆与命题理解)扎实(记忆) 基本技能(证明技能与运算技能)熟练(训练) 教学形式是:课堂、教材、教师(凯洛夫的三中心论) 现代的教育理念:以人为本、育人为本(刚要) 课程标准 以学生的发展为本 人的成功依赖:知识技能、把握机遇、思维方法 不仅要记住一些数学的知识、掌握一些数学的技能 还要培养学生的数学素养(素质教育):让学生感悟数学的基本思想积累基本活动经验:会想问题、会做事情

课程目标:基础知识、基本技能+基本思想、基本活动经验 分析问题、解决问题+发现问题、提出问题 2、什么是数学的基本思想 数学是研究数量关系和空间形式的科学 研究对象:数量、图形 研究内容:数量关系、图形关系 数学的基本思想:数学的产生与发展必须依赖的思想 学习过数学与没有学习数学的思维差异 抽象、推理、模型 数学教学的责任:会抽象、会推理 通过抽象:现实——数学 把研究对象、以及对象之间的关系形成概念 从现实世界到数学内部,数学具有一般性 通过推理:数学——数学 从假设前提出发,通过推理得到数学的结果 数学内容部的发展,数学具有逻辑性 通过模型:数学——现实 解决现实世界中的与数量和图形有关的问题 从数学内部到先生生活中的例子 二、小学数学中的抽象 数学思想:抽象、推理、模型(不是知识,不靠讲解靠感悟)教学要点:感悟什么?如何感悟?

如何培养高中生数学教学中的抽象概括能力

如何培养高中生数学教学中的抽象概括能力 发表时间:2017-09-26T16:30:41.437Z 来源:《中小学教育》2017年11月第296期作者:田薇 [导读] 教师要善于引导学生进行抽象概括,培养学生的抽象概括能力,学会把本质的和非本质的东西区分开,把具体问题抽象为数学问题,进而提高学生的数学能力。 田薇新疆乌鲁木齐市第六十九中学830023 摘要:数学抽象概括在数学教学的过程中无处不在。任何一个数学概念、法则、公式、规律等的学习,都要用到抽象概括。高中数学教学中,教师要善于引导学生进行抽象概括,培养学生的抽象概括能力,学会把本质的和非本质的东西区分开,把具体问题抽象为数学问题,进而提高学生的数学能力。 关键词:高中数学抽象概括 钱学森教授曾指出:“教育工作的最终机智在于人脑的思维过程。” 数学抽象概括能力是一种数学思维能力,是人脑和数学思维对象空间形式、数量关系等相互作用并按一般思维规律认识数学内容的内在理性活动的能力,是高层次的数学思维能力。 事实上,数学中的任何一个数、一个算式、一种运算,每个概念、公理、定理、法则和有关的数学模型,无一不是抽象、概括的结果。其中,大多数概念是从直接观察事物的现象中抽象出来的。 那么抽象和概括又是相互联系的。没有抽象不可能进行概括;而在抽绎对象的特性时,同时也就已经在反映对象的一般属性。一、高中阶段培养学生数学抽象概括能力的重要性 《普通高中数学课程标准》注重数学能力的培养。抽象概括能力是学好数学的重要条件,也是数学教学的任务之一。加之数学学科本身的特点,需要学生在学习中就有较强的概括能力,因此教师在教学中要注意培养学生的抽象概括能力。数学的完整性和严密性,使得数学结论和方法都具有相关性和相似性,在课堂教学中教师要充分利用这些相关性和相似性,采用类比和联想的方法,才能让学生自己探索和发现许多新的结论或新的方法。 学生抽象、概括能力越高,在学习中的迁移能力就越强,对新的知识的理解和掌握也就越快。抽象、概括是思维最重要的特点。因为只有通过抽象、概括才能使人的认识由感性上升到理性,从而掌握事物的本质和规律。因此,抽象、概括的水平在一定程度上反映了学生的思维水平。如果学生的抽象、概括能力提高了,他们的逻辑思维水平才会真正提高。 二、在数学抽象概括能力方面,不同数学能力的学生有不同的差异 高中阶段,具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。数学抽象概括能力是数学思维能力,这些都不能很好地学好数学,只有注重数学思维能力的培养,才能建立良好的学习态度,培养对数学的浓厚的兴趣,这才是学好数学的有效途径在数学抽象概括能力方面,不同数学能力的学生有不同的差异。具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。抽象概括能力是学习数学的基础,我们必须把握概念的本质,从而能够应用概念去解决问题。 三、解题中培养学生的概括能力 概括是指把抽象出来的若干事物的共同属性归结出来进行考察的一种思维方法,概括要以抽象为基础,它是抽象的发展,概括的过程就是从个别到一般的过程,抽象度越高,概括性就越强,所得的概念和理论运用于实际时,其迁移范围就更广,也就是说,高度的概括对事物的理解更具有一般性,则获得的理论或方法就有更普遍的指导性。概括方法在数学中得到广泛应用,并对数学的发展起了很大作用。课堂教学中根据学生的反应和内容的特点,进行教后概括,这种概括不是简单总结,而是要高于课本知识。函数单调性是指函数在给定的定义域的某一区间上,当函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如:例:指出函数f(x)=log2(x2+2x)的单调区间。 错解: 从上面的例题可以发现,在做题时如果学生没有在定义域的两个区间上分别考虑函数的单调性,这说明学生对函数单调性的概念一知半解,而如果能正确地先想到求解函数的定义域,然后再在定义域内研究函数的单调性说明学生的思维具有深刻性。 由此看来,在求解函数关系式、值域、最值、单调性等问题中,若能仔细地回顾思维过程,检查函数定义域是实数集还是确定的区

高考数学二轮复习 第三部分 能力篇 专题四 抽象概括能力与数据处理能力课时作业 理

2017届高考数学二轮复习 第三部分 能力篇 专题四 抽象概括能力 与数据处理能力课时作业 理 1.(2016·西安八校联考)如图所示的茎叶图是甲、乙两位同学在期 末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值分别为( ) A .2,4 B .4,4 C .5,6 D .6,4 解析:x 甲=75+82+84++x +90+93 6 =85,解得x =6,由图可知y =4,故选D. 答案:D 2.通过随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表: 附表: 随机变量K 2 = a +b c + d a +c b +d ,经计算,K 2 的观测值k 0≈4.762,参考 附表,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” B .在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” C .有97.5%以上的把握认为“爱好该项运动与性别有关” D .有97.5%以上的把握认为“爱好该项运动与性别无关” 解析:由表可知,有95%的把握认为“爱好该项运动与性别有关”,故选A. 答案:A 3.(2016·湖南五校调研)已知函数f(x)是定义在R 上的增函数,则函数y =f (|x -1|)-1的图象可能是( ) 解析:设y =g (x )=f (|x -1|)-1,

则g (0)=f (1)-1,g (1)=f (0)-1,g (2)=f (1)-1, ∴g (0)=g (2),排除A ,C ,又f (x )是定义在R 上的增函数, ∴g (0)>g (1),排除D ,选B. 答案:B 4.据我国西部各省(区,市)2016年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是( ) A .0.3 B .0.4 C .0.5 D .0.7 解析:依题意,由图可估计人均地区生产总值在区间[28,38)上的频率是1-(0.08+0.06)×5=0.3,选A. 答案:A 5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2 +bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A .3.50分钟 B .3.75分钟 C .4.00分钟 D .4.25分钟 解析:由实验数据和函数模型知,二次函数p =at 2 +bt +c 的图象过点(3,0.7),(4,0.8),(5,0.5),分别代入解析式,得???? ? 0.7=9a +3b +c ,0.8=16a +4b +c , 0.5=25a +5b +c , 解得???? ? a =-0.2, b =1.5, c =-2. 所以p =- 0.2t 2 +1.5t -2=-0.2(t -3.75)2 +0.812 5,所以当t =3.75分钟时,可食用率p 最大.故

数学教育学课件

数学教育学课件 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一讲:为什么要学习数学教育学 第一节数学教育成为一个专业的历史 数学教师是一种职业,是一种需要特殊培养的专业人士。 古代:学校教育的主要目的是培养大大小小的官吏、僧侣和文职人员 西方:数学教育的目的主要是为了训练学生的心智,<七艺教育:文法、修辞、逻辑学、算术、几何、天文、音乐)b5E2RGbCAP 中国:古代算学以测量田亩、计算税收等为目的,主要用于国家管理,数学教育的主要目的是为了经世致用,地位不高。(六艺教育:礼、乐、射、御、书、数>p1EanqFDPw 进入19世纪,数学在学校教育中占据重要地位: 西方——古典教育与科学教育之争; 中国——西方传教士兴办教会学校,但数学未普及。 Jeremy Kilpatrick<杰瑞M·克伯屈)《一份数学教育研究的历史》:19世纪末,人们意识到,教好数学需要既懂数学又懂教案法。DXDiTa9E3d 20世纪,数学教育开始成为一门专业 ⑴1911年,F·Klein指导的第一个数学教育博士Rudolf Schimmack毕业。 ⑵隶属于国际数学联合会的国际数学教育委员会

有两门学科对数学教育研究有过根本性影响的,而且继续发挥影响:数学和心理学 此外,哲学、社会学、人类学、经济学、政治学、生态学等不断影响数学教育领域,尤其是人类文化视角深刻地影响着人们对数学教育的认识。RTCrpUDGiT ⑴数学——Felix Klein,首任ICMI主席,热心倡导数学教育改革,一再强调: ①数学教师应该具有较高的观点——掌握或了解数学概念、方法及其发展与完善的过程及数学教育演化的经过; ②教育应该是发生性的——空间直观、数学应用、函数概念非常必要; ③应该用综合起来的一般概念和方法来解决问题; ④应该以函数为中心将算术、代数与几何综合起来。 总之,数学影响教案内容的选取。 第三节数学教育研究热点的改变 第二节数学教育研究关注的对象年龄范围在逐渐扩大中学→两头;校内→校外 第三节数学教育研究关注的问题范围在拓展。 宏观:课程→教师教育→学习问题→课堂教案问题→社会、文化、语言问题以及评价问题 微观:符号化与形式化、问题解决、应用与建模、证明与论证、各个学习领域的教与学、各个层次的数学教育问题

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

对高中数学核心素养——数学抽象的解读

对高中数学核心素养——数学抽象的解读 发表时间:2019-06-24T11:19:18.953Z 来源:《成功》2019年第2期作者:王秀玲 [导读] 随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。那么我们如何理解数学抽象呢? 黄梅理工学校湖北黄冈 435500 随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。那么我们如何理解数学抽象呢? 一、数学抽象的定义 数学抽象是指通过对数量关系与空间形式的抽象,舍去事物的一切物理属性,得到数学研究对象的素养。 从数学抽象的内涵看,数学抽象主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学符号或者数学术语予以表征。注意这里舍去的“物理属性”不是物理科学和物理理论,而是现实的物体的特殊性质。舍去的是它们的不同点,而得到的是它们的共同点,其中关于数量关系和空间形式的共同点就是数学研究对象——数学抽象。另外某些共同点是物理或者其他科学的研究对象,就是物理学或其它科学的抽象。 从数学抽象的学科价值看,数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。它具有把具体问题用简洁的数学语言符号表示、用一般的方法来解决复杂的数学文字、变表面无关的东西为奇妙的数学结构和体系。“抽象”一词几乎成为了数学的代名词,数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。 从数学抽象的教育价值看,通过数学抽象核心素养的培养,经历从具体到抽象的过程,能够感悟数学概念、命题、方法和体系的形成;能通过抽象、概括去认识、理解、把握事物的数学本质,逐渐养成一般性思考问题的习惯;能够在其他学科的学习中主动运用数学抽象的思维方式解决问题。 二、数学抽象的特点 (一)数学抽象具有抽象性特点 数学是一门研究度量、形式、图形和变化的学科,虽说它的研究对象脱不开现实原型,但可以绕开具体内容,理性地抽象出思维结果;另外我们可以用公理化的方法统一数学研究的各个领域。 (二)数学抽象具有合理性与可操作性 数学抽象的合理性表现为重点抽取对象的数量关系或空间形式,同时还表现为相对的确定性。以概率为例,我们从实际问题中抽象出各概率特点,根据对象是离散的还是连续的特点,将概率划分为古典概率与几何概率等概率模型,分别推出得出相应的判定与求解策略,而这些结论相互补充正好构成了系统而又完备的知识体系,有利于学生的理解与掌握。我们运用公理化的思想,借助合理性的数学抽象可以建立起各种数学符号体系,并借这个科学思维的智力工具,通过某些可操作的教学行为,使得学生有效地建立起形式化、统一化且具有联系性、整体性的数学知识和思想方法体系,并在解决问题的过程中不断巩固、完善和发展这一体系。这样加以规划、设计和培养数学抽象能力,可以使学生的数学学习形成良性循环。 (三)数学抽象具有层次性与可接受性 数学抽象由于抽象的对象(概念、模型、理论体系等)和过程的不同,数学抽象的发展体现出不同的层次性,正如概念的内涵与外延关系一样,越抽象概括性越强、应用性越广泛,反映人们抽象思维水平也就越高,但与之俱来的是学生接受知识的困难大大增加。 三、数学抽象水平的质量标准 依据新课标每个数学核心素养水平都是从情境与问题、知识与技能、思维与表达、交流与反思这四个方面来阐述,并且每一个数学学科核心素养划分为三个水平,数学抽象也划分为三个水平,也是从上述四个方面来说明: 水平一是高中毕业应当达到的要求,也是高中毕业的数学学业水平考试的命题依据;水平二是高考的要求,也是数学高考的命题依据;水平三是基于必修、选择性必修和选修课程的某些内容对数学学科核心素养的达成提出的要求,可以作为大学自主招生的参考。四、高中阶段数学抽象的基础载体 通过解读数学核心素养可以看出,能力的培育必须要有相应的知识土壤,这就必须明了相应的素养知识与相应的的能力载体,这是提升数学核心素养的前提。高中阶段数学抽象的基础载体主要体现在以下几个方面:集合;函数的概念与性质;三角函数;立体几何初步;概率;导数及其应用;空间向量与立体几何;平面解析几何。 五、数学抽象与其它数学核心素养的关系 最新的《普通高中数学课程标准(实验)》明确指出:数学核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成的,是具有数学基本特征的、适应个人终身发展和社会发展需要的思维品质与关键能力。高中阶段数学核心素养是六个:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。这些数学核心素养各具独立性,又相互补充、相互交融、相互促进,形成一个有机整体,在不同情境中整体发挥作用。 六、数学抽象的具体表现 数学是以数量关系和空间形式为主要研究对象,而数量关系和空间形式正好是从现实世界中抽象出来的,我们教学的终极目标恰恰是培养学生具有初步的抽象思维,而不是让学生的思维水平停留在形象直观阶段,我们每次学习的升华无一不是抽象的过程。数学抽象的具体表现有以下几个方面:形成数学概念和规则;形成数学命题和模型;形成数学方法与思想;形成数学结构与体系。 总之,通过学习,我们可以培养学生的数学表征、抽象思考和数学理解能力,让学生能在问题中抽象出并理解数学概念、命题、方法

在抽象概括中发展思维能力

在抽象概括中发展思维能力 一、教材的变化与思考 本单元教学内容与旧教材相比,有较大的调整和变化(如下表): 从对比可以看出,原实验教材利用5个例题对四则混合运算及其顺序进行整理;而新教材仅用1个例题对四则混合运算顺序进行概括,增加了对加减乘除四则运算的意义及各部分之间关系的梳理总结。 对熟悉旧大纲版四年级下册数学教材的教师而言,这次变化颇有点“回归”的感觉。大纲版四年级下册的“整数和整数四则运算”单元,就专门对四则运算的意义及各部分之间的关系进行了整理。那么,这次“回归”用意何在?与以往的教学有什么不同? 首先,这样的编排,突出了对四则运算意义、关系的整理和概括,减少了混合运算因螺旋编排造成的循环过多、琐碎、教学步子较小、留给学生探索空间不足的问题。 其次,突出了对概念、关系等的抽象概括。实验教材为引导加强理解,改变教学中“死记硬背”的现象,淡化了对概念、法则、规律与关系等过分“形式化”的要求,但实际教学中,却容易导致对概念、法则、规律的抽象概括的忽视,

有时甚至出现基本的数量关系也模糊不清的现象。抽象性是数学的基本特征,数学的抽象概括过程对发展人的思维能力,特别是理性思维能力产生着重大影响。抽象概括也是数学建模的重要方式。因此,新教材适当重视了对基本数量关系以及有关内容的抽象与概括。如五上“小数乘法”,在引导学生用自己的语言对概念、规律、法则进行解读的基础上,引导完成文本概括(如图1所示)。本单元内容也是如此,突出对知识的梳理和抽象。 相比大纲版教材,新教材将四则运算的意义和各部分间的关系分成三部分:加、减法的意义和各部分间的关系;乘、除法的意义和各部分间的关系以及0的有关运算;运算律单独编排一个单元。这样编排更具系统性,有利于学生感悟知识之间的内在联系,构建知识框架;同时,相似的编排结构,便于学生借助已有的思维框架和认知经验,进行自主的迁移学习。 需要注意的是,教材突出对概念、关系、规律的抽象概括,目的是优化知识结构的同时,发展学生的思维能力与模型思想,重在过程。教学中要引导学生在解决问题的过程中,感悟联系、发现规律、建立模型。而不能把结果作为重点,忽视过程经历,一味强调得出概念、关系和规律,导致新的“死记硬背”的产生。 二、教学分析与建议

数学七大思想方法

数学七大思想方法 1 函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。高考把函数与方程思想作为七种重要思想方法重点来考查。 2 数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面。 (2)在一维空间,实数与数轴上的点建立一一对应关系; 在二维空间,实数对与坐标平面上的点建立一一对应关系。 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 3 分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 4 化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 5 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 6 有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 7 或然与必然的思想 (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性。 (2)偶然中找必然,再用必然规律解决偶然。 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

数学抽象及其在教学中的应用

数学抽象及其在教学中的应用 抽象性是数学的基本特点之一,所有的数学知识能够说都是经过抽象得到的,小学数学中的知识和方法亦是如此。数学抽象也是一种基本的数学思想。学生学习数学,不但是要学习那些由前人抽象概括形成的数学知识,同时还要学习形成知识的抽象概括的方法。了解数学抽象的特殊性以及如何在小学数学教学中有效应用数学抽象方法就显得十分必要。本文将在分析数学抽象的内涵、分类、教育价值的基础上,探讨数学抽象在小学数学教学中的应用。 一、数学抽象的内涵和分类 1.数学抽象的内涵。 “抽象”一词源于拉丁语“abstracio”,其本意是排除、抽取的意思。现在人们对抽象的理解一般有两种,一种是用来形容那种远离具体经验,因而不太容易理解的对象性质的水准;另一种是指从具体事物中舍弃非本质属性而抽取本质属性的过程和方法。后者反映出抽象是一种思维活动。 抽象性是数学的基本特点之一,抽象也是数学活动最基本的思维方法。作为方法的数学抽象抽取的是事物在数量关系和空间形式等方面本质属性,进而提炼数学概念,构造数学模型,建立数学理论。 2.数学抽象的分类。 数学的一切活动,从概念到方法,实质上都是抽象的,大到组织一个数学体系所用的公理化方法,在实际应用中的数学模型方法,小到一个概念的给出,一个计算过程的建立,一个证明技巧的发现,甚至于一个问题的表征都需要用到数学抽象。由此也能够看出数学抽象是多种多样的,也是多层次的。了解数学抽象的分类有助于我们在教学中抓住抽象的重点和关键。 数学抽象根据抽象对象的性质能够分为“表征型抽象”“原理型抽象”和“建构型抽象”。对事物所表现出来的特征的抽象,称为“表征型抽象”。例如三角形、正方形、圆、立方体、轴对称等概念都是“表征型抽象”的结果。对事物内在因果性、规律性、关系性的抽象,称为“原理型抽象”。例如乘法分配律、三角形内角和为180o等基本数学关系都是“原理型抽象””的结果。而建立在这些抽象基础上的数学建构性活动称为“建构型抽象”。如定义质数和合数的概念的活动就是“建构型抽象”。 数学抽象还能够从抽象过程的特征上分为“理想化抽象”“等置抽象”“弱抽象”和“强抽象”。理想化抽象是指从数学研究的需要出发,人们构造出一些理想化的对象的思维过程,理想化抽象得出的数学概念包含了对于真实事物或现象的简化和完善化,因而这些概念与现实原型本身未必完全相符,如线段、射线、直线等概念都是理想化抽象的结果;又如,在解决实际问题的时候,往往用线段图来表示题目中的数量关系,而线段图也是理想化抽象的结果。理想化抽象也能够通过引进理想化元素来发现数学理论,如虚数概念的建立。等置抽象是指依据某种等价关系抽取一类对象共同特征的抽象方法。如从三个苹果、三棵树、三枚棋子……这些在数量上具有共同特征的事物中抽取出“自然数3”这个概念,就是等置抽象。弱抽象也能够叫做概念“扩张式抽象”,即

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

数学抽象方法

第6章数学抽象方法 一、数学抽象方法 数学抽象方法是抽象方法在数学中的具体运用。它是从考虑的问题出发,通过对各种经验事实的观察、分析、综合和比较,在人们的思维中撇开事物现象的、外部的、偶然的东西,抽出事物本质的、在的、必然的东西,从空间形式和数量关系上揭示客观对象的本质和规律,或者在已有数学知识的基础上,抽出其某一种属性作为新的数学对象,以此达到认识事物本质和规律的目的的一种数学研究方法。 二、数学抽象的特点 抽象性并非数学所独有,但数学的抽象性有它自身的特点。 1.数学抽象的特殊容。 数学研究的对象只是现实世界的空间形式和数量关系而舍弃其他一些具体容。 2.数学抽象的特殊高度。 和一般的自然科学相比,数学抽象的又一特点在于它所达到的高度,数学的抽象程度远远超过了自然科学中的一般抽象。 首先,数学抽象往往是在其他学科抽象基础上的再抽象。 其次,数学抽象具有逐级抽象的特点。 3.数学抽象的特殊方法。 数学抽象就是一种建构的活动,数学的研究对象是通过逻辑建构活动来得到构造的,是借助于定义和推理进行的。

三、数学抽象的作用 1.有利于使认识深入到事物的本质 什么是椭圆? ——椭圆是鸡蛋的那种外形或者有点像橄榄的那种形状; ——椭圆是平面上到两定点距离之和为一定值的点的轨迹,或者椭圆是当240b ac -<时,满足方程220ax bxy cy dx ey f +++++=的点(x ,y)的集合。 2. 有利于认识一般 下面是两类不同的方程: 2212350,704 x x x x ++=+ += 20ax bx c ++= 3.有利于认识无限 什么是自然数? 1,2,3, 4,5,6,等等。 意大利数学家皮亚诺这样定义自然数集: 自然数是指满足以下性质的集合N 中的元素: (1)1是N 的一个元,它不是N 中任何元的后继者,若a 的后继者用a +表示,则对于N 中任何a ,a +≠1; (2)对于N 中任意元a ,存在而且仅存在一个后继者a +;

数学核心素养之数学抽象理解

数学核心素养之数学抽象理解 高中课程标准修订组,按照内涵、价值和表现的框架,给出的高中数学核心素养是:数学抽象、逻辑推理、数学建模、运算能力、直观想象、数据分析。 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。 数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。…… 反思1:只舍去“物理属性”,不舍去“社会属性”“形式属性”?应该是“具体属性”. 反思2:“表征”应改为“表示”,如此更通俗易懂,也更准确。表征是教育心理学的术语,是认知者在脑中重新表示反映——再表示的意思。 反思3:数量与数量关系、图形与图形关系已经属于纯数学世界的内容,由两者抽象出数学概念及关系就是所说的垂直数学化,即数学世界内部由低级向高级的发展。“从事物的具体背景中抽象出一般规律和结构”指的是从真实世界得出数学原理结构,是由真实世界到数学世界的水平数学化之一,但却少了另一种更基础的水平数学化:由真实世界抽象出数量、图形、概念等数学模式。例如:实际问题→茎叶图;力→向量;力的分解合成→向量的分解合成。 反思4:抽象是数学的特点之一,但不是数学所特有的。逻辑学、哲学、文学、艺术中的“抽象”俯拾皆是。浙江大学120周年校庆通告你读懂了多少?“庠序”“缉熙”“黾勉”不抽象吗?毕加索的画不抽象吗? 概括性才是数学更本质的特点。抽象是过程手段,是概括的基础,而概括才是最终的目的.理解数学概念、原理的本质不是理解抽象性,而是理解数学概念、原理的概括性或者说“通杀性”! 反思5:“数学抽象”是一种提炼抽取数学对象的手段,把它作为一种数学思想恰当吗?请问国际上有哪一本专著、论文把数学抽象作为数学思想之一?从定义所阐述的内容看,“数学抽象”实际上就是数学家、数学教育家早已提出的“数学化”的部分内容。 数学化是整理现实性的过程,它包括数学家的全部组织活动,比如公理化、形式化、图式化、建模,以及数学内部由低级向高级的推动过程这里的“现实性”是指真实世界和数学世界的总和,不能望文生义地理解为真实世界、现实世界. 公理化是指从少数不加定义的原始概念和不加证明的公理出发,运用逻辑推理规则把一门学科建立成为演绎系统的过程. 形式化是指“用日益有效的符号对语言的整理、修正和转化的过程.”而关于图式化,在介绍完公理化、形式化后,是这样形容的:“人们早已习惯于把经历和行为示范性地推广,从中抽象出定律和规则.形成与现实的体系相吻合的图式.最后一步就是图式化,它和公理化、形式化相对应,尤其是当考虑的是内容而不是抽象的形式或语言的时候.”.因此,可以认为,图式化就是形式内容的内化过程,其结果是一种心理意义,即心理结构. 建模是数学化的一个方面,在的术语观中,模型是不可缺少的一种中介,建模就是用模型把复杂的现实或理论来理想化或简单化,从而更易于进行形式的数学处理. 数学化被分成两种:一是水平数学化,即从生活世界中抽象概括出数学概念、数学原理等数学模式的过程,是从“生活世界”到“数学世界”的转化过程.二是垂直数学化:即从现有的数学世界中抽象概括出更高级的数学模式的过程,是从低层数学到高层数学的过程. 国内外同行早已认同了的观点:学数学就是学习数学化,教数学就是教数学化。数学化的学习就是学习数学化的过程,即学习如何进行公理化、形式化、图式化、模型化,以及学习在数学内部由低级向

数学抽象与概括方法

物理学一班李密学号:200907051112 数学抽象与概括方法 所谓抽象,是指从复杂的事物中,排除非本质属性,透过现象抽出其本质特征的思维过程,通过科学的抽象,人们就能更深刻、更正确、更完全地把握事物的内部联系和本质特性。抽象是数学中常用且不可少的思维方法。 所谓概括,就是将个别事物的本质特征综合起来推广到同类事物的思维过程。在数学中概括是构成概念的一种重要方法,它和抽象相互联系,密不可分。 事实上,数学中的任何一个数、一个算式、一种运算、每个概念、公理、定理、法则和有关的数学模型,无一不是抽象、概括的结果。其中,大多数概念是从直接观察事物的现象中抽象出来的。它是对事物所表现出来的特征的抽象,故称之为“表征性抽象”。如点、线、面、体、正方形、立方体、回转体等均属此类。而数学公理、原理、公式等,乃是在表征性抽象的基础上形成的一种深一层的抽象,它揭示了事物的因果性和规律性联系,故称之为“原理性抽象”。 至于与抽象相联系的概括,在数学中常常用于把某类事物的部分个体所具有的特性推广到该事物的全体上去,或是把某个特定领域的规律推广到其它领域中去。这种概括称之为“外推性概括”,对于数学概念,则常常是采取由对单一的某个事物的认识,直接上升概括为一种具有普遍性规律的认识,这种概括称之为“上升性概括”。 由于我们数学学习所认识的对象,主要是已经被前人抽象、概括了的间接知识,尽管它们无需我们再去抽象、概括,但是我们必须要在数学的学习过程中,去分析、研究,弄清它们是如何抽象、概括出来的,不仅仅限于去学习这些知识,重要的是要去学习这种抽象概括的思想方法,必须学会摆脱具体内容,从各种概念、关系运算、定理的结构中去分析,被扬弃的非本质属性是哪些?抽出的本质特征又是什么?又是怎样去概括这些本质特征的?自己也可以选择一些适当的事物做这种抽象、概括方法的训练,通过这样的深究分析,便可在学习活动中逐步培养抽象、概括的能力。

抽象与概括

抽象与概括 一、方法的必要性 《物理课程标准》指出:“通过科学想象与科学推理方法的结合,发展学生的想象力和分析概括能力,使学生养成良好的思维习惯,敢于质疑,勇于创新。”抽象概括思维是思维的一种重要形式,是发展直觉思维、创造性思维的前提和基础,对思维能力的培养和提高具有关键的作用。 物理抽象概括思维是以物理概念为思维材料,以物理判断和物理推理的形式来反应客观物理事物的运动规律,达到对事物的本质特征和内在联系的认识过程。它具有抽象性和概括性、逻辑性和系统性、能动性和间接性、线型性和精确性的特点。而物理科学是揭示事物本质、研究自然界中事物之间相互作用、关系和规律的科学,具有抽象性、隐蔽性、深刻性和探索性的特点。因此,物理问题的提出,物理探究过程的设计、实验,物理结论或规律的总结、归纳、得出都离不开抽象概括思维。教师可以通过启发式教学、探究式教学、开放式教学等教学模式再现物理科学发展的过程,使学生在提出问题——猜想假设——设计方案——实验探究——反馈评价的过程中主动建构自己的知识网络。建构中学生可以运用抽象概括思维方法分析物理事物之间的联系;分析理论内部的逻辑关系;比较多种假说间的差别;分析、比较、判断各种实验方案的利弊等。如法拉第电磁感应原理的提出,牛顿在伽利略理想实验的基础上提出第一定律的新课教学等。通过教师的合理启发和精心指导,学生主动运用抽象概括思维去质疑、发问、思考、设计、探究、评价,这样学生既学到了知识和技能,又体验了科学探究的过程,学会了科学探究的方法。 在物理科学发展中,科学家运用物理抽象概括思维将物理知识形成体系,用最简单的规律和理论来描述自然界的各种物理现象和过程。如宇宙中的各种作用力在本质上可以归结为万有引力、电磁力、强相互作用力、弱相互作用力四种;牛顿运动定律将各种力学现象和过程组成了一个井然有序的集体;麦克斯韦方程组将复杂的电磁现象和规律建立了一个和谐圆满的家庭。这些自然科学的丰硕成果使学生们感知到一种和谐、简捷、奇特、神秘的美感,激发了他们主动学习、探究的热情,对培养学生的情感、态度、价值观具有重要意义。 二、方法的内涵 抽象是指在认识事物的过程中,舍弃那些个别的、偶然的非本质属性,抽取普遍的、必然的本质属性,形成科学概念,从而把握事物的本质和规律的思维过程。 人们在思维中对对象的抽象是从对对象的比较和区分开始的。所谓比较,就是在思维中确定对象之间的相同点和不同点;而所谓区分,则是把比较得到的相同点和不同点在思维中固定下来,利用它们把对象分为不同的类。然后再进行舍弃与收括,舍弃是指在思维中不考虑对象的某些性质,收括则是指把对象的我们所需要的性质固定下来,并用词表达出来。这就形成了抽象的概念,同时也就形成了表示这个概念的词,于是完成了一个抽象过程。 概括是指在认识事物属性的过程中,把所研究各部分事物得到的一般的、本

求抽象函数表达式常见五种方法

求抽象函数表达式常见五种方法 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法 解培养学生的灵活性及变形能力。 例1:已知 ()211 x f x x =++,求()f x . 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知3311()f x x x x +=+,求()f x 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知 ()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 例5.一已知 ()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式 例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x

参考答案: 例1:解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1) 例3.解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()4 1321,1,22 22a c a a b c b +=??=?===??=?∴ 21 3 ()22f x x x =++ 例4.解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

相关文档
最新文档